EP0276360B1 - Dispositif magnétique à bobines courbées - Google Patents

Dispositif magnétique à bobines courbées Download PDF

Info

Publication number
EP0276360B1
EP0276360B1 EP87111574A EP87111574A EP0276360B1 EP 0276360 B1 EP0276360 B1 EP 0276360B1 EP 87111574 A EP87111574 A EP 87111574A EP 87111574 A EP87111574 A EP 87111574A EP 0276360 B1 EP0276360 B1 EP 0276360B1
Authority
EP
European Patent Office
Prior art keywords
winding
magnet device
coil
plane
particle path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87111574A
Other languages
German (de)
English (en)
Other versions
EP0276360A2 (fr
EP0276360A3 (en
Inventor
Helmut Marsing
Andreas Dr. Jahnke
Konrad Meier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0276360A2 publication Critical patent/EP0276360A2/fr
Publication of EP0276360A3 publication Critical patent/EP0276360A3/de
Application granted granted Critical
Publication of EP0276360B1 publication Critical patent/EP0276360B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/06Two-beam arrangements; Multi-beam arrangements storage rings; Electron rings

Definitions

  • the accelerator system to be found in the publication mentioned above is a heavy ion accelerator designed as a cyclotron. His magnetic device with an approximately ring-shaped plan has twelve curved, mutually spaced 20 ° sector magnets, the superconducting windings of rectangular conductors are surrounded by an iron yoke. Because the rectangular conductors are accommodated in grooves, undesired conductor displacements can be prevented. In this known accelerator system, the particle beam is led out in the region of accelerator cavities located between the sector magnets.
  • the synchrotron radiation source known from DE-A-35 30 446 also has an electron storage ring of the racetrack type.
  • the synchrotron radiation i.e. the relativistic radiation emission of the electrons, which revolve almost at the speed of light and are kept on the prescribed particle path by deflection in a magnetic field, provides X-rays with parallel radiation characteristics and high intensity.
  • This synchrotron radiation can advantageously be used for an X-ray lithography, which is particularly suitable for the production of integrated circuits for the production of microstructures.
  • the invention is therefore based on the object To design a magnetic device with the features mentioned at the outset in such a way that it enables the use of synchrotron radiation with a high field accuracy of the generated magnetic field.
  • a problem with the design of magnetic devices with high demands on the field accuracy is also the fault-free position of the power supply lines at the conductor ends. Since the disruptive influence decreases with the distance to the particle path, the leads should advantageously leave the windings on the winding heads according to the invention. In this way, the effect of the feed lines is negligible, while the curvature of the entire winding packages upwards or downwards can easily be taken into account in the field design.
  • FIG. 1 schematically shows part of a synchrotron radiation source with a magnet device designed according to the invention.
  • FIGS. 2 and 3 each schematically illustrate an embodiment of a partial winding for such a magnetic device.
  • This magnetic device contains on both sides of the equatorial plane E spanned by the particle path 2 and lying in the xy-direction of a right-angled xyz coordinate system E a curved superconducting dipole coil winding 4 or 5 and possibly additional superconducting coil windings such as correction coil windings 6.
  • the superconducting coil windings with convex The outside, concave inside and end windings between these sides are advantageously held in structurally identical upper and lower frame structures 7 and 8, which are to be joined together in the equatorial plane E and thereby a beam guiding chamber 10 enclosing the particle path 2.
  • a dipole field B of sufficient quality is formed within this chamber 10.
  • the chamber 10 goes radially or tangentially outwards into an equatorial outlet chamber 12 which is open on one side and has an outlet opening or mouth 13 for the synchrotron radiation indicated by an arrow 14.
  • the outlet chamber can in particular be slit-shaped, the corresponding slit being able to make up the entire 180 ° arc of the curved particle path section.
  • the individual superconducting dipole coil windings 4 and 5 are located at least with their winding parts defining the convex outside and concave inside in azimuthally circumferential grooves 20 of appropriately designed individual coil formers 15 and 16 made of metal or plastic composite material. These coil formers are fitted into an upper or lower frame piece 17 or 18 of the respective frame structure 7 or 8 and are held perpendicularly to the equatorial xy plane E with screws 19.
  • the winding structure can advantageously take place from the respective slot base of the coil body in the direction of the equatorial plane E or in the opposite direction.
  • a graduated bracket part 21 or 22 secures the exact distances and positions of the respective winding edges to the equatorial plane on the one hand, and on the other hand increases the rigidity of the entire construction with a positive fit with the coil formers 15 and 16 and the frame pieces 17 and 18 radially directed Lorentz forces.
  • the clamp parts 21 and 22 can also compress the individual windings with the aid of screws 23 and 24 and thus conductor movements during the operation of the magnet device 3, which lead to a premature, undesirable transition of the superconducting material into the normal conducting state, ie to a so-called quenching of the windings can prevent.
