EP0317886B1 - Gradationsvariables SW-Papier - Google Patents

Gradationsvariables SW-Papier Download PDF

Info

Publication number
EP0317886B1
EP0317886B1 EP88119074A EP88119074A EP0317886B1 EP 0317886 B1 EP0317886 B1 EP 0317886B1 EP 88119074 A EP88119074 A EP 88119074A EP 88119074 A EP88119074 A EP 88119074A EP 0317886 B1 EP0317886 B1 EP 0317886B1
Authority
EP
European Patent Office
Prior art keywords
emulsion
gradation
paper
variable
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88119074A
Other languages
English (en)
French (fr)
Other versions
EP0317886A2 (de
EP0317886A3 (en
Inventor
Walter Dr. Pätzold
Helmut Dr. Kampfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0317886A2 publication Critical patent/EP0317886A2/de
Publication of EP0317886A3 publication Critical patent/EP0317886A3/de
Application granted granted Critical
Publication of EP0317886B1 publication Critical patent/EP0317886B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/10Organic substances
    • G03C1/12Methine and polymethine dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/34Fog-inhibitors; Stabilisers; Agents inhibiting latent image regression
    • G03C1/346Organic derivatives of bivalent sulfur, selenium or tellurium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03564Mixed grains or mixture of emulsions

