EP0297309A2 - Procédé et dispositif de mesure et de régulation du débit de poudre dans une installation de revêtement par poudrage par pulvérisation - Google Patents

Procédé et dispositif de mesure et de régulation du débit de poudre dans une installation de revêtement par poudrage par pulvérisation Download PDF

Info

Publication number
EP0297309A2
EP0297309A2 EP88108891A EP88108891A EP0297309A2 EP 0297309 A2 EP0297309 A2 EP 0297309A2 EP 88108891 A EP88108891 A EP 88108891A EP 88108891 A EP88108891 A EP 88108891A EP 0297309 A2 EP0297309 A2 EP 0297309A2
Authority
EP
European Patent Office
Prior art keywords
powder
gas
value
radiation
per unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88108891A
Other languages
German (de)
English (en)
Other versions
EP0297309A3 (en
EP0297309B1 (fr
Inventor
Robert Lehmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gema Switzerland GmbH
Original Assignee
Gema Switzerland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gema Switzerland GmbH filed Critical Gema Switzerland GmbH
Publication of EP0297309A2 publication Critical patent/EP0297309A2/fr
Publication of EP0297309A3 publication Critical patent/EP0297309A3/de
Application granted granted Critical
Publication of EP0297309B1 publication Critical patent/EP0297309B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/085Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to flow or pressure of liquid or other fluent material to be discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1472Powder extracted from a powder container in a direction substantially opposite to gravity by a suction device dipped into the powder