  • stamp-like pressure strips 27 on the respective slot base are used for this purpose, which are to be pressed against the respective winding parts by means of screws 28.
  • the winding inside the slots can be pressed together vertically from two sides.
  • the windings or parts of them can optionally be cast in the slots.
  • the frame pieces 17 and 18 of the frame structures 7 and 8 are rigidly connected to an upper and lower plate element 31 and 32, respectively. This ensures a very precise positioning of the individual superconducting coil windings 4 to 6 relative to the particle track 2.
  • the upper and lower plate elements 31 and 32 of the frame structures 7 and 8 are braced against ring-like, force-transmitting distributor pieces 34 and 35.
  • the slot-like outlet chamber 12 extends outwards between these distributor pieces.
  • the mutual distance and a force support between the distributor pieces 34 and 35 is ensured by at least one support element 40, which is located radially further outside than the mouth of the outlet opening 13. Since the distributor pieces 34 and 35 form parts of a cold helium housing 42 for receiving liquid helium for cooling the superconducting coil windings within a cryostat, the support element 40 running between them is also at this temperature.
  • the suspension and positioning elements of the magnetic device which are not shown in the figure, can also advantageously be located directly on the distribution pieces within a vacuum housing of the cryostat, which is also not shown 34 and 35 and thus in close proximity to the superconducting coil windings 4 to 6. This brings with it a correspondingly high positioning accuracy of the windings with respect to the particle path.
  • the portion of the synchrotron radiation 14 striking the support element 40 is collected by a radiation absorber 46, which is expediently cooled.
  • Liquid nitrogen is to be regarded as the preferred cryogenic refrigeration medium.
  • each of the coil windings 4 and 5 is made up of a plurality of sub-windings which surround one another in a shell-like manner.
  • three such partial windings each represent a coil winding.
  • One of these partial windings which largely corresponds to the winding of the coil winding 4 designated by 4a in FIG. 1, is illustrated in more detail in FIG. 2 as an oblique view.
  • This partial winding, identified by 4a ist is created from a superconducting rectangular conductor 50, with which so-called "pancakes" 51 are formed from two turns each arranged in a layer next to one another.
  • the rectangular conductor 50 is inserted layer by layer with its broad side in grooves corresponding to the adapted radial expansion.
  • the resulting winding package is then fixed in the grooves, which are not shown in the figure for reasons of clarity.
  • These grooves run in at least one bobbin, also not shown, in such a way that the curved shape of the partial winding 4a ⁇ results with a convex outer side 53 and a concave inner side 54.
  • Two winding heads are formed in the two transition regions between these sides 53 and 54. Of these end windings, only one is shown in the figure and designated 55 ⁇ .
  • the winding head 55 Wick of the partial winding 4a ⁇ is not in a common plane with the the sides 53 and 54 forming curved winding parts 57 and 58.
  • the common plane for the winding parts 57 and 58 is parallel to the plane spanned by the x and y coordinates of the xyz coordinate system according to FIG. 1.
  • the partial winding 4a 'in the region of the winding head 55' is bent up like a saddle relative to this common plane or in the manner of a bed frame, that is, it is led out of this plane.
  • the winding can be bent there so far that it comes to lie in a vertical plane which runs parallel to the plane spanned by the x and z planes of the coordinate system.
  • a relatively small radius of curvature or curvature can advantageously be provided.
  • the two curved winding parts of the partial winding 4a ' are not, as assumed in FIG. 2, to be arranged in a common plane which runs parallel to the plane defined by the particle path.
  • the two curved winding parts should advantageously also lie in two different planes with different distances from the particle path plane.
  • FIG. 3 A corresponding embodiment of the partial winding 4a can be seen in FIG. 3, for which a representation corresponding to FIG. 2 is selected.
  • the partial winding 4a which is only partially implemented in FIG. 3, contains a curved winding part 64 which forms the concave inside 54 and runs in a first plane E1.
  • this plane is, for example, the xy plane of a right-angled xyz coordinate system.
  • a winding part 63 running parallel to this winding part 64 and forming the convex outer side 53 of the partial winding 4a then lies in a parallel second plane E2, which is spaced apart from the plane E1 by a distance d.
  • this distance can be compensated, for example, on the end winding 55 by providing a straight intermediate piece 66 running in the z-direction with a corresponding expansion between curved winding parts.
  • the intermediate piece 66 is the inner one Assign winding part 64 for level compensation with respect to the outer winding part 63.
  • the magnetic device according to the invention can be advantageous according to the exemplary embodiment indicated in FIG. 1 for a synchrotron radiation source with a radial outlet opening for the synchrotron radiation can be designed.
  • the measures according to the invention can also be used just as well for other types of accelerator systems with curved tracks with their electrically charged particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Particle Accelerators (AREA)