Definitions

  • the invention relates to a variable-grade black-and-white paper (BW paper) which contains at least two silver halide emulsions which are mixed prior to casting and which are sensitive to different spectral ranges, a special stabilizer being added to at least one emulsion.
  • BW paper black-and-white paper
  • Gradation-variable light-sensitive silver halide materials contain emulsions that are light-sensitive for different spectral ranges. Depending on the composition of the copying light, a harder or softer gradation is achieved. The emulsions are usually mixed before pouring so that only one layer has to be poured. There is a danger that sensitization occurs, ie that the sensitizing dye is desorbed from the silver halide grains of an emulsion and adsorbed on the grains of an unsensitized, blue-sensitive emulsion. This is undesirable, since such a differentiated exposure by changing the copying light no longer leads to the desired result. Under unfavorable conditions, the process of sensitization is not limited to the casting solution, but can also occur on the finished material, for example under the influence of moisture, heat or both.
  • the object of the invention was therefore to provide a gradation-variable SW paper in which these disadvantages do not occur.
  • Suitable heterocyclic rings are 5- and 6-membered rings which contain one to three heteroatoms from the O, S, Se and N series and can be benzo- or naphthocondensed. Examples are oxazole, thiazole, selenazole, imidazole, tetrazole, triazoles, pyrimidine as well their benzo and naphtho-fused derivatives which are substituted by sulfo, carboxy, halogen, C1-C4-alkyl, aryl, especially phenyl, sulfophenyl, carboxyphenyl, C1-C4-alkylcarbonylamino, C1-C4-alkylaminosulfonyl or arylaminosulfonyl, especially phenylaminosulfonyl and chlorophenylaminosulfonyl can.
  • R1 and R2 are the remaining members of a benzo or naphtho radical substituted by at least one sulfo group, which may optionally contain further substituents.
  • R1 and R2 are the remaining members of a benzo or naphtho radical substituted by one or two sulfo groups, which can be further substituted by C1-C4-alkyl or halogen.
  • the sulfonic acid and mercapto groups can also be present in the form of their salts, especially their alkali or ammonium salts. Suitable examples are: The emulsion with an absorption maximum between 480 and 580 nm is produced by conventional spectral sensitization with green-sensitive sensitizers.
  • the emulsion with an absorption maximum below 480 nm is either an unsensitized silver halide emulsion, the intrinsic sensitivity of which is in the range given, absorptions below 360 nm are of no interest, since the absorption of the gelatin or an emulsion that contains a blue-sensitive sensitizer lies after shorter wavelengths.
  • the green and blue-sensitive partial emulsions can be mixed in a weight ratio of 1.5: 1 to 1:10, preferably 1: 1 to 1: 3, based on their silver content.
  • the emulsions are preferably silver chloride bromide emulsions with 20 to 80 mol% chloride, 20 to 80 mol% bromide and 0 to 5 mol% iodide.
  • the average grain size is in particular from 0.2 to 0.6 ⁇ m, the silver halide grains being cubic to octahedral.
  • the average grain size can be between 0.2 to 0.6 ⁇ m, preferably 0.4 to 0.5 ⁇ m.
  • the silver halide crystals can be doped with Rh3+, Ir4+, Cd2+, Zn2+, Pb2+.
  • the emulsion can be desalted in the customary manner (dialysis, flocculation and redispersion, ultrafiltration).
  • Chemical sensitization can take place through unstable sulfur compounds (e.g. thiosulfate, diacetyl-thiourea), through gold-sulfur ripening or reduction ripening. Chemical sensitization can be carried out with the addition of Ir, Rh, Pb, Cd, Hg, Au.
  • unstable sulfur compounds e.g. thiosulfate, diacetyl-thiourea
  • gold-sulfur ripening or reduction ripening e.g., gold-sulfur ripening or reduction ripening.
  • the binder is an essential component of the at least one light-sensitive layer in addition to the silver halide.
  • Gelatin is preferably used as the binder. However, this can be replaced in whole or in part by other synthetic, semi-synthetic or naturally occurring polymers.
  • Synthetic gelatin substitutes are, for example, polyvinyl alcohol, poly-N-vinylpyrolidone, polyacrylamides, polyacrylic acid and their derivatives, in particular their copolymers.
  • Naturally occurring gelatin substitutes are, for example, other proteins such as albumin or casein, cellulose, sugar, starch or alginates.
  • Semi-synthetic gelatin substitutes are generally modified natural products.
  • Cellulose derivatives such as hydroxyalkyl cellulose, carboxymethyl cellulose and phthalyl cellulose and gelatin derivatives, which have been obtained by reaction with alkylating or acylating agents or by grafting on polymerizable monomers, are examples of this.
  • the binders should have a sufficient amount of functional groups, so that by reaction enough suitable layers can be produced with suitable hardening agents.
  • functional groups are in particular amino groups, but also carboxyl groups, hydroxyl groups and active methylene groups.
  • the gelatin which is preferably used can be obtained by acidic or alkaline digestion.
  • the production of such gelatins is described, for example, in The Science and Technology of Gelatine, published by A.G. Ward and A. Courts, Academic Press 1977, page 295 ff.
  • the gelatin used in each case should contain the lowest possible level of photographically active impurities (inert gelatin). High viscosity, low swelling gelatins are particularly advantageous.
  • the silver halide present as a light-sensitive component in the photographic material can be predominantly compact crystals, which are e.g. are regular cubic or octahedral or can have transitional forms.
  • platelet-shaped crystals may preferably also be present, the average ratio of diameter to thickness of which is preferably greater than 5: 1, the diameter of a grain being defined as the diameter of a circle with a circle content corresponding to the projected area of the grain.
  • the silver halide grains can also have a multi-layered grain structure, in the simplest case with an inner and an outer grain area (core / shell), the halide composition and / or other modifications, such as doping of the individual grain areas, being different.
  • the grain size distribution can be both homodisperse and heterodisperse. Homodisperse grain size distribution means that 95% of the grains do not deviate from the mean grain size by more than ⁇ 30%.
  • the emulsions can also contain organic silver salts, for example silver benzotriazolate or silver behenate.
  • Two or more kinds of silver halide emulsions, which are prepared separately, can be used as a mixture.
  • the photographic emulsions can be prepared using various methods (e.g. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) from soluble silver salts and soluble halides.
  • various methods e.g. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) from soluble silver salts and soluble halides.
  • the silver halide is preferably precipitated in the presence of the binder, for example the gelatin, and can be carried out in the acidic, neutral or alkaline pH range, silver halide complexing agents preferably being additionally used.
  • the latter include, for example, ammonia, thioether, imidazole, ammonium thiocyanate or excess halide.
  • the water-soluble silver salts and the halides are optionally carried out in succession by the single-jet process or simultaneously by the double-jet process or by any combination of the two processes. Dosing with increasing inflow rates is preferred, the "critical" feed rate, at which no new germs are being produced, should not be exceeded.
  • the pAg range can vary within wide limits during the precipitation, preferably the so-called pAg-controlled method is used, in which a certain pAg value is kept constant or a defined pAg profile is traversed during the precipitation.
  • so-called inverse precipitation with an excess of silver ions is also possible.
  • the silver halide crystals can also grow by physical ripening (Ostwald ripening) in the presence of excess halide and / or silver halide complexing agent.
  • the growth of the emulsion grains can even take place predominantly by Ostwald ripening, preferably a fine-grained, so-called Lippmann emulsion, mixed with a less soluble emulsion and redissolved on the latter.
  • the photographic emulsions can contain compounds for preventing the formation of fog or for stabilizing the photographic function during production, storage or photographic processing, in particular also in the layer which is sensitive in the range from 480 to 580 nm.
  • Azaindenes are particularly suitable, preferably tetra- and penta-azaindenes, in particular those which are substituted by hydroxyl or amino groups. Such connections are for example from Birr, Z. Wiss. Phot. 47 (1952), pp. 2-58. Salts of metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, nitroindazole, (subst.) Benzotriazoles or benzothiazolium salts can also be used as antifoggants.
  • metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, nitroindazole, (subst.) Benzotriazoles or benzothiazolium salts can also be used as
  • Heterocycles containing mercapto groups for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines, are particularly suitable, these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
  • mercaptobenzthiazoles for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines
  • these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
  • a water-solubilizing group for example a carboxyl group or sulfo group.
  • the stabilizers can be added to the silver halide emulsions before, during or after their ripening.
  • the compounds can also be added to other photographic layers which are assigned to a halogen silver layer.
  • the photographic emulsion layers or other hydrophilic colloid layers of the light-sensitive material produced according to the invention can be surface-active Contain agents for various purposes, such as coating aids, to prevent electrical charging, to improve the sliding properties, to emulsify the dispersion, to prevent adhesion and to improve the photographic characteristics (e.g. acceleration of development, high contrast, sensitization, etc.).
  • Chemical sensitization can take place through unstable sulfur compounds (e.g. thiosulfate, diacetyl-thiourea), through gold-sulfur ripening or reduction ripening. Chemical sensitization can be carried out with the addition of Ir, Rh, Pb, Cd, Hg, Au, as well as the addition of optical sensitizers or stabilizers.
  • unstable sulfur compounds e.g. thiosulfate, diacetyl-thiourea
  • Chemical sensitization can be carried out with the addition of Ir, Rh, Pb, Cd, Hg, Au, as well as the addition of optical sensitizers or stabilizers.
  • the photographic material may further contain UV light absorbing compounds, whites, spacers, formalin scavengers and others.
  • Compounds that absorb UV light are intended on the one hand to protect the image dyes from fading by UV-rich daylight and, on the other hand, as filter dyes to absorb the UV light in daylight upon exposure and thus improve the color rendering of a film.
  • Connections of different structures are usually used for the two tasks. Examples are aryl-substituted benzotriazole compounds (US Pat. No. 3,533,794), 4-thiazolidone compounds (US Pat. Nos. A3,314,794 and 3,352,681), benzophenone compounds (JP-A 2784/71), cinnamic acid ester compounds (US Pat. No. 3,705,805) and 3,707,375), butadiene compounds (US-A 4,045,229) or benzoxazole compounds (US-A 3,700,455).
  • Ultraviolet absorbing couplers such as ⁇ -naphthol type cyan couplers
  • ultraviolet absorbing polymers can also be used. These ultraviolet absorbents can be fixed in a special layer by pickling.
  • Suitable whiteners are e.g. in Research Disclosure December 1978, page 22 ff, Unit 17 643, Chapter V.
  • binders of the material according to the invention are hardened with suitable hardeners, for example with hardeners of the epoxy type, the ethyleneimine type, the acryloyl type or the vinylsulfone type.
  • suitable hardeners for example with hardeners of the epoxy type, the ethyleneimine type, the acryloyl type or the vinylsulfone type.
  • suitable hardeners for example with hardeners of the epoxy type, the ethyleneimine type, the acryloyl type or the vinylsulfone type.
  • dizine, triazine or 1,2-dihydroquinoline series hardeners are also suitable.
  • the binders of the material according to the invention are preferably hardened with instant hardeners.
  • Immediate hardeners are understood to mean compounds which crosslink suitable binders in such a way that the hardening is completed to such an extent immediately after casting, at the latest after 24 hours, preferably at the latest after 8 hours, that no further change in the sensitometry and the swelling of the layer structure occurs as a result of the crosslinking reaction .
  • Swelling is understood to mean the difference between the wet film thickness and the dry film thickness during the aqueous processing of the film (Photogr. Sci. Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
  • hardening agents that react very quickly with gelatin are e.g. to carbamoylpyridinium salts, which are able to react with free carboxyl groups of the gelatin, so that the latter react with free amino groups of the gelatin to form peptide bonds and crosslink the gelatin.
  • the materials according to the invention are processed in the usual manner according to processes recommended for this.
  • Grain diameter 0.42 microns is desalted in a known manner and matured after the addition of 20 microns thiosulfate / mole AgNo3 under sensitometric control to an optimal sensitivity-fog ratio.
  • the emulsion contains 100 g of AgNO3 in 1 kg of emulsion.
  • Green-sensitized partial emulsion 300 g of the emulsion are optically sensitized for the green spectral range by adding 37 mg of the sensitizer SE 18 and stabilized by adding 30 mg of 5-hydroxy-7-methyl-1,3,8-triazaindolizine per kg of emulsion.
  • Unsensitized partial emulsion 700 g of the emulsion are stabilized by adding 30 mg of 5-hydroxy-7-methyl-1,3,8-triazaindolizine.
  • the partial emulsions are mixed; a part is cast on an opaque support with the addition of a gelatin hardening agent (test 1A). Another part of the mixture is kept at 40 ° C. for 4 hours and then poured with the addition of a gelatin hardening agent (experiment 1B).
  • Emulsion preparation and sensitization for the spectral range from 480 to 580 nm is carried out according to Example 1.
  • Unsensitized partial emulsion This part of the emulsion is stabilized as in Example 1 with 30 mg of 5-hydroxy-7-methyl-1,3,8-triazaindolizine and additionally with 200 mg of Stabilizer III per kg of emulsion.
  • the partial emulsions are mixed and poured according to Example 1 (tests 2A and 2B).
  • Emulsion preparation and sensitization for the spectral range from 480 to 580 nm correspond to Example 1, but 250 g of an emulsion of 60 mol% AgCl, 39.5 mol% AgBr and 0.5 mol% AgI are used.
  • Blue-sensitized partial emulsion 250 mg of the unsensitized emulsion are mixed with 20 mg of sensitizer BS6 and 30 mg of 5-hydroxy-7-methyl-1,3,8-triazaindolizine.
  • Unsensitized partial emulsion 500 g of the unsensitized emulsion are mixed with 30 mg of 5-hydroxy-7-methyl-1,3,8-triazaindolizine and 160 mg of stabilizer I.
  • a sample of the material is exposed behind a yellow filter and a step part.
  • a second sample is exposed behind a purple filter and a step part.
  • the developer is then developed with a developer customary for SW paper (e.g. Agfa 100) and the density of the steps is measured.
  • Log ER is determined from the density curve in accordance with ANSI standard PH 2.2-1966 (Table 1).
  • Part of the material (1A, 2A, 3A) is subjected to an artificial aging by storage for 2 days in a warm, humid atmosphere at 45 ° C. and 65% rel. Humidity (1C, 2C, 3C).
  • Example 2 Analogously to Example 1, the following emulsions of the specified composition and grain size are prepared and chemically ripened. Each emulsion is divided into 2 equal parts, of which the first partial emulsion is sensitized with the spectral sensitizer in the range between 480 and 580 nm and the second partial emulsion is mixed with the stabilizer according to the invention. Then the two partial emulsions are mixed and cast as usual on PE paper base with an application of 1.4 g of silver per m2. These samples according to the invention are designated A.
  • Samples B differ from A in that the stabilizer in the second partial emulsion is omitted.
  • Samples C contain the spectral sensitizer evenly distributed over all emulsion crystals in the same concentration per m2 as for samples A and B.
  • the samples are then subjected to sensitometric exposure behind a yellow and a purple filter with the spectral characteristics "Gb" and "Pp" shown in FIG. 1. It is then developed in Agfa-Neutol paper developer and log ER determined.
  • a silver chloride emulsion with 70 mol% chloride and 30 mol% bromide and an average grain size of 0.3 ⁇ is produced and chemically ripened as described in Example 1.
  • the emulsion is then divided into two equal parts as described in Example 4.
  • the first partial emulsion is sensitized with 75 ⁇ mol per mole Ag of the sensitizer dye SE 6.
  • the second partial emulsion is sensitized with a blue sensitizer BS as indicated in Table 6 and stabilized with 240 mg of stabilizer III.
  • the part emulsions After the part emulsions have been mixed, they are poured onto PE paper substrates. As in Example 4, the layers are subjected to sensitometric exposure behind a yellow and purple filter.
  • the blue sensitivity (column 5) can be increased considerably by adding the blue sensitizers without losing the gamma differentiation according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Paper (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)