Definitions

  • the invention relates to a method and a device for a powder spray coating system for measuring and regulating the amount of powder per unit of time, which is fed to a spray device for spray coating objects by a gas stream.
  • Such a device is known from DE-PS 28 49 295. It contains one pressure regulator each in a feed gas line and one control gas line.
  • the two lines lead gas to a powder delivery device, which has the shape of a venturi injector, in which the gas flows suck powder from a powder container and feed it to a spray device via a delivery line.
  • a flow meter in the delivery line, the measured actual value of which is compared with a target value.
  • the pressure in the two gas lines is regulated via the pressure regulator.
  • the measuring device measures the flow rate of the powder-gas flow or the powder-gas fractions, however nothing is said about the type of measuring process.
  • Injector conveyors for the pneumatic conveyance of powder in a gas stream are also known from US Pat. No. 3,504,945.
  • the object of the invention is to provide a method and a device with which the amount of powder which can be conveyed per unit of time can be determined quickly, accurately and without problems in a simple manner and with which or which depending on the result of the determination the amount of powder is displayed precisely or control or regulating processes can be carried out automatically quickly and precisely, either to set a desired amount of powder conveyed per unit of time or to be able to adhere to the set amount of powder per unit of time.
  • Air is normally used as the gas.
  • the rays are preferably visible light or invisible light, in particular infrared light, ultraviolet light or laser beams.
  • ⁇ -rays and radioactive rays and other rays which are weakened or reflected by the powder are also possible.
  • the weakening or reflection of the rays also depends on the type of powder, which may be enamel or plastic, for example, or may also contain metal in order to achieve a metallic effect.
  • the powder can also be a spice or a spice mixture for dishes, or a similar fluidizable powdery to granular material.
  • the amount of powder delivered per unit of time is measured directly, on the one hand by determining the proportion of powder in the powder-gas stream, and on the other hand by determining the amount of gas supplied per unit of time on the clean gas side, ie before the gas contains powder.
  • the real powder quantity, which is transported by the gas per unit of time, is automatically calculated from the two measured values.
  • Another advantage of the invention is that the amount of powder conveyed per unit time can be determined and regulated separately for each delivery line and thus for each spray device, even if several spray devices receive powder from a common powder container.
  • Another advantage of the invention is that the actual value of powder quantity conveyed per unit of time determined according to the invention is largely free of disruptive factors.
  • the attenuation or reflection of the rays measured according to the invention depends on how much powder is contained in the gas.
  • the measured value of the attenuation or reflection initially only represents an indirect measure of the density.
  • this value also corresponds to a specific density, that is to say a specific amount of powder in the gas of the powder-gas flow.
  • the measured attenuation value or reflection value corresponds to a different density value.
  • the radiation measuring device or the evaluation device is calibrated accordingly for each powder type, so that the measured attenuation values or reflection values correspond directly to the density value A.
  • the density values A which correspond to a specific attenuation value or reflection value of the beams, are preferably also stored in the electronic evaluation device for different types of powder. Deviating from this, according to another embodiment, this dependency can also be stored directly in the radiation measuring device.
  • the radiation measuring device has at least one radiation transmitter and at least one radiation receiver, which is arranged in the radiation path of the rays transmitted from the radiation transmitter into the powder-gas stream and weakened or reflected by the powder thereof.
  • a multiplicity of radiation receivers are provided which are directed at different cross-sectional areas of the powder-gas flow and which generate density value signals for each cross-sectional area, which together give an average density value. This avoids incorrect results that can arise if the powder is distributed unevenly across the cross-section of the powder-gas flow.
  • the radiation path between the radiation transmitter and the radiation receiver extends across an injector channel of an injector delivery device, in which the gas sucks powder from a powder feed line and forms the powder-gas flow.
  • the flow conditions in the injector delivery device are always constant and, due to the swirling of the powder by the gas, there is an essentially homogeneous powder distribution.
  • the radiation transmitter and the radiation receiver are through the gas for the powder-gas flow shielded from powder. This prevents powder from adhering to the radiation transmitter and / or the radiation receiver.
  • the gas reaches very high speeds in the injector channel, so that certainly no powder can reach the radiation transmitter or radiation receiver through the gas stream if these end in the gas stream or directly next to it on its side facing away from the injector channel.
  • the radiation transmitter and the radiation receiver end in a jacket wall of the injector channel, and they are separated from the injector channel by a radiation-permeable material. This prevents contamination of the radiation transmitter and the radiation receiver by powder.
  • the injector channel is narrowed in the direction of flow and then expanded again, that the powder feed line opens axially into the injector channel upstream of the narrowest channel point, and that at least one line for the gas in the lateral wall surface of the injector channel in Area of its narrowed channel section opens out.
  • This embodiment enables particularly precise measured density values because there is a constant, essentially homogeneous powder distribution in the powder-gas stream in the injector channel.
  • this type it is particularly easy to attach the radiation transmitter and the radiation receiver in such a way that they can neither be contaminated by powder, nor can they be impaired by external interference.
  • the gas quantity sensor measures the gas quantity per unit of time at a point upstream of the powder flow before powder is in the gas.
  • the gas quantity sensor is a data memory in which the dependency of the gas quantity of the powder-gas stream flowing per unit time on a variable characteristic value of the device is stored like a curve diagram, and that the evaluation device as a function of the respective characteristic value the gas quantity B is determined from the stored curve diagram.
  • Characteristic values are, for example, the gas pressure, opening cross section of the fluid lines and the length of the fluid lines.
