EP0275471A1 - Verfahren und Vorrichtung zum Ausgleichen der Dichte einer Fasermatte am Eingang einer Textilmaschine - Google Patents

Verfahren und Vorrichtung zum Ausgleichen der Dichte einer Fasermatte am Eingang einer Textilmaschine Download PDF

Info

Publication number
EP0275471A1
EP0275471A1 EP87118415A EP87118415A EP0275471A1 EP 0275471 A1 EP0275471 A1 EP 0275471A1 EP 87118415 A EP87118415 A EP 87118415A EP 87118415 A EP87118415 A EP 87118415A EP 0275471 A1 EP0275471 A1 EP 0275471A1
Authority
EP
European Patent Office
Prior art keywords
feed
clamping gap
groove
signal
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87118415A
Other languages
English (en)
French (fr)
Other versions
EP0275471B1 (de
Inventor
Paul Stäheli
Robert Demuth
Peter Fritzsche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4285350&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0275471(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Publication of EP0275471A1 publication Critical patent/EP0275471A1/de
Application granted granted Critical
Publication of EP0275471B1 publication Critical patent/EP0275471B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G23/00Feeding fibres to machines; Conveying fibres between machines
    • D01G23/06Arrangements in which a machine or apparatus is regulated in response to changes in the volume or weight of fibres fed, e.g. piano motions

Definitions

  • the invention relates to a method and a device for compensating the density of a fiber wad fed into a textile machine, as defined in the preamble of the first method and the first device claim.
  • the homogenization of the fiber wadding at the entrance to a textile machine that processes the wadding - also called a mat - is an essential prerequisite for the uniformity of the product delivered by this machine. With increasing processing speed, this prerequisite becomes even more important, since fewer machines are used for the same amount of fiber wadding to be processed, so that the possibility of duplication from a larger number of machines and the resultant equalization of the product becomes smaller.
  • a feed means of a card consisting of a fixedly arranged feed plate and a drivable feed roller movably arranged above it. This feed roller is pressed at both ends by means of springs against the fiber wadding located between the feed roller and the trough plate.
  • a similar arrangement is known from DE-A-32 05 776.
  • the movements of the feed roller resulting from the unevenness in the fiber wool are emitted by sensors provided at both ends of the feed roller as signals to a control unit which calculates the necessary speed change of the feed roller in order to compensate for these unevenness as far as possible.
  • the main disadvantage of this system is that the feed roller to be driven is also used to scan the unevenness in the fiber wadding, which inevitably leads to interference in the measurement signals, even if precautions are taken in the arrangement of the drive of the feed roller to the directions of the To obtain driving force of the feed roller drive perpendicular to the direction of movement of this roller during the scanning.
  • a disadvantage of this system is not the measuring principle, but the type of fiber transfer to a subsequent licker-in roller (also called a beater), in that the fiber transfer point on the trough plate (or pedals) moves due to the swiveling of the trough plate relative to the stationary licker-in roller, which means that the position of the transfer point of the fiber wadding from the trough plate (or pedals) to the licker-in roller also moves alternately in the direction of rotation of the licker-in roller and against it, which creates an unrest in the transfer of the fibers to the licker-in roller.
  • the disadvantage of this system is that the density of the fiber wadding is measured before it is drawn in between the trough plate and the feed cylinder, so that changes in the fiber wadding can occur until it is drawn in between the trough plate and the feed cylinder, which then no longer match the measured values would match.
  • a trough plate and a feed plate as well as a feed cylinder and a feed roller are each the same el acts.
  • the invention is therefore based on the object of finding a system which detects and corrects the inequalities in the fiber wad density to be fed in easily and yet with sufficient accuracy.
  • the advantages achieved by the invention are that the density of the fiber wadding to be fed in can be determined without the disadvantages mentioned.
  • the measuring point or the measuring plane, respectively. the measuring direction can be provided such that the determination of the change in thickness of the fiber mat can be carried out close to the narrowest nip between the feed plate and the feed roller, i.e. essentially close to the point at which the fiber mat is taken over by the licker-in roller. This creates a very small distance between the measuring point and the fiber transfer point, i.e. the time of the measurement is very close to the time of the necessary speed correction.
  • a card 1 comprises from left to right, as seen in FIG. 1, at the card entrance a fiber feed means 2, shown with a dash-dotted line, a licker-in roller 3, also called a beater, a reel 4 with a cover 5, a fiber pile take-off roller 6, also called a doffer roll, and a fibrous web compacting unit 7 for forming a card sliver 8.
  • the fiber feed means 2 comprises a rotatable and drivable feed roller 9, also called feed cylinder, a feed plate 10, also called trough plate, which cooperates with the feed roller and is pivotally mounted about a pivot axis 11.
  • the feed roller 9 is arranged stationary, and the pivotability of the feed plate 10 is limited by an adjusting screw 12, in the direction of movement away from the feed roller 9, and by a stop mentioned later in the opposite direction.
  • the feed roller 9 is driven by a gear motor 13.
  • a fiber mat 15 is fed to the fiber feed means 2 on a feed plate 14.
  • the fiber mat is fed in a manner known per se to the much faster rotating licker-in roller than the compressed fiber mat.
  • the nonwoven fabric processed between the drum 4 and the lid 5 is removed from the doffer roller 6 and passed on to the nonwoven compression unit 7, in which the nonwoven fabric is compressed into the card sliver 8.
  • the ratio of the peripheral speed of the doffer roller 6 to the peripheral speed of the feed roller 9 gives the so-called draft ratio of the card.
  • the food plate 10 is pivoted away from the feed roller 9 until the food plate contacts the set screw 12. This position of the food plate 10 is referred to as the operating position.
  • This clamping effect causes measurable variables described later in the fiber feed means 2, by means of which a signal 16 corresponding to the density of the “pinched” fiber mat 15 is continuously obtained.
  • two signals 16A, 16B from left to right on the pivot axis 11 of the feed plate 10 are attached strain gauges, which sense the transverse force of the bearing journal of the feed trough.
  • These signals 16A, 16B are applied to a measuring amplifier 16C, which first adds the signals and then amplifies them, so that the signal 16 is produced, which represents an amplified mean signal.
  • the measuring amplifier 16C converts the signals from the strain gauge transducers into a DC voltage which is between -10 and +10 V.
  • the signal 16 is input to a controller 17, together with a control signal 18 for the wad thickness, a speed signal 19 of the doffer roller 6 and a speed signal 20 of the geared motor shaft 21, the control signal 18 and that Speed signal 19 of the doffer roller 6 have a predetermined value.
  • the value of the manipulated variable signal 18 can be selected at a decade switch 18A and finally determines the desired band number.
  • the controller "processes" the aforementioned signals into an output signal 22, by means of which the speed of the geared motor 13 is corrected in accordance with the deviations in the density of the fiber mat 15 in a clamping gap area 23 such that the density of the fiber mat when leaving the Clamping gap area is substantially balanced.
  • the controller 17 essentially consists of a microcomputer 17A from Texas Instr. Type 990 / 100MA with the necessary number of EPROMS type TMS 2716, also from Texas Instr., For programming the control functions, as well as a control unit 17B type D 10 AKN RV 419D-R from AREG, Federal Republic of Germany, Gemrigheim.
  • the control unit 17B amplifies a speed signal emitted by the microcomputer to the output signal 22 and receives the signal 20 for checking and regulating the feed roller speed.
  • the run-in signal 16 is first processed in