Description

  • Die Erfindung betrifft ein gradationsvariables Schwarz-Weiß-Papier (SW-Papier), das mindestens zwei Silberhalogenidemulsionen enthält, die vor dem Vergießen gemischt werden und die für unterschiedliche Spektralbereiche empfindlich sind, wobei wenigstens einer Emulsion ein spezieller Stabilisator zugesetzt wird.
  • Gradationsvariable lichtempfindliche Silberhalogenidmaterialien enthalten Emulsionen, die für verschiedene Spektralbereiche lichtempfindlich sind. Je nach Zusammensetzung des Kopierlichtes erzielt man härtere oder weichere Gradation. Die Emulsionen werden üblicherweise vor dem Vergießen gemischt, damit nur eine Schicht gegossen werden muß. Dabei besteht die Gefahr, daß Umsensibilierung eintritt, d.h., daß Sensibilierungsfarbstoff von den Silberhalogenidkörnern einer Emulsion desorbiert und an Körnern einer unsensibilisierten, blauempfindlichen Emulsion adsorbiert wird. Dies ist unerwünscht, da so eine differenzierte Belichtung durch Änderung des Kopierlichtes nicht mehr zu dem gewünschten Ergebnis führt. Unter ungünstigen Bedingungen ist der Vorgang der Umsensibilisierung nicht auf die Gießlösung beschränkt, sondern kann auch am fertigen Material auftreten, z.B. unter Einwirkung von Feuchte, Wärme oder beidem.
  • Um die Umsensibilierung zu vermeiden, müssen aufwendige Vorkehrungen getroffen werden, beispielsweise bei der Lagerung des Fertigmaterials oder durch Verkürzen der Standzeit der fertigen Gießlösung. Da diese negativen Einflüsse nicht immer durch den Produzenten ausgeschaltet werden können, hat es nicht an Versuchen gefehlt, Methoden zur Vermeidung der Umsensibilisierung zu entwickeln. So wurde vorgeschlagen, überschüssigen Sensibilsierungsfarbstoff zu entfernen (DL-PS 7210), beim Mischen und Gießen der Gießlösung bestimmte kritische Temperaturen nicht zu überschreiten (US-PS 2 367 508), längere Stehzeiten der Gießlösungen zu vermeiden (GB-PS 540 451, DE-OS 2 426 676), den Gießlösungen Metallverbindungen zur Verhinderung der Diffusion der Sensibilisierungsfarbstoffe zuzusetzen (US-PS 2 336 260) oder die unterschiedlich sensibilisierten bzw. unsensibilisierten Emulsionen nicht zu mischen, sondern getrennt übereinander zu gießen (GB-PS 541 515, FR-PS 2 251 837 und DE-A-30 28 167).
  • Alle diese Maßnahmen haben nicht zu einer befriedigenden Lösung des Problems geführt, da entweder die Umsensibilisierung bei der Lagerung des fertigen Materials nicht ausgeschlossen werden konnte oder die Herstellung des Materials durch den Mehrfachguß wesentlich aufwendiger wurde.
  • Aufgabe der Erfindung war daher die Bereitstellung eines gradationsvariablen SW-Papiers, bei dem diese Nachteile nicht auftreten.
  • Es wurde nun gefunden, daß man diese Aufgabe mit einem gradationsvariablem SW-Papier mit wenigstens einer Silberhalogenidemulsionsschicht lösen kann, wobei man mindestens zwei lichtempfindliche Silberhalogenidemulsionen von denen die eine im Bereich von 480 bis 580 nm, vorzugsweise 500 bis 550 nm, und die andere unterhalb von 480 nm ihr Absorotionsmaximum hat, zu einer Gießlösung mischt und diese Gießlösung auf den Träger aufbringt, wobei die Emulsion, die unterhalb 480 nm ihr Absorptionsmaximum hat, eine Verbindung der Formel
    Figure imgb0001

    enthält, worin
  • X
    die restlichen Glieder eines gegebenenfalls weitere Substituenten enthaltenden, gegebenenfalls benzo- oder naphthokondensierten Heterocyclus dartellt.
  • Als heterocyclische Ringe kommen 5- und 6-gliedrige Ringe infrage, die ein- bis drei Heteroatome aus der Reihe O, S, Se und N enthalten und benzo- oder naphthokondensiert sein können. Beispiele sind Oxazol, Thiazol, Selenazol, Imidazol, Tetrazol, Triazole, Pyrimidin sowie deren benzo- und napthokondensierten Derivate, die durch Sulfo, Carboxy, Halogen, C₁-C₄-Alkyl, Aryl, insbesondere Phenyl, Sulfophenyl, Carboxyphenyl, C₁-C₄-Alkylcarbonylamino, C₁-C₄-Alkylaminosulfonyl oder Arylaminosulfonyl, insbesondere Phenylaminosulfonyl und Chlorphenylaminosulfonyl substituiert sein können.
  • Bevorzugt sind Verbindungen der Formel
    Figure imgb0002

    worin R₁ und R₂ die restlichen Glieder eines durch wenigstens eine Sulfogruppe substituierten Benzo- oder Naphthorestes sind, der gegebenenfalls weitere Substituenten enthalten kann.
  • Vorzugsweise sind R₁ und R₂ die restlichen Glieder eines durch eine oder zwei Sulfogruppen substituierten Benzo- oder Naphthorestes, der durch C₁-C₄-Alkyl oder Halogen weiter substituiert sein kann. Die Sulfonsäure- und die Mercaptogruppen können auch in Form ihrer Salze, insbesondere ihrer Alkali- oder Ammoniumsalze vorliegen. Geeignete Beispiele sind:
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005