  • the respective gas pressure which is measured or set at a point upstream of the powder-gas stream in the gas which is fed to the powder-gas stream preferably serves as the characteristic value of the device. Since the gas pressure directly determines the amount of gas, this is a simple measure by which the evaluation device can determine the amount of gas supplied per unit of time.
  • the evaluation device preferably contains a microcomputer for performing its functions.
  • the device according to the invention shown in FIG. 1 contains an injector delivery device 2 with an injector channel 4 in the form of a Venturi tube.
  • a delivery line 8 for supplying coating material in the form of powder to a spray device 10 is connected to the downstream end of the injector channel 4. The latter sprays the powder 12 onto an object 14 to be coated.
  • a conveying gas line 16 opens axially into the upstream end of the injector channel 4, radially a control gas line 18, and also radially a powder line 20 from a powder container 21.
  • the gas lines 16 and 18 each contain a pressure regulator 22, 24 and / or a pressure measuring device 26, 28, and are connected to a compressed gas source 30.
  • the pressure regulators 22, 24, pressure measuring devices 26, 28 and the compressed gas source 30 are connected to an electronic evaluation device 42 via electrical lines 32, 34, 36, 38 and 40.
  • the conveying line 8 is provided with a radiation measuring device 44 which is connected to the electronic evaluation device 42 via electrical lines 46.
  • the radiation measuring device 44 contains a transmitter 48, which transmits beams 50 through the conveyor line 8, and a radiation receiver 52, which receives the beams 50 passing through the conveyor line 8.
  • the rays 50 are weakened as they pass through the conveyor line 8 both from the material of this conveyor line and from the powder flowing through it, depending on the amount of powder contained in the conveying gas, so that they are only weakened or only in the form of a part of them and thereby also arriving at the radiation receiver 52 in the form of an attenuation.
  • the energy difference between the rays transmitted by the radiation transmitter 48 and the rays received by the receiver 52 is a measure of the amount or density A of the powder contained in the gas, which flows through the delivery line 8.
  • This dependence of the attenuation or reflection R of the rays 50 on the amount of powder contained in the gas stream and thus on the density A is shown in Fig. 2.
  • the curve of FIG. 2 runs slightly differently for each powder type. If desired, the corresponding dependency curves according to FIG. 2 can be stored for a plurality of powder types in a memory 54 of the evaluation device 42 and selected via a keyboard 56.
  • the signals supplied via the lines 46 therefore each correspond to a specific density value A, and these density values can be displayed by a display device 58 of the evaluation device 42.
  • the electronic evaluation device 42 preferably contains a microcomputer.
  • the rays of the radiation measuring device 44 can be visible or invisible light, in particular infrared light or ultraviolet light, but also laser rays, ⁇ -rays or electromagnetic rays. However, visible or invisible light is preferably used.
  • the attenuation of the rays 50 is measured by the powder content in the powder-air flow.
  • the radiation measuring device 44 can have a plurality of radiation transmitters 48, the beams 50 of which cross one another and pass through the delivery line 8 in a grid-like manner in different directions.
  • the radiation receiver 52 can contain a plurality of radiation sensors 53.
  • uneven powder distributions in the delivery line 8 can be determined and mean values can be formed to avoid incorrect measurement results.
  • the conveying line 8 can have a flattened line section and the radiation transmitter 48 and the radiation receiver 52 of the radiation measuring device can have an elongated shape corresponding to the flattened line section.
  • the radiation transmitters 48 and radiation receivers 52 are arranged on the same side of the delivery line 8.
  • the radiation receivers 52 do not receive the weakened rays passing through the delivery line 8, but rather the rays reflected by the powder in the delivery line 8.
  • both the delivery line 8 and other elements which are possibly between the radiation transmitter and the radiation receiver on the one hand and the powder gas stream on the other hand, consist of a material which is easily permeable to the rays.
  • This material should be much more permeable to the rays than the powder.
  • When using light rays is therefore particularly suitable clear glass or clear plastic.
  • FIG. 7 shows in section an injector delivery device 102 with the two gas lines 16 and 18 and the powder line 20 of the powder container 21.
  • the light guides 124 and 126 do not extend through the entire wall 130 of the injector channel 104, so that they are each separated from the injector channel 104 by a thin wall section 132 and 134.
  • the channel wall 130 is made of translucent material so that the rays can pass through the injector channel 104, but the light guides 124 and 126 cannot be contaminated by powder.
  • the ends 133 and 135 of the light guides 124 and 126 are preferably located close to or at the narrowest point 21 of the injector channel downstream of the powder line 20.
  • the injector delivery device 202 has an injector channel 204, which continuously widens downstream from a constriction 205.
  • a plurality of circumferentially distributed channels 217 arranged from one another, which are connected to gas source 30 via gas line 16.
  • the powder line 20 of a powder container 221 opens axially into the upstream end of the injector channel 204, upstream of the gas channels 217.
  • the gas of the gas channels 217 sucks powder out of the powder line 20 and drives it through the delivery line 8 in the form of a powder-gas flow.
  • Radially set back from the injector channel 204 are the ends 133 of light guides 124 of a radiation transmitter 48, and the ends 135 of light guides 126 of a radiation receiver 52 of the radiation measuring device 44.
  • the gas of the gas channels 217 flows into the injector channel 204 at a very high speed, so that from this no powder particles can reach the ends 133 and 135 of the light guides 124 and 126 because the gas is between them and the powder particles of the injector channel.
  • the ends 133 and 135 of the light guides 124 and 126 face each other without interposing elements other than the powder and the gas.
  • the ends 133 and 135 are arranged in the mouth openings of the gas channels 217, but are placed on the radially outer channel edges so that the gas of the gas channels 217 can flow past them unhindered.
  • the embodiment shown in Fig. 8 has a particularly good delivery rate and also enables the measurement of very small changes in the powder content in the gas flow.
  • the last-mentioned advantage arises from the fact that the gas swirls powder particularly strongly in the injector channel 204 and, as a result, a uniform powder division causes the ends 133 and 135 of the light guides 124 and 126 to direct the powder without a disturbing jacket wall of the delivery line 8 or the delivery device 202 -Gas flow opposite, and that the ends 133 and 135 can still not be contaminated by powder particles.