Claims (6)

  1. Dispositif magnétique (3) destiné à être utilisé dans une section courbe d'une trajectoire (2) de particules chargées électriquement d'une installation d'accélérateur, le dispositif magnétique (3) étant disposé autour d'une chambre (10) de guidage du faisceau, qui entoure la trajectoire (2) des particules et contenant des enroulements de bobine coudés (4,4a,5),
    - qui sont constitués par des conducteurs supraconducteurs (5) rectangulaires,
    - qui sont disposés, au moins par leurs parties d'enroulement (63 et 64) constituant des côtés extérieurs convexes (53) et des côtés intérieurs concaves (54), dans des rainures (20) de corps de bobines (15,16) conformés de façon correspondante, les rainures (20) s'étendant dans le sens de la profondeur au moins approximativement perpendiculairement au plan (E) déterminé par la trajectoire (2) des particules, et
    - qui sont recourbés en forme de selle dans les zones de jonction au niveau des têtes de bobine (55) entre les côtés extérieur et intérieur (53 et 54),
    caractérisé par le fait que la chambre (10) de guidage du faisceau se prolonge, dans la section courbe de la trajectoire (2) des particules, par une chambre de sortie (12) pour un rayonnement synchrotron (14), que les parties d'enroulement (63) formant les côtés extérieurs convexes (53) sont situées à des distances du plan (E) de la trajectoire des particules, qui sont différentes de celle des parties d'enroulement (64) formant les côtés intérieurs concaves (54) par rapport à ce plan, et que le début (60) et la fin (61) de chaque enroulement de bobine (4,4a,5) sont situés respectivement, dans la zone de sa tête de bobine (55).
  2. Dispositif magnétique suivant la revendication 1, caractérisé par le fait que les zones des têtes de bobine (55) sont logées également dans les rainures (20) situées dans les corps de bobine (15,16).
  3. Dispositif magnétique suivant la revendication 1 ou 2, caractérisé par le fait que les corps de bobine (15,16) sont fixés rigidement dans au moins une structure, en forme de cadre (7,8), du dispositif magnétique (3).
  4. Dispositif magnétique suivant la revendication 3, caractérisé par le fait qu'il est prévu deux structures en forme de cadres (7,8), au moins dans une large mesure identiques et qui peuvent être réunies dans le plan (E) de la trajectoire des particules.
  5. Dispositif magnétique suivant l'une des revendications 1 à 4, caractérisé par le fait qu'il est prévu des dispositifs pour fixer mécaniquement les enroulements de bobine (4,5) dans les rainures (20).
  6. Dispositif magnétique suivant la revendication 5, caractérisé par le fait que dans le fond de chaque rainure (20) est disposée au moins une barrette de serrage (27), au moyen de laquelle l'enroulement de bobine respectif (4,5) doit être repoussé contre au moins une partie formant pince (21,22) qui ferme l'ouverture de la rainure.
EP87111574A 1987-01-28 1987-08-10 Dispositif magnétique à bobines courbées Expired - Lifetime EP0276360B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3702389 1987-01-28
DE3702389 1987-01-28

Publications (3)

Publication Number Publication Date
EP0276360A2 EP0276360A2 (fr) 1988-08-03
EP0276360A3 EP0276360A3 (en) 1989-07-26
EP0276360B1 true EP0276360B1 (fr) 1993-06-09