    Die Emulsion mit einem Absorptionsmaximum zwischen 480 und 580 nm wird durch übliche spektrale Sensibilisierung mit grünempfindlichen Sensibilisatoren hergestellt.
  • Die Emulsion mit einem Absorptionsmaximum unterhalb 480 nm ist entweder eine unsensibilisierte Silberhalogenidemulsion, deren Eigenempfindlichkeit in dem angegebenen Bereich liegt, wobei Absorptionen unterhalb 360 nm ohne Interesse sind, da von hier nach kürzeren Wellenlängen die Absorption der Gelatine liegt, oder eine Emulsion, die einen blauempfindlichen Sensibilisator enthält.
  • Die grün- und blauempfindlichen Teilemulsionen können im Gewichtsverhältnis 1,5:1 bis 1:10, vorzugsweise 1:1 bis 1:3, bezogen auf ihren Silbergehalt, abgemischt werden.
  • Bei den Emulsionen handelt es sich vorzugsweise um Silberchloridbromidemulsionen mit 20 bis 80 Mol-% Chlorid, 20 bis 80 Mol-% Bromid und 0 bis 5 Mol-% Iodid. Die mittlere Korngröße liegt insbesondere bei 0,2 bis 0,6 µm, wobei die Silberhalogenidkörner kubisch bis oktaedrisch sind.
  • Für erfindungsgemäßes Material geeignete fotografische Emulsionen können durch "Kippen" (=schnelles ungesteuertes Mischen der Reaktionslösungen), single-jet-Fällung, double-jet-Fällung oder Konvertierungsverfahren hergestellt werden.
  • Die mittlere Korngröße kann zwischen 0,2 bis 0,6 µm betragen, bevorzugt 0,4 bis 0,5 µm.
  • Die Silberhalogenidkristalle können mit Rh³⁺, Ir⁴⁺, Cd²⁺, Zn²⁺, Pb²⁺ dotiert sein.
  • Die Entsalzung der Emulsion kann auf übliche Weise erfolgen (Dialyse, Flocken und Redispergieren, Ultrafiltration).
  • Die chemische Sensibilisierung kann durch labile Schwefelverbindungen (z.B. Thiosulfat, Diacetyl-thioharnstoff), durch Gold-Schwefelreifung oder Reduktionsreifung erfolgen. Die chemische Sensibilisierung kann unter Zusatz von Ir, Rh, Pb, Cd, Hg, Au erfolgen.
  • Zur Erzeugung der Epfindlichkeit im Bereich von 480-580 sind Cyanin- und Merocyaninfarbstoffe geeignet, wie sie in der Monographie von F, M, Hamer, The Cyanine Dyes and Related Compounds, 1964, John Wiley & Sons, beschrieben sind. Geeignet sind beispielsweise Farbstoffe der folgenden Formeln:
    Figure imgb0006

    worin
  • X, Y
    O, N-R₇
    U, V
    CH₂, C(R₇)₂, O, N-R₇, S
    Z
    S, Se, -CH=CH-
    R₃, R₄
    CH₃, C₂H₅, OCH₃, Halogen, CN, SO₂R₅, Carbalkoxy, Sulfonamido, sowie - mit n bzw. m = 2 - Ergänzung zum anellierten Benzring
    R₅, R₆
    H, CH₃, C₂H₅
    R₇, R₈
    CH₃, C₂H₅
    n, m
    0-2
    W₁. W₂
    C₁-C₄-Alkyl, gegebenenfalls substiutiert mit Hydroxy, Carboxy oder Sulfo und
    Q
    die zur Ergänzung eines Rhodanin-, Thiohydantoin-, Thiooxazolidon- oder Thiobarbitursäure-Rings erforderlichen Ringglieder bedeuten.
  • Besonders geeignet sind beispielsweise folgende Farbstoffe:
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011

    Obwohl der zweite Emulsionsanteil mit einer spektralen Empfindlichkeit < 480 nm auch ohne Zusatz eines spektralen Sensibilisators erfindungsgemäß verwendet werden kann, ist es doch von Vorteil, diesen Emulsionsteil in der Empfindlichkeit bei Wellenlängen < 480 nm durch Zusatz eines geeigneten Sensibilisierungsfarbstoffs zu erhöhen. Zu diesem Zweck sind beispielsweise Farbstoffe der folgenden Formeln geeignet:
    Figure imgb0012

    worin
  • P
    die zur Ergänzung eines gegebenenfalls benzo-anellierten heterocyclischen Fünfrings erforderlichen Glieder
    R, T
    O, S, N-R₇
    R₉, R₁₀
    CH₃, CH₃O, Halogen und - sofern R oder T O ist - Phenyl bedeuten
    und
    Q, W₁, W₂, n, m
    die oben angegebene Bedeutung haben.
  • Besonders geeignet sind beispielsweise folgende Farbstoffe:
    Figure imgb0013
    Figure imgb0014
    Figure imgb0015