Landscapes

  • Measuring Volume Flow (AREA)
  • Nozzles (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
EP88108891A 1987-07-02 1988-06-03 Procédé et dispositif de mesure et de régulation du débit de poudre dans une installation de revêtement par poudrage par pulvérisation Expired - Lifetime EP0297309B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873721875 DE3721875A1 (de) 1987-07-02 1987-07-02 Verfahren und einrichtung fuer eine pulverspruehbeschichtungsanlage
DE3721875 1987-07-02

Publications (3)

Publication Number Publication Date
EP0297309A2 true EP0297309A2 (fr) 1989-01-04
EP0297309A3 EP0297309A3 (en) 1989-10-18
EP0297309B1 EP0297309B1 (fr) 1993-12-22

Family

ID=6330768

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88108891A Expired - Lifetime EP0297309B1 (fr) 1987-07-02 1988-06-03 Procédé et dispositif de mesure et de régulation du débit de poudre dans une installation de revêtement par poudrage par pulvérisation

Country Status (4)

Country Link
US (1) US4941778A (fr)
EP (1) EP0297309B1 (fr)
JP (1) JPH0661498B2 (fr)
DE (2) DE3721875A1 (fr)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3822835A1 (de) * 1988-07-06 1990-03-08 Josef Schucker Verfahren und anordnung zum lackieren von werkstueckoberflaechen
DE3926624A1 (de) * 1989-08-11 1991-02-14 Gema Ransburg Ag Elektrostatische pulverbeschichtungseinrichtung
EP0486812A2 (fr) * 1990-10-20 1992-05-27 Grafotec Kotterer Gmbh Procédé et dispositif pour appliquer un liquide sur un matériau
DE4406046A1 (de) * 1994-02-24 1995-08-31 Wagner Int Einrichtung und Verfahren zum Messen eines Pulver-Massestromes
EP0636420A3 (fr) * 1993-07-26 1995-09-13 Gema Volstatic Ag Dispositif pour transporter de la poudre, en particulier de la poudre de revêtement.
WO1996003216A1 (fr) * 1994-07-25 1996-02-08 Siemens Aktiengesellschaft Procede et dispositif permettant de produire et de doser un aerosol pulverulent
EP0712669A2 (fr) 1994-11-11 1996-05-22 Bayerische Motoren Werke Aktiengesellschaft Appareil de mesure pour déterminer la teneur de poudre
EP0732150A1 (fr) * 1995-03-13 1996-09-18 Hughes Aircraft Company Capteur optique pour dispositifs à jet pulvérisateur de CO2
DE19548607A1 (de) * 1995-12-23 1997-06-26 Gema Volstatic Ag Pulver-Sprühbeschichtungsvorrichtung
DE19608432A1 (de) * 1996-03-05 1997-09-18 Medicoat Ag Vorrichtung zur Regelung des dosierten Zuführens von Pulver zu einer Pulververarbeitungseinheit
EP0823286A3 (fr) * 1996-08-07 1998-05-13 Elpatronic Ag Méthode et arrangement d'injection pour transporter des matériaux en particules
DE19650112C1 (de) * 1996-12-03 1998-05-20 Wagner Int Einrichtung und Verfahren zum Messen eines Pulver-Massestromes
DE19824802A1 (de) * 1998-06-03 1999-12-09 Itw Gema Ag Pulverförder-Injektor
EP1092958A1 (fr) * 1999-10-14 2001-04-18 Wagner International Ag Procédé et dispositif de mesure d'une quantité de poudre ou d'un changement de quantité de poudre dans un réservoir
DE10111383A1 (de) * 2001-03-09 2002-09-26 Wagner Internat Ag Altstaetten Verfahren zur Förderung von Beschichtungspulver zu einer Beschichtungseinheit und zugehörige Pulverfördervorrichtung
CN104024805A (zh) * 2011-10-06 2014-09-03 诺信公司 粉末流检测
DE102016014951A1 (de) * 2016-12-14 2018-06-14 Dürr Systems Ag Beschichtungseinrichtung und zugehöriges Betriebsverfahren
US11154892B2 (en) 2016-12-14 2021-10-26 Dürr Systems Ag Coating device for applying coating agent in a controlled manner
US11167308B2 (en) 2016-12-14 2021-11-09 Dürr Systems Ag Print head for the application of a coating agent on a component
US11167297B2 (en) 2016-12-14 2021-11-09 Dürr Systems Ag Print head for the application of a coating agent
US11203030B2 (en) 2016-12-14 2021-12-21 Dürr Systems Ag Coating method and corresponding coating device
US11298717B2 (en) 2016-12-14 2022-04-12 Dürr Systems Ag Print head having a temperature-control device
US11338312B2 (en) 2016-12-14 2022-05-24 Dürr Systems Ag Print head and associated operating method
US11440035B2 (en) 2016-12-14 2022-09-13 Dürr Systems Ag Application device and method for applying a multicomponent coating medium
US11504735B2 (en) 2016-12-14 2022-11-22 Dürr Systems Ag Coating device having first and second printheads and corresponding coating process
US11944990B2 (en) 2016-12-14 2024-04-02 Dürr Systems Ag Coating device for coating components
US11975345B2 (en) 2016-12-14 2024-05-07 Dürr Systems Ag Coating installation and corresponding coating method