Family

ID=6319641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87111574A Expired - Lifetime EP0276360B1 (fr) 1987-01-28 1987-08-10 Dispositif magnétique à bobines courbées

Country Status (4)

Country Link
US (1) US4769623A (fr)
EP (1) EP0276360B1 (fr)
JP (1) JPS63188908A (fr)
DE (1) DE3786158D1 (fr)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3705294A1 (de) * 1987-02-19 1988-09-01 Kernforschungsz Karlsruhe Magnetisches ablenksystem fuer geladene teilchen
JPH0763036B2 (ja) * 1987-03-11 1995-07-05 日本電信電話株式会社 リタ−ンヨ−ク付き偏向電磁石
JPH0763037B2 (ja) * 1987-03-11 1995-07-05 日本電信電話株式会社 空芯型偏向電磁石
US4939493A (en) * 1988-09-27 1990-07-03 Boston University Magnetic field generator
DE4000666C2 (de) * 1989-01-12 1996-10-17 Mitsubishi Electric Corp Elektromagnetanordnung für einen Teilchenbeschleuniger
US4969064A (en) * 1989-02-17 1990-11-06 Albert Shadowitz Apparatus with superconductors for producing intense magnetic fields
DE4029477C2 (de) * 1989-09-29 1994-06-01 Siemens Ag Tesserale Gradientenspule für Kernspin-Tomographiegeräte
JPH06510885A (ja) * 1991-09-25 1994-12-01 シーメンス アクチエンゲゼルシヤフト 超伝導素線を備えた導体からなるコイル装置
JP2944317B2 (ja) * 1992-07-28 1999-09-06 三菱電機株式会社 シンクロトロン放射光源装置
CN1282215C (zh) * 2003-06-10 2006-10-25 清华大学 一种电子束的束流引导装置
JP5046928B2 (ja) 2004-07-21 2012-10-10 メヴィオン・メディカル・システムズ・インコーポレーテッド シンクロサイクロトロン及び粒子ビームを生成する方法
EP1764132A1 (fr) * 2005-09-16 2007-03-21 Siemens Aktiengesellschaft Procédé et dispositif pour la configuration d'une trajectoire de faisceau d'un système de thérapie par faisceau de particules
EP2389979A3 (fr) 2005-11-18 2012-02-29 Still River Systems, Inc. Radiothérapie à particules chargées
US7432516B2 (en) * 2006-01-24 2008-10-07 Brookhaven Science Associates, Llc Rapid cycling medical synchrotron and beam delivery system
DE102006018635B4 (de) * 2006-04-21 2008-01-24 Siemens Ag Bestrahlungsanlage mit einem Gantry-System mit einem gekrümmten Strahlführungsmagneten
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
WO2013101294A1 (fr) * 2011-05-19 2013-07-04 The Regents Of The University Of California Aimant torique à fonction combinée
TW201422278A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 粒子加速器之控制系統
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
JP6523957B2 (ja) 2012-09-28 2019-06-05 メビオン・メディカル・システムズ・インコーポレーテッド 磁場を変更するための磁性シム
CN105103662B (zh) 2012-09-28 2018-04-13 梅维昂医疗***股份有限公司 磁场再生器
CN104813749B (zh) 2012-09-28 2019-07-02 梅维昂医疗***股份有限公司 控制粒子束的强度
TWI604868B (zh) 2012-09-28 2017-11-11 美威高能離子醫療系統公司 粒子加速器及質子治療系統
WO2014052718A2 (fr) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Focalisation d'un faisceau de particules
JP6121545B2 (ja) 2012-09-28 2017-04-26 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビームのエネルギーの調整
EP3581243A1 (fr) 2012-09-28 2019-12-18 Mevion Medical Systems, Inc. Commande de thérapie par particules
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
JP6855240B2 (ja) 2013-09-27 2021-04-07 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビーム走査
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9793036B2 (en) * 2015-02-13 2017-10-17 Particle Beam Lasers, Inc. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields
CN106199471B (zh) 2015-05-04 2019-10-01 通用电气公司 部分折叠的梯度线圈单元及装置
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
CN109803723B (zh) 2016-07-08 2021-05-14 迈胜医疗设备有限公司 一种粒子疗法***
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
WO2020185544A1 (fr) 2019-03-08 2020-09-17 Mevion Medical Systems, Inc. Administration de radiothérapie par colonne et génération d'un plan de traitement associé
CN113744993B (zh) * 2021-08-30 2022-06-28 中国科学院合肥物质科学研究院 kA级大载流高温超导双饼线圈的绕制成型装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283276A (en) * 1963-07-25 1966-11-01 Avco Corp Twisted superconductive winding assembly
US4200844A (en) * 1976-12-13 1980-04-29 Varian Associates Racetrack microtron beam extraction system
GB8421867D0 (en) * 1984-08-29 1984-10-03 Oxford Instr Ltd Devices for accelerating electrons
DE3511282C1 (de) * 1985-03-28 1986-08-21 Brown, Boveri & Cie Ag, 6800 Mannheim Supraleitendes Magnetsystem fuer Teilchenbeschleuniger einer Synchrotron-Strahlungsquelle
US4667174A (en) * 1985-08-23 1987-05-19 Resonex, Inc. Magnet assembly for magnetic resonance imaging and method of manufacture