    Wesentlicher Bestandteil der wenigstens einen lichtempfindlichen Schicht neben dem Silberhalogenid ist das Bindemittel.
  • Als Bindemittel wird vorzugsweise Gelatine verwendet. Diese kann jedoch ganz oder teilweise durch andere synthetische, halbsynthetische oder auch natürlich vorkommende Polymere ersetzt werden. Synthetische Gelatineersatzstoffe sind beispielsweise Polyvinylalkohol, Poly-N-vinylpyrolidon, Polyacrylamide, Polyacrylsäure und deren Derivate, insbesondere deren Mischpolymerisate. Natürlich vorkommende Gelatineersatzstoffe sind beispielsweise andere Proteine wie Albumin oder Casein, Cellulose, Zucker, Stärke oder Alginate, Halbsynthetische Gelatineersatzstoffe sind in der Regel modifizierte Naturprodukte. Cellulosederivate wie Hydroxyalkylcellulose, Carboxymethylcellulose und Phthalylcellulose sowie Gelatinederivate, die durch Umsetzung mit Alkylierungs- oder Acylierungsmitteln oder durch Aufpfropfung von polymerisierbaren Monomeren erhalten worden sind, sind Beispiele hierfür.
  • Die Bindemittel sollen über eine ausreichende Menge an funktionellen Gruppen verfügen, so daß durch Umsetzung mit geeigneten Härtungsmitteln genügend widerstandsfähigen Schichten erzeugt werden können. Solche funktionellen Gruppen sind insbesondere Aminogruppen, aber auch Carboxylgruppen, Hydroxylgruppen und aktive Methylengruppen.
  • Die vorzugsweise verwendete Gelatine kann durch sauren oder alkalischen Aufschluß erhalten sein. Die Herstellung solcher Gelatinen wird beispielsweise in The Science and Technology of Gelatine, herausgegeben von A.G. Ward und A. Courts, Academic Press 1977, Seite 295 ff beschrieben. Die jeweils eingesetzte Gelatine soll einen möglichst geringen Gehalt an fotografisch aktiven Verunreinigungen enthalten (Inertgelatine). Gelatinen mit hoher Viskosität und niedriger Quellung sind besonders vorteilhaft.
  • Bei dem als lichtempfindlichen Bestandteil in dem fotografischen Material befindlichen Silberhalogenid kann es sich um überwiegend kompakte Kristalle handeln, die z.B. regulär kubisch oder oktaedrisch sind oder Übergangsformen aufweisen können. Vorzugsweise können aber auch plättchenförmige Kristalle vorliegen, deren durchschnittliches Verhältnis von Durchmesser zu Dicke bevorzugt größer als 5:1 ist, wobei der Durchmesser eines Kornes definiert ist als der Durchmesser eines Kreises mit einem Kreisinhalt entsprechend der projizierten Fläche des Kornes.
  • Die Silberhalogenidkörner können auch einen mehrfach geschichteten Kornaufbau aufweisen, im einfachsten Fall mit einem inneren und einem äußeren Kornbereich (core/shell), wobei die Halogenidzusammensetzung und/oder sonstige Modifizierungen, wie z.B. Dotierungen der einzelnen Kornbereiche unterschiedlich sind. Die Korngrößenverteilung kann sowohl homo- als auch heterodispers sein. Homodisperse Korngrößenverteilung bedeutet, daß 95 % der Körner nicht mehr als ± 30% von der mittleren Korngröße abweichen. Die Emulsionen können außer dem Silberhalogenid auch organische Silbersalze enthalten, z.B. Silberbenztriazolat oder Silberbehenat.
  • Es können zwei oder mehrere Arten von Silberhalogenidemulsionen, die getrennt hergestellt werden, als Mischung verwendet werden.
  • Die fotografischen Emulsionen können nach verschiedenen Methoden (z.B. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), G.F. Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), V.L. Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) aus löslichen Silbersalzen und löslichen Halogeniden hergestellt werden.
  • Die Fällung des Silberhalogenids erfolgt bevorzugt in Gegenwart des Bindemittels, z.B. der Gelatine und kann im sauren, neutralen oder alkalischen pH-Bereich durchgeführt werden, wobei vorzugsweise Silberhalogenidkomplexbildner zusätzlich verwendet werden. Zu letzteren gehören z.B. Ammoniak, Thioether, Imidazol, Ammoniumthiocyanat oder überschüssiges Halogenid. Die Zusammenführung der wasserlöslichen Silbersalze und der Halogenide erfolgt wahlweise nacheinander nach dem single-jet-oder gleichzeitig nach dem double-jet-Verfahren oder nach beliebiger Kombination beider Verfahren. Bevorzugt wird die Dosierung mit steigenden Zuflußraten, wobei die "kritische" Zufuhrgeschwindigkeit, bei der gerade noch keine Neukeime entstehen, nicht überschritten werden sollte. Der pAg-Bereich kann während der Fällung in weiten Grenzen variieren, vorzugsweise wird das sogenannte pAg-gesteuerte Verfahren benutzt, bei dem ein bestimmter pAg-Wert konstant gehalten oder ein definiertes pAg-Profil während der Fällung durchfahren wird. Neben der bevorzugten Fällung bei Halogenidüberschuß ist aber auch die sogenannte inverse Fällung bei Silberionenüberschluß möglich. Außer durch Fällung können die Silberhalogenidkristalle auch durch physikalische Reifung (Ostwaldreifung), in Gegenwart von überschüssigem Halogenid und/oder Silberhalogenidkomplexierungsmittel wachsen. Das Wachstum der Emulsionskörner kann sogar überwiegend durch Ostwaldreifung erfolgen, wobei vorzugsweise eine feinkörnige, sogenannte Lippmann-Emulsion, mit einer schwerer löslichen Emulsion gemischt und auf letzterer umgelöst wird.
  • Die fotografischen Emulsionen können zusätzlich zu den erfindungsgemäß einzusetzenden mercaptosubstituierten Heterocyclen Verbindungen zur Verhinderung der Schleierbildung oder zur Stabilisierung der fotografischen Funktion während der Produktion, der Lagerung oder der fotografischen Verarbeitung enthalten, insbesondere auch in der im Bereich von 480 bis 580 nm empfindlichen Schicht.
  • Besonders geeignet sind Azaindene, vorzugsweise Tetra-und Pentaazaindene, insbesondere solche, die mit Hydroxyl- oder Aminogruppen substituiert sind. Derartige Verbindungen sind z.B. von Birr, Z. Wiss. Phot. 47 (1952), S. 2-58 beschrieben worden. Weiter können als Antischleiermittel Salze von Metallen wie Quecksilber oder Cadmium, aromatische Sulfon- oder Sulfinsäuren wie Benzolsulfinsäure, oder stickstoffhaltige Heterocyclen wie Nitrobenzimidazol, Nitroindazol, (subst.) Benztriazole oder Benzthiazoliumsalze eingesetzt werden. Besonders geeignet sind Mercaptogruppen enthaltende Heterocyclen, z.B. Mercaptobenzthiazole, Mercaptobenzimidazole, Mercaptotetrazole, Mercaptothiadiazole, Mercaptopyrimidine, wobei diese Mercaptoazole auch eine wasserlöslichmachende Gruppe, z.B. eine Carboxylgruppe oder Sulfogruppe, enthalten können. Weitere geeignete Verbindungen sind in Research Disclosure Nr. 17643 (1978), Abschnitt VI, veröffentlicht.
  • Die Stabilisatoren können den Silberhalogenidemulsionen vor, während oder nach deren Reifung zugesetzt werden. Selbstverständlich kann man die Verbindungen auch anderen fotografischen Schichten, die einer Halogensilberschicht zugeordnet sind, zusetzen.
  • Es können auch Mischungen aus zwei oder mehreren der genannten Verbindungen eingesetzt werden.
  • Die fotografischen Emulsionsschichten oder andere hydrophile Kolloidschichten des erfindungsgemäß hergestellten lichtempfindlichen Materials können oberflächenaktive Mittel für verschiedene Zwecke enthalten, wie Überzugshilfen, zur Verhinderung der elektrischen Aufladung, zur Verbesserung der Gleiteigenschaften, zum Emulgieren der Dispersion, zur Verhinderung der Adhäsion und zur Verbesserung der fotografischen Charakteristika (z.B. Entwicklungsbeschleunigung, hoher Kontrast, Sensibilisierung usw.).
  • Die chemische Sensibilisierung kann durch labile Schwefelverbindungen (z.B. Thiosulfat, Diacetyl-thioharnstoff), durch Gold-Schwefelreifung oder Reduktionsreifung erfolgen. Die chemische Sensibilisierung kann unter Zusatz von Ir, Rh, Pb, Cd, Hg, Au erfolgen, ebenso ist Zusatz von optischen Sensibilisatoren oder Stabilisatoren möglich.
  • Das fotografische Material kann weiterhin UV-Licht absorbierende Verbindungen, Weißtöner, Abstandshalter, Formalinfänger und anderes enthalten.
  • UV-Licht absorbierende Verbindungen sollen einerseits die Bildfarbstoffe vor dem Ausbleichen durch UV-reiches Tageslicht schützen und andererseits als Filterfarbstoffe das UV-Licht im Tageslicht bei der Belichtung absorbieren und so die Farbwiedergabe eines Films verbessern. Üblicherweise werden für die beiden Aufgaben Verbindungen unterschiedlicher Struktur eingesetzt. Beispiele sind arylsubstituierte Benzotriazolverbindungen (US-A 3 533 794), 4-Thiazolidonverbindungen (US-A3 314 794 und 3 352 681), Benzophenonverbindungen (JP-A 2784/71), Zimtsäureesterverbindungen (US-A 3 705 805 und 3 707 375), Butadienverbindungen (US-A 4 045 229) oder Benzoxazolverbindungen (US-A 3 700 455).
  • Es können auch ultraviolettabsorbierende Kuppler (wie Blaugrünkuppler des α-Naphtholtyps) und ultraviolettabsorbierende Polymere verwendet werden. Diese Ultraviolettabsorbentien können durch Beizen in einer speziellen Schicht fixiert sein.
  • Geeignete Weißtöner sind z.B. in Research Disclosure Dezember 1978, Seite 22 ff, Referat 17 643, Kapitel V beschrieben.
  • Der mittlere Teilchendurchmesser der Abstandshalter leigt insbesondere im Bereich von 0,2 bis 10 µm. Die Abstandshalter sind wasserunlöslich und können alkaliunlöslich oder alkalilöslich sein, wobei die alkalilöslichen im allgemeinen im alkalischen Entwicklungsbad aus dem fotografischen Material entfernt werden. Beispiele für geeignete Polymere sind Polymethylmethacrylat, Copolymere aus Acrylsäure und Methylmethacrylat sowie Hydroxypropylmethylcellulosehexahydrophthalat.
  • Die Bindemittel des erfindungsgemäßen Materials, insbesondere wenn als Bindemittel Gelatine eingesetzt wird, werden mit geeigneten Härtern gehärtet, beispielsweise mit Härtern des Epoxidtyps, des Ethylenimintyps, des Acryloyltyps oder des Vinylsulfontyps. Ebenso eignen sich Härter der Diazin-, Triazin- oder 1,2-Dihydrochinolin-Reihe.
  • Vorzugsweise werden die Bindemittel des erfindungsgemäßen Materials mit Soforthärtern gehärtet.
  • Unter Soforthärtern werden Verbindungen verstanden, die geeignete Bindemittel so vernetzen, daß unmittelbar nach Beguß, spätestens nach 24 Stunden, vorzugsweise spätestens nach 8 Stunden die Härtung so weit abgeschlossen ist, daß keine weitere durch die Vernetzungsreaktion bedingte Änderung der Sensitometrie und der Quellung des Schichtverbandes auftritt. Unter Quellung wird die Differenz von Naßschichtdicke und Trockenschichtdicke bei der wäßrigen Verarbeitung des Films verstanden (Photogr. Sci. Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
  • Bei diesen mit Gelatine sehr schnell reagierenden Härtungsmitteln handelt es sich z.B. um Carbamoylpyridiniumsalze, die mit freien Carboxylgruppen der Gelatine zu reagieren vermögen, so daß letztere mit freien Aminogruppen der Gelatine unter Ausbildung von Peptidbindungen und Vernetzung der Gelatine reagieren.
  • Geeignete Beispiele für Soforthärter sind z.B. Verbindungen der allgemeinen Formeln
    Figure imgb0016