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL93251A0 (en) * 1989-02-06 1990-11-29 Pfizer Hospital Prod Method and apparatus for improvement of bone healing
US5215253A (en) * 1990-08-30 1993-06-01 Nordson Corporation Method and apparatus for forming and dispersing single and multiple phase coating material containing fluid diluent
FR2680416B1 (fr) * 1991-08-12 1995-06-30 Sames Sa Procede de mesure de debit de poudre fluidisee et dispositif de mesure de debit mettant en óoeuvre un tel procede.
DE4201665C2 (de) * 1992-01-22 1993-10-28 Wagner International Ag Altsta Pulver-Injektor
DE4319726A1 (de) * 1993-06-15 1994-12-22 Gema Volstatic Ag Pulverfördereinrichtung
JP2728847B2 (ja) * 1993-07-23 1998-03-18 日本パーカライジング株式会社 粉体流量測定方法およびその装置
DE4419987A1 (de) * 1994-06-08 1996-02-29 Gema Volstatic Ag Injektor-Fördervorrichtung zur pneumatischen Förderung von Pulver
DE19514326C2 (de) * 1995-04-18 1998-04-02 Wolfgang Peltzer Vorrichtung zum Einblasen von teilchenförmigen Dämmstoffen
DE19717353A1 (de) * 1997-04-24 1998-11-05 Wagner Int Pulverbeschichtungsanlage
DE19808765A1 (de) * 1998-03-02 1999-09-16 Wagner Int Pulverbeschichtungsanlage und -verfahren zum Speisen und Mischen von Pulver in einer Beschichtungsanlage
JP4045022B2 (ja) * 1998-07-29 2008-02-13 株式会社カワタ 粉粒体の計量装置
DE19847258B4 (de) * 1998-10-02 2008-09-04 Thyssenkrupp Anlagenservice Gmbh Verfahren und Vorrichtung zur Zustandserfassung von Beschichtungsmitteln beim elektrostatischen Beschichten von Gegenständen
DE19910748A1 (de) 1999-03-11 2000-09-14 Itw Gema Ag Pulverbeschichtungsvorrichtung
US6668663B2 (en) * 2000-12-27 2003-12-30 Analytical Engineering, Inc. Method and apparatus to determine flow rate with the introduction of ambient air
DE20107767U1 (de) 2001-05-08 2001-07-12 Wagner Internat Ag Altstaetten Kabine zur Pulverbeschichtung von Werkstücken
US6641778B2 (en) * 2001-05-17 2003-11-04 National Research Council Of Canada Device and method for regulating flow of particulate material, especially small flows of fine powder
CH696062A5 (de) 2002-04-03 2006-12-15 Kuenzler Robert Ag Pulverinjektor.
DE10357814A1 (de) * 2003-12-10 2005-07-14 Itw Gema Ag Gasleitungssystem, insbesondere in einer Pulversprühbeschichtungsvorrichtung
CA2515087C (fr) * 2004-09-10 2015-03-17 Sulzer Metco Ag Appareil de projection au plasma et methode de controle de la condition de l'appareil
EP1635623B1 (fr) * 2004-09-10 2017-10-04 Oerlikon Metco AG, Wohlen Dispositif de pulvérisation par plasma et procédé de contrôle de l'état d'un dispositif de pulvérisation par plasma
DE102005007242A1 (de) * 2005-02-17 2006-08-24 Itw Gema Ag Druckluft-Drosselvorrichtung und Pulversprühbeschichtungsvorrichtung
DE102005010835A1 (de) * 2005-03-07 2006-09-14 Itw Gema Ag Sprühbeschichtungs-Steuergerät
US20070074656A1 (en) * 2005-10-04 2007-04-05 Zhibo Zhao Non-clogging powder injector for a kinetic spray nozzle system
US8132740B2 (en) * 2006-01-10 2012-03-13 Tessonics Corporation Gas dynamic spray gun
US9207172B2 (en) * 2011-05-26 2015-12-08 Kidde Technologies, Inc. Velocity survey with powderizer and agent flow indicator
CN103447187A (zh) * 2012-05-30 2013-12-18 上海蓝蔚科技发展有限公司 以催化剂担量控制喷涂机速度的计算方法
NL1039764C2 (en) * 2012-08-17 2014-02-18 J O A Technology Beheer B V A method of, a control system, a device, a sensor and a computer program product for controlling transport of fibrous material in a transport line of a pneumatic conveying system.
KR102182754B1 (ko) * 2016-07-27 2020-11-25 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 3차원(3d) 적층 제조에 있어서의 분말 제공
DE102017103316A1 (de) * 2017-02-17 2018-08-23 Gema Switzerland Gmbh Pulverförderinjektor zum fördern von beschichtungspulver und venturi-düsenanordnung
JP6678888B1 (ja) * 2019-07-29 2020-04-15 有限会社東京建商 半乾式ロックウール吹付工事における材料の吐出量や吐出量比率を施工中に確認できる管理システム。