Also Published As

Publication number Publication date
DE3786158D1 (de) 1993-07-15
EP0276360A2 (fr) 1988-08-03
JPS63188908A (ja) 1988-08-04
US4769623A (en) 1988-09-06
EP0276360A3 (en) 1989-07-26

Similar Documents

Publication Publication Date Title
EP0276360B1 (fr) Dispositif magnétique à bobines courbées
EP0277521B1 (fr) Source de radiation synchrotron avec fixation de ses bobines courbées
EP0208163B1 (fr) Dispositif à champ magnétique pour un appareil d'accélération et/ou de stockage de particules chargées
DE4109931C2 (de) Ablenkmagnet zum Ablenken eines Strahls von geladenen Teilchen auf einer halbkreisförmigen Bahn
DE3511282C1 (de) Supraleitendes Magnetsystem fuer Teilchenbeschleuniger einer Synchrotron-Strahlungsquelle
EP0111218B1 (fr) Electro-aimant pour tomographie par RMN
DE3889847T2 (de) NMR Abbildungssystem mit geöffnetem Zutritt zum Abbildungsraum des Patienten.
EP0586983B1 (fr) Système de bobines à gradients pour un tomographe thérapeutique
DE3875863T2 (de) Magnetisches resonanzgeraet mit gradientenspulensystem.
DE3505281A1 (de) Magnetfelderzeugende einrichtung
DE3530446A1 (de) Synchrotron
DE69128372T2 (de) Magnet mit aktive Abschirmung. ohne Kyrogene Kältemittel, für die magnetische Resonanz
DE3852097T2 (de) Telezentrische Ablenkung auf Sekundärfelder mittels einer Immersionslinse mit variabler Achse.
DE2307822C3 (de) Supraleitendes Linsensystem für Korpuskularstrahlung
DE69609257T2 (de) Supraleitende Magnetanordnung mit offener Architektur für die bildgebende magnetische Resonanz
DE3881982T2 (de) Magnetischer Resonanzapparat mit schallarmer Gradientenspule.
EP0102486A1 (fr) Dispositif pour l'ajustage et le support des bobines magnétiques d'un système magnétique pour la tomographie à spin nucléaire
EP0488015B1 (fr) Aimant pour champ homogène avec au moins une pièce polaire ajustable mécaniquement
DE19527020C1 (de) Tesserale Gradientenspule für Kernspintomographiegeräte
DE3689319T2 (de) Massenspektrometer mit magnetischem Sektor.
EP0096807B1 (fr) Transformateur électrique
DE2128255C3 (de) Elektronenstrahlgenerator
DE2059781C3 (de) Magnetische Linsenanordnung
EP0724273B1 (fr) Dispositif magnétique avec enroulement supraconducteur à refroidissement forcé
DE4020112C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19890830

17Q First examination report despatched

Effective date: 19910411

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 3786158

Country of ref document: DE

Date of ref document: 19930715

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930908

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940718

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940824

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940829

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941018

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941207

Year of fee payment: 8

EAL Se: european patent in force in sweden

Ref document number: 87111574.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950831

Ref country code: CH

Effective date: 19950831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960501

EUG Se: european patent has lapsed

Ref document number: 87111574.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050810