    worin
  • R₁
    Alkyl, Aryl oder Aralkyl bedeutet,
    R₂
    die gleiche Bedeutung wie R₁ hat oder Alkylen, Arylen, Aralkylen oder Alkaralkylen bedeutet, wobei die zweite Bindung mit einer Gruppe der Formel
    Figure imgb0017
    verknüpft ist, oder
    R₁ und R₂
    zusammen die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen Atome bedeuten, wobei der Ring z.B. durch C₁-C₃-Alkyl oder Halogen substituiert sein kann,
    R₃
    für Wasserstoff, Alkyl, Aryl, Alkoxy, -NR₄-COR₅, -(CH₂)m-NR₈R₉, -(CH₂)n-CONR₁₃R₁₄ oder
    Figure imgb0018
    oder ein Brückenglied oder eine direkte Bindung an eine Polymerkette steht, wobei
    R₄, R₆, R₇, R₉, R₁₄, R₁₅, R₁₇, R₁₈, und R₁₉
    Wasserstoff oder C₁-C₄-Alkyl,
    R₅
    Wasserstoff, C₁-C₄-Alkyl oder NR₆R₇,
    R₈
    - COR₁₀
    R₁₀
    NR₁₁R₁₂
    R₁₁
    C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
    R₁₂
    Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
    R₁₃
    Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
    R₁₆
    Wasserstoff, C₁-C₄-Alkyl, COR₁₈ oder CONHR₁₉,
    m
    eine Zahl 1 bis 3
    n
    eine Zahl 0 bis 3
    p
    eine Zahl 2 bis 3 und
    Y
    O oder NR₁₇ bedeuten oder
    R₁₃ und R₁₄
    gemeinsam die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen Atome darstellen, wobei der Ring z.B. durch C₁-C₃-Alkyl oder Halogen substituiert sein kann,
    Z
    die zur Vervollständigung eines 5- oder 6-gliedrigen aromatischen heterocyclischen Ringes, gegebenenfalls mit anelliertem Benzolring, erforderlichen C-Atome und
    X
    ein Anion bedeuten, das entfällt, wenn bereits eine anionische Gruppe mit dem übrigen Molekül verknüpft ist;
    Figure imgb0019
       worin
    R₁, R₂, R₃ und X
    die für Formel (a) angegebene Bedeutung besitzen.
  • Die erfindungsgemäßen Materialien, werden nach dafür empfohlenen Prozessen in üblicher Weise verarbeitet.
  • Beispiel 1 (Vergleichsversuch)
  • Eine durch teilweise Konvertierung hergestellte AgClBrI-Emulsion mit 40 % AgCl, 59,5 % AgBr und 0,5 % AgI, dotiert mit 4·10⁻⁸ Mol NaRhCl₄/Mol AgNO₃ und 2·10⁻⁵ Mol Na₂IrCl₆/Mol AgNo₃, mittl. Korndurchmesser 0,42 µm, wird auf bekannte Weise entsalzt und nach Zusatz von 20 µm Thiosulfat/Mol AgNo₃ unter sensitometrischer Kontrolle zu einem optimalen Empfindlichkeits-Schleier-Verhältnis gereift. Die Emulsion enthält 100 g AgNO₃ in 1 kg Emulsion.
  • Grünsensibilisierte Teilemulsion: 300 g der Emulsion werden durch Zusatz von 37 mg des Sensibilisators SE 18 für den grünen Spektalbereich optisch sensibilisiert und durch Zusatz von 30 mg 5-Hydroxy-7-methyl-1,3,8-triazaindolizin pro kg Emulsion stabilisiert.
  • Unsensibilisierte Teilemulsion: 700 g der Emulsion werden durch Zusatz von 30 mg 5-Hydroxy-7-methyl-1,3,8-triazaindolizin stabilisiert. Die Teilemulsionen werden vermischt; ein Teil wird unter Zusatz eines Gelatinehärtungsmittels auf einem opaken Träger vergossen (Versuch 1A). Ein anderer Teil der Mischung wird 4 Stunden bei 40° C gehalten und dann unter Zusatz eines Gelatinehärtungsmittels vergossen (Versuch 1B).
  • Beispiel 2 (erfindungsgemäß)
  • Emulsionsherstellung und Sensibilisierung für den Spektralbereich von 480 bis 580 nm erfolgt gemäß Beispiel 1.
  • Unsensibilisierte Teilemulsion: Dieser Teil der Emulsion wird wie in Beispiel 1 mit 30 mg 5-Hydroxy-7-methyl-1,3,8-triazaindolizin und zusätzlich mit 200 mg Stabilisator III pro kg Emulsion stabilisiert.
  • Die Teilemulsionen werden gemäß Beispiel 1 vermischt und vergossen (Versuche 2A und 2B).
  • Beispiel 3 (erfindungsgemäß)
  • Emulsionsherstellung und Sensibilisierung für den Spektralbereich von 480 bis 580 nm entsprechen Beispiel 1, allerdings werden 250 g einer Emulsion aus 60 Mol-% AgCl, 39,5 Mol-% AgBr und 0,5 Mol-% AgI verwendet.
  • Blausensibilisierte Teilemulsion: 250 g der unsensibilisierten Emulsion werden mit 20 mg Sensibilisator BS6 und 30 mg 5-Hydroxy-7-methyl-1,3,8-triazaindolizin versetzt.
  • Unsensibilisierte Teilemulsion: 500 g der unsensibilisierten Emulsion werden mit 30 mg 5-Hydroxy-7-methyl-1,3,8-triazaindolizin und 160 mg Stabilisator I versetzt.
  • Die drei Teilemulsionen werden gemischt und gemäß Beispiel vergossen (Versuche 3A und 3B).
  • Fotografische Auswertung der Beispiele 1-3
  • Eine Probe des Materials wird hinter einem Gelbfilter und einem Stufenteil belichtet. Eine 2. Probe wird hinter einem Purpurfilter und einem Stufenteil belichtet. Danach wird mit einem für SW-Papier üblichen Entwickler (z.B. Agfa 100) entwickelt und die Dichte der Stufen gemessen. Aus der Schwärzungskurve wird log ER nach ANSI-Norm PH 2.2-1966 bestimmt (Tabelle 1).
  • (Bei Belichtung durch Gelbfilter erhält man eine Abbildung mit geringem Kontrast ≙ hohem log ER, durch Purpurfilter mit hohem Kontrast ≙ niedrigem log ER).
  • Künstliche Alterung
  • Ein Teil des Materials (1A, 2A, 3A) wird einer künstlichen Alterung unterworfen durch 2-tägige Lagerung in einer feuchtwarmen Atmosphäre bei 45°C und 65% rel. Feuchte (1C, 2C, 3C).
  • Anschließend fotografische Auswertung wie beschrieben (Tabelle 2).
    Figure imgb0020
  • Beispiel 4
  • Analog zu Beispiel 1 werden die folgenden Emulsionen der angegebenen Zusammensetzung und Korngröße hergestellt und chemisch gereift. Jede Emulsion wird in 2 gleiche Teile geteilt, wovon die erste Teilemulsion mit dem Spektralsensibilisator im Bereich zwischen 480 und 580 nm sensibilisiert wird und die zweite Teilemulsion erfindungsgemäß mit dem Stabilisator versetzt wird. Dann weden die beiden Teilemulsionen vermischt und wie übliche auf PE-Papierunterlage mit einem Auftrag von 1,4 g Silber pro m² vergossen. Diese erfindungsgemäßen Proben erhalten die Bezeichnung A.
  • Zum Vergleich werden 2 weitere Proben B und C hergestellt: Die Proben B unterscheiden sich von A durch Weglassen des Stabilisators in der zweiten Teilemulsion. Die Proben C enthalten den Spektralsensibilisator gleichmäßig verteilt auf alle Emulsionskristalle in der gleichen Konzentration pro m² wie bei den Proben A und B.
  • Die Proben werden dann einer sensitometrischen Belichtung unterworfen hinter einem Gelb- und einem Purpurfilter mit der im Fig. 1 angegebenen Spektralcharakteristik "Gb" bzw. "Pp". Anschließend wird in Agfa-Neutol-Papierentwickler entwickelt und log ER bestimmt.
  • Die Ergebnisse sind in den Tabelle 3-5 angegeben. Die Tabellen 3-5 enthalten in
  • Spalte 1
    die Art der Probe (A, B oder C),
    Spalte 2
    den verwendeten Sensibilisator
    Spalte 3
    die Sensibilisatormenge in µ Mol pro Mol Silber der ersten Teilemulsion bzw. der gesamten Emulsion bei den Proben C
    Spalte 4
    den verwendeten Stabilisator
    Spalte 5
    die Menge des Stabilisators in mg pro Mol Silber der zweiten Teilemulsion
    Spalte 6
    log ER hinter Gb-Filter
    Spalte 7
    log ER hinter Pp-Filter
    Spalte 8
    das spektrale Sensibilisierungsmaximum in nm
    Tabelle 3
    Emulsion: 85 % Br, 15 % Cl, Korngröße: 0,34 µm
    1 2 3 4 5 6 7 8
    A SE5 200 VIII 300 1,12 0,67 540
    B SE5 200 - - 0,75 0,68 540
    C SE5 100 - - 0,64 0,66 540
    A SE3 200 IX 300 1,15 0,71 520
    B SE3 200 - - 0,85 0,75 520
    C SE3 100 - - 0,71 0,73 520
    A SE16 200 I 300 1,12 0,69 525
    B SE16 200 - - 0,75 0,74 525
    C SE16 100 - - 0,73 0,72 525
    A SE17 200 III 300 1,28 0,79 545
    B SE17 200 - - 0,78 0,72 545
    C SE17 100 - - 0,65 0,70 545
    A SE1 50 III 400 1,13 0,68 545
    B SE1 50 - - 0,86 0,74 545
    C SE1 25 - - 0,72 0,64 545
    A SE18 50 XII 400 1,16 0,67 545
    B SE18 50 - - 0,78 0,72 545
    C SE18 25 - - 0,74 0,73 545
    A SE18 50 XII 200 1,22 0,75 545
    A SE1 50 III 200 1,17 0,72 545
    Tabelle 4
    Emulsion: 85 % Br, 15 % Cl, Korngröße: 0,34 µm
    1 2 3 4 5 6 7 8
    A SE12 50 III 300 1,05 0,75 535
    B SE12 50 - - 0,70 0,79 535
    C SE12 25 - - 0,69 0,78 535
    A SE13 50 XII 300 0,98 0,76 530
    B SE13 50 - - 0,58 0,69 530
    C SE13 25 - - 0,62 0,67 530
    A SE14 50 XIII 300 1,10 0,75 515
    B SE14 50 - - 0,71 0,71 515
    C SE14 25 - - 0,62 0,72 515
    A SE15 50 III 300 0,99 0,75 530
    B SE15 50 - - 0,61 0,72 530
    C SE15 25 - - 0,63 0,73 530
    A SE8 200 XI 150 1,19 0,70 530
    B SE8 200 - - 0,89 0,69 530
    C SE8 100 - - 0,78 0,67 530
    A SE4 200 XIII 150 1,05 0,68 520
    B SE4 200 - - 0,72 0,65 520
    C SE4 100 - - 0,70 0,65 520
    A SE6 200 XI 200 1,36 0,65 545
    B SE6 200 - - 0,90 0,68 545
    C SE6 100 - - 0,85 0,67 545
    Tabelle 5
    Emulsion: 60 % Br, 40 % Cl, Korngröße: 0,42 µm
    1 2 3 4 5 6 7 8
    A SE10 200 XIII 300 1,12 0,62 515
    B SE10 200 - - 0,91 0,64 515
    C SE10 100 - - 0,70 0,65 515
    A SE9 150 VII 300 0,95 0,71 510
    B SE9 150 - - 0,83 0,70 510
    C SE9 75 - - 0,80 0,71 510
    A SE2 200 VI 150 1,19 0,66 550
    B SE2 200 - - 0,82 0,66 550
    C SE2 100 - - 0,73 0,62 550
    A SE7 200 II 150 1,05 0,69 525
    B SE7 200 - - 0,85 0,73 525
    C SE7 100 - - 0,80 0,68 525
    A SE2 50 IX 200 1,13 0,75 550
    B SE2 50 - - 0,87 0,73 550
    C SE2 25 - - 0,81 0,74 550
    A SE1 100 III 200 1,16 0,71 550
    B SE1 100 - - 0,95 0,68 550
    C SE1 50 - - 0,75 0,63 550
    A SE18 100 XII 200 1,30 0,64 550
    B SE18 100 - - 1,10 0,68 550
    C SE18 50 - - 0,67 0,65 550
  • Wie man den erfindungsgemäßen Proben A der Tabellen 3-5 entnimmt, ist die Gamma-Differenzierung bei Belichtung hinter dem Gelbfilter (Spalte 6) wesentlich höher als bei den stabilisatorfreien Vergleichsproben B und C.
  • Beispiel 5
  • Eine Silberchlorid-Emulsion mit 70 Mol-% Chlorid und 30 Mol-% Bromid sowie einer mittleren Korngröße von 0,3 µ wird hergestellt und chemisch gereift wie im Beispiel 1 beschrieben.
  • Die Emulsion wird dann, wie in Beispiel 4 beschrieben in zwei gleiche Teile geteilt. Die erste Teilemulsion wird mit 75 µMol pro Mol Ag des Sensibilisatorfarbstoffs SE 6 sensibilisiert. Die zweite Teilemulsion wird mit einem Blausensibilisator BS wie in Tabelle 6 angegeben sensibilisiert und mit 240 mg des Stabilisators III stabilisiert. Nach Vermischen der Teilemulsionen wird auf PE-Papierunterlagen vergossen. Die Schichten werden wie in Beispiel 4 einer sensitometrischen Belichtung hinter Gelb- und Purpurfilter unterworfen.
  • Die Ergebnisse enthält Tabelle 6.
  • Die Tabelle 6 enthält in
  • Spalte 1
    den Blausensibilisator BS
    Spalte 2
    die Menge des Blausensibilisators in µMol pro Mol Ag der zweiten Teilemulsion
    Spalte 3
    log ER hinter Gb-Filter
    Spalte 4
    log ER hinter Pp-Filter
    Spalte 5
    die Zunahme der Empfindlichkeit hinter Pp-Filter in relativen log-Einheiten im Vergleich zu einer BS-freien Probe
    Spalte 6 uns 7
    die spektralen Sensibilisierungsmaxima in nm
    Tabelle 6
    Emulsion: 70 % Cl, 30 % Br, 0,30 µm
    1 2 3 4 5 6 7
    BS8 20 1,07 0,50 0,35 467 545
    BS4 40 1,01 0,53 0,40 470 545
    BS6 40 1,20 0,51 0,25 455 545
    BS3 40 1,16 0,55 0,15 445 545
    BS7 40 1,10 0,51 0,30 470 545
    - - 1,18 0,52 - - 545
  • Wie man der Tabelle 6 entnimmt läßt sich die Blauempfindlichkeit (Spalte 5) durch Zusatz der Blausensibilisatoren erheblich steigern ohne Verlust der erfindungsgemäßen Gamma-Differenzierung.