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953681A (en) * 1954-09-21 1960-09-20 Standard Oil Co System for measuring mass flow rate by radiation
US3997433A (en) * 1975-07-18 1976-12-14 Liu Benjamin Y H Method and apparatus for generating dry dust particles
US4228353A (en) * 1978-05-02 1980-10-14 Johnson Steven A Multiple-phase flowmeter and materials analysis apparatus and method
EP0166092A1 (fr) * 1984-06-22 1986-01-02 J. Wagner GmbH Procédé et dispositif pour régler la vanne-pilote de débit d'un pistolet de pulvérisation pour peintures
EP0183637A1 (fr) * 1984-11-28 1986-06-04 United Technologies Corporation Appareil pour la détermination exacte de la teneur de poudre dans un courant de gaz

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2987221A (en) * 1957-08-29 1961-06-06 Union Carbide Corp Powder ejector assembly
US3498719A (en) * 1965-02-18 1970-03-03 Continental Can Co Photoelectric consistency indicator for pulp
GB1285977A (en) * 1968-12-23 1972-08-16 Gam Rad Improved turbidimeter
CH584886A5 (fr) * 1974-10-09 1977-02-15 Balzers Patent Beteilig Ag
DE2849295C2 (de) * 1978-11-14 1985-04-04 Ransburg-Gema AG, St.Gallen Sprühbeschichtungsvorrichtung zum Beschichten von Gegenständen
DE2849269C2 (de) * 1978-11-14 1980-11-27 Gema Ag, Apparatebau, St. Gallen (Schweiz) Verfahren zum Pulversprühen und pneumatische Pulversprüheinrichtung
DE3016458A1 (de) * 1980-04-29 1981-11-19 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zum bestimmen und/oder steuern der beschichtungsstaerke von werkstuecken in beschichtungsanlagen, wie lackier-, pulverbeschichtungsanlagen o.dgl. und, vorrichtung zur durchfuehrung des verfahrens
US4381894A (en) * 1980-11-06 1983-05-03 Inficon Leybold-Heraeus, Inc. Deposition monitor and control system
DD206309A3 (de) * 1981-07-17 1984-01-18 Kretschmer Horst Verfahren zur regelung von massenstroemen
IT1172582B (it) * 1983-02-23 1987-06-18 Ciampolini Alberto Strumenti Sistema ed apparecchio per la rivelazione ed il computo di particelle presenti in una sospensione in transito, per analisi ematologiche ed altro
US4519257A (en) * 1983-07-26 1985-05-28 Simpkins Otto K Electronic flow meter for measuring flow of bulk solids pneumatically conveyed through a hose
DE3432494C2 (de) * 1984-09-04 1995-07-27 Buerkert Gmbh Regelungsanordnung zur Regelung des Durchsatzes von Gas- oder Flüssigkeitsströmen in Rohrleitungen
FR2579487B1 (fr) * 1985-03-26 1989-05-12 Canon Kk Appareil pour reguler l'ecoulement de particules fines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953681A (en) * 1954-09-21 1960-09-20 Standard Oil Co System for measuring mass flow rate by radiation
US3997433A (en) * 1975-07-18 1976-12-14 Liu Benjamin Y H Method and apparatus for generating dry dust particles
US4228353A (en) * 1978-05-02 1980-10-14 Johnson Steven A Multiple-phase flowmeter and materials analysis apparatus and method
EP0166092A1 (fr) * 1984-06-22 1986-01-02 J. Wagner GmbH Procédé et dispositif pour régler la vanne-pilote de débit d'un pistolet de pulvérisation pour peintures
EP0183637A1 (fr) * 1984-11-28 1986-06-04 United Technologies Corporation Appareil pour la détermination exacte de la teneur de poudre dans un courant de gaz

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3822835A1 (de) * 1988-07-06 1990-03-08 Josef Schucker Verfahren und anordnung zum lackieren von werkstueckoberflaechen
DE3926624A1 (de) * 1989-08-11 1991-02-14 Gema Ransburg Ag Elektrostatische pulverbeschichtungseinrichtung
EP0486812A2 (fr) * 1990-10-20 1992-05-27 Grafotec Kotterer Gmbh Procédé et dispositif pour appliquer un liquide sur un matériau
EP0486812B1 (fr) * 1990-10-20 1995-09-13 Grafotec Gmbh Procédé et dispositif pour appliquer un liquide sur un matériau
EP0636420A3 (fr) * 1993-07-26 1995-09-13 Gema Volstatic Ag Dispositif pour transporter de la poudre, en particulier de la poudre de revêtement.
DE4406046A1 (de) * 1994-02-24 1995-08-31 Wagner Int Einrichtung und Verfahren zum Messen eines Pulver-Massestromes
WO1996003216A1 (fr) * 1994-07-25 1996-02-08 Siemens Aktiengesellschaft Procede et dispositif permettant de produire et de doser un aerosol pulverulent
EP0712669A2 (fr) 1994-11-11 1996-05-22 Bayerische Motoren Werke Aktiengesellschaft Appareil de mesure pour déterminer la teneur de poudre
EP0712669A3 (fr) * 1994-11-11 1996-06-26 Bayerische Motoren Werke Ag
EP0732150A1 (fr) * 1995-03-13 1996-09-18 Hughes Aircraft Company Capteur optique pour dispositifs à jet pulvérisateur de CO2
DE19548607A1 (de) * 1995-12-23 1997-06-26 Gema Volstatic Ag Pulver-Sprühbeschichtungsvorrichtung
DE19608432A1 (de) * 1996-03-05 1997-09-18 Medicoat Ag Vorrichtung zur Regelung des dosierten Zuführens von Pulver zu einer Pulververarbeitungseinheit
EP0823286A3 (fr) * 1996-08-07 1998-05-13 Elpatronic Ag Méthode et arrangement d'injection pour transporter des matériaux en particules
DE19650112C1 (de) * 1996-12-03 1998-05-20 Wagner Int Einrichtung und Verfahren zum Messen eines Pulver-Massestromes
EP0846937A3 (fr) * 1996-12-03 1999-03-17 Wagner International Ag Dispositif et procédé pour la mesure de la masse d'une poudre dans un mélange poudre-gaz
DE19824802A1 (de) * 1998-06-03 1999-12-09 Itw Gema Ag Pulverförder-Injektor
US6196269B1 (en) 1998-06-03 2001-03-06 Itw Gema Ag Conveying injector
EP1092958A1 (fr) * 1999-10-14 2001-04-18 Wagner International Ag Procédé et dispositif de mesure d'une quantité de poudre ou d'un changement de quantité de poudre dans un réservoir
DE19949659A1 (de) * 1999-10-14 2001-05-10 Wagner Internat Ag Altstaetten Verfahren und Vorrichtung zum Bestimmen einer Pulvermenge oder Pulvermengenänderung in einem Behälter
DE19949659C2 (de) * 1999-10-14 2002-06-13 Wagner Internat Ag Altstaetten Verfahren und Vorrichtung zum Bestimmen einer Pulvermenge oder Pulvermengenänderung in einem Behälter
DE10111383A1 (de) * 2001-03-09 2002-09-26 Wagner Internat Ag Altstaetten Verfahren zur Förderung von Beschichtungspulver zu einer Beschichtungseinheit und zugehörige Pulverfördervorrichtung
DE10111383B4 (de) * 2001-03-09 2006-02-09 Wagner International Ag Verfahren zur Förderung von Beschichtungspulver zu einer Beschichtungseinheit und zugehörige Pulverfördervorrichtung
CN104024805A (zh) * 2011-10-06 2014-09-03 诺信公司 粉末流检测
CN104024805B (zh) * 2011-10-06 2017-03-15 诺信公司 粉末流检测
DE102016014951A1 (de) * 2016-12-14 2018-06-14 Dürr Systems Ag Beschichtungseinrichtung und zugehöriges Betriebsverfahren
WO2018108563A1 (fr) 2016-12-14 2018-06-21 Dürr Systems Ag Dispositif d'application de revêtement et procédé pour le faire fonctionner
EP3689474A1 (fr) 2016-12-14 2020-08-05 Dürr Systems AG Dispositif de revêtement et procédé de fonctionnement associé
US11154892B2 (en) 2016-12-14 2021-10-26 Dürr Systems Ag Coating device for applying coating agent in a controlled manner
US11167302B2 (en) 2016-12-14 2021-11-09 Dürr Systems Ag Coating device and associated operating method
US11167308B2 (en) 2016-12-14 2021-11-09 Dürr Systems Ag Print head for the application of a coating agent on a component
US11167297B2 (en) 2016-12-14 2021-11-09 Dürr Systems Ag Print head for the application of a coating agent
US11203030B2 (en) 2016-12-14 2021-12-21 Dürr Systems Ag Coating method and corresponding coating device
US11298717B2 (en) 2016-12-14 2022-04-12 Dürr Systems Ag Print head having a temperature-control device
US11338312B2 (en) 2016-12-14 2022-05-24 Dürr Systems Ag Print head and associated operating method
US11440035B2 (en) 2016-12-14 2022-09-13 Dürr Systems Ag Application device and method for applying a multicomponent coating medium
US11504735B2 (en) 2016-12-14 2022-11-22 Dürr Systems Ag Coating device having first and second printheads and corresponding coating process
US11813630B2 (en) 2016-12-14 2023-11-14 Dürr Systems Ag Coating method and corresponding coating device
US11878317B2 (en) 2016-12-14 2024-01-23 Dürr Systems Ag Coating device with printhead storage
US11944990B2 (en) 2016-12-14 2024-04-02 Dürr Systems Ag Coating device for coating components
US11975345B2 (en) 2016-12-14 2024-05-07 Dürr Systems Ag Coating installation and corresponding coating method