Claims (5)

  1. Gradationsvariables SW-Papier mit wenigstens einer Silberhalogenidemulsionsschicht aus einer Mischung von mindestens zwei lichtempfindlichen Silberhalogenidemulsionen, von denen die eine im Bereich von 480 bis 580 nm und die andere unterhalb 480 nm ihr Absorptionsmaximum hat, dadurch gekennzeichnet, daß die Emulsion, die unterhalb 480 nm ihr Absorptionsmaximum hat, eine Verbindung der Formel
    Figure imgb0021
    enthält, worin
    X   die restlichen Glieder eines gegebenenfalls weitere Substituenten enthaltenden, gegebenenfalls benzo- oder naphthokondensierten Heterocyclus darstellt.
  2. Gradationsvariables SW-Papier nach Anspruch 1, dadurch gekennzeichnet, daß die Emulsion, die unterhalb 480 nm ihr Absorptionsmaximum hat, eine Verbindung der Formel
    Figure imgb0022
    enthält, worin
    R₁ und R₂ die restlichen Glieder eines durch wenigstens eine Sulfogruppe substituierten Benzo- oder Naphthorestes sind, der gegebenenfalls weitere Substituenten enthalten kann.
  3. Gradationsvariables SW-Papier nach Anspruch 2, wobei R₁ und R₂ die restlichen Glieder eines durch eine oder zwei Sulfogruppen substituierten Benzo- oder Naphthorestes, der durch C₁-C₄-Alkyl oder Halogen substituiert sein kann, bedeuten.
  4. Gradationsvariables SW-Papier nach Anspruch 1, dadurch gekennzeichnet, daß die Emulsionen Silberhalogenide aus 20 bis 80 Mol-% Chlorid, 20 bis 80 Mol-% Bromid und 0 bis 5 Mol-% Iodid enthalten.
  5. Gradationsvariables SW-Papier nach Anspruch 1, dadurch gekennzeichnet, daß die mittlere Korngröße der Silberhalogenidemulsionen bei 0,2 bis 0,6 µm liegt.
EP88119074A 1987-11-24 1988-11-17 Gradationsvariables SW-Papier Expired - Lifetime EP0317886B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873739766 DE3739766A1 (de) 1987-11-24 1987-11-24 Gradationsvariables sw-papier
DE3739766 1987-11-24

Publications (3)

Publication Number Publication Date
EP0317886A2 EP0317886A2 (de) 1989-05-31
EP0317886A3 EP0317886A3 (en) 1990-12-27
EP0317886B1 true EP0317886B1 (de) 1994-03-16

Family

ID=6341134

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88119074A Expired - Lifetime EP0317886B1 (de) 1987-11-24 1988-11-17 Gradationsvariables SW-Papier

Country Status (5)

Country Link
US (1) US5006455A (de)
EP (1) EP0317886B1 (de)
JP (1) JP2622407B2 (de)
DE (2) DE3739766A1 (de)
ES (1) ES2050139T3 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373339B1 (de) * 1988-11-15 1994-05-04 Agfa-Gevaert AG Silberhalogenidaufzeichnungsmaterial
DE58907695D1 (de) * 1989-01-07 1994-06-23 Agfa Gevaert Ag Silberhalogenidaufzeichnungsmaterial.
JPH046550A (ja) * 1990-04-24 1992-01-10 Mitsubishi Paper Mills Ltd ハロゲン化銀写真材料
JP2597431B2 (ja) * 1991-04-24 1997-04-09 三菱製紙株式会社 ハロゲン化銀写真材料
DE69224837T2 (de) * 1992-10-30 1998-10-08 Agfa Gevaert Nv Photographisches Material, das eine Gemisch von Silberhalogenidemulsionen enthält
EP0599384B1 (de) * 1992-11-19 2000-01-19 Eastman Kodak Company Farbstoffverbindungen und photographische Elemente, die diese enthalten
EP0599383B1 (de) * 1992-11-19 2001-02-28 Eastman Kodak Company Photographische Silberhalogenidmaterialien enthaltend furan- oder pyrolsubstituierte Farbstoffverbindungen
EP0683427B1 (de) * 1994-05-18 2001-11-14 Eastman Kodak Company Heterocyclisch substituierte blausensibilisierende Farbstoffe
JPH07325361A (ja) * 1994-06-02 1995-12-12 Mitsubishi Paper Mills Ltd ハロゲン化銀写真感光材料
DE19601141C2 (de) * 1995-07-31 1998-08-20 Agfa Gevaert Ag Gradationsvariables Schwarz-Weiß-Papier
GB9626281D0 (en) * 1996-12-18 1997-02-05 Kodak Ltd Photographic high contrast silver halide material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA539568A (en) * 1957-04-16 D. Hill George Prevention of dye wandering in photographic emulsions
GB494088A (en) * 1937-03-18 1938-10-18 Frank Forster Renwick Improvements in or relating to photographic printing processes and materials
GB561875A (en) * 1942-12-03 1944-06-08 John David Kendall Improvements in or relating to photographic materials
FR1222449A (fr) * 1958-07-31 1960-06-09 Kodak Pathe Nouveau produit photographique à émulsion aux halogénures d'argent
BE595325A (de) * 1960-09-23
BE629343A (de) * 1962-03-08
GB1225241A (de) * 1967-04-21 1971-03-17
GB1298302A (en) * 1971-04-05 1972-11-29 Agfa Gevaert Ag Process for the photographic production of equidensities
DE3020163A1 (de) * 1980-05-28 1981-12-03 Agfa-Gevaert Ag, 5090 Leverkusen Fotografisches aufzeichnungsmaterial und dessen verwendung zur herstellung von bildern
DE3028167A1 (de) * 1980-07-25 1982-04-01 Agfa-Gevaert Ag, 5090 Leverkusen Photographisches aufzeichnungsmaterial mit variablem kontrast
US4784938A (en) * 1985-10-22 1988-11-15 Konishiroku Photo Industry Co., Ltd. Silver halide photographic light-sensitive material
DE3605713A1 (de) * 1986-02-22 1987-08-27 Agfa Gevaert Ag Farbfotografisches aufzeichnungsmaterial

Also Published As

Publication number Publication date
JPH01167745A (ja) 1989-07-03
ES2050139T3 (es) 1994-05-16
DE3888461D1 (de) 1994-04-21
JP2622407B2 (ja) 1997-06-18
EP0317886A2 (de) 1989-05-31
US5006455A (en) 1991-04-09
EP0317886A3 (en) 1990-12-27
DE3739766A1 (de) 1989-06-08

Similar Documents

Publication Publication Date Title
EP0313949B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0317886B1 (de) Gradationsvariables SW-Papier
EP0320776B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0358071B1 (de) Fotografisches Aufzeichnungsmaterial
EP0464409B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0317885B1 (de) Gradationsvariables SW-Papier
EP0537545B1 (de) Fotografisches Silberhalogenidmaterial
EP0517053B1 (de) Fotografische Silberhalogenidemulsion
EP0370226B1 (de) Fotografisches Silberhalogenidmaterial und Verfahren zu seiner Verarbeitung
EP0377889B1 (de) Silberhalogenidaufzeichnungsmaterial
EP0447656A1 (de) Farbfotografisches Silberhalogenidmaterial und seine Entwicklung
EP0322648A2 (de) Farbfotografisches Aufzeichnungsmaterial und Verfahren zur Herstellung einer fotografischen Silberhalogenidemulsion
EP0377181A2 (de) Farbfotografisches Material
EP0312892B1 (de) Fotografisches Material
EP0373339B1 (de) Silberhalogenidaufzeichnungsmaterial
EP0315833A2 (de) Farbfotografisches Material
EP0369235B1 (de) Fotografisches Aufzeichnungsmaterial
EP0330948A2 (de) Verfahren zur Erzeugung von Colorbildern
EP0401610B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0345553A2 (de) Fotografisches Aufzeichnungsmaterial
DE4344164A1 (de) Fotografische Silberhalogenidemulsion
EP0616256A1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0362604A2 (de) Farbfotografisches Silberhalogenidmaterial
EP0355568A2 (de) Herstellung einer Silberhalogenidemulsion
DE4227749A1 (de) Fotografisches Silberhalogenidmaterial

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881117

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE ES FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE ES FR GB NL

17Q First examination report despatched

Effective date: 19930510

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB NL

REF Corresponds to:

Ref document number: 3888461

Country of ref document: DE

Date of ref document: 19940421

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940329

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2050139

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19951113

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19951116

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951130

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19961118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19961130

BERE Be: lapsed

Owner name: AGFA-GEVAERT A.G.

Effective date: 19961130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011105

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011108

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021117

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031027

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601