Also Published As

Publication number Publication date
JPH0661498B2 (ja) 1994-08-17
US4941778A (en) 1990-07-17
DE3721875A1 (de) 1989-01-12
JPS6411662A (en) 1989-01-17
EP0297309A3 (en) 1989-10-18
EP0297309B1 (fr) 1993-12-22
DE3886453D1 (de) 1994-02-03

Similar Documents

Publication Publication Date Title
EP0297309B1 (fr) Procédé et dispositif de mesure et de régulation du débit de poudre dans une installation de revêtement par poudrage par pulvérisation
EP0412289B1 (fr) Dispositif de pulvérisation électrostatique
DE69205646T2 (de) Verfahren zur Durchflussmessung fluidisierten Pulvers und Durchflussmessvorrichtung zur Durchführung dieses Verfahrens.
DE4406046C2 (de) Einrichtung und Verfahren zum Messen eines Pulver-Massestromes
DE3227875A1 (de) Vorrichtung zur kontinuierlichen messung der durchsatzmenge eines feinmaterials durch ein foerderrohr
DE3411540A1 (de) Verfahren und vorrichtung zur ermittlung des foerdergutmengenstromes von bandfoerderern
DE3222727A1 (de) Vorrichtung zur messung der stroemungsrate von pulverfoermigen substanzen
DE4426280A1 (de) Verfahren zum Ermitteln der Beladung eines Gasstroms mit Feststoffanteilen
DE3024568C2 (de) Verfahren und Vorrichtung zum pneumatischen Fördern von Fördergut
DE19808765A1 (de) Pulverbeschichtungsanlage und -verfahren zum Speisen und Mischen von Pulver in einer Beschichtungsanlage
WO1993022633A1 (fr) Balance pour materiau en vrac___________________________________
EP1884739A2 (fr) Procédé et dispositif destinés à la détermination de la masse de marchandises au détail ou de poudre sur un dispositif de convoyage
EP1038160A1 (fr) Procede et dispositif pour la mesure autocompensee du debit volumetrique de gaz
DE3312586C2 (de) Verfahren und Vorrichtung zum Feststellen einer charakteristischen Eigenschaft
WO1996024838A1 (fr) Procede pour determiner la teneur en solides d'un flux gazeux
EP0210294A1 (fr) Procédé et dispositif de préparation de suspensions à caractéristiques constantes provenant d'éléments à propriétés variables
DE19811341A1 (de) Verfahren und Einrichtung zum Bestimmen der Zusammensetzung von fluidisierbaren Feststoffpartikeln
DE2346967A1 (de) Vorrichtung zum messen der durchflussmenge eines pulverfoermigen oder koernigen materials
DE3021588C2 (fr)
DE3016458A1 (de) Verfahren zum bestimmen und/oder steuern der beschichtungsstaerke von werkstuecken in beschichtungsanlagen, wie lackier-, pulverbeschichtungsanlagen o.dgl. und, vorrichtung zur durchfuehrung des verfahrens
DE3417583C2 (fr)
DE19719032C1 (de) Verfahren und Einrichtung zur On-line-Detektierung von mineralischen Fremdkörpern in Nutzmineralströmen und deren Entfernung während ihres Transportes auf Fördereinrichtungen
DE3543177C2 (fr)
DE4030539A1 (de) Pulverdosiervorrichtung fuer einen brenner zum thermischen beschichten eines grundwerkstoffs mit einem pulverfoermigen zusatzwerkstoff
DE3823221A1 (de) Verfahren und einrichtung zum kalibrieren einer mittels einer elektromagnetischen messstrahlung arbeitenden wiegeeinrichtung eines schuettgutfoerderers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880603

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT

RHK1 Main classification (correction)

Ipc: G01F 1/74

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GEMA VOLSTATIC AG

17Q First examination report despatched

Effective date: 19920930

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19931222

Ref country code: GB

Effective date: 19931222

Ref country code: FR

Effective date: 19931222

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19931222

REF Corresponds to:

Ref document number: 3886453

Country of ref document: DE

Date of ref document: 19940203

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19931222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960528

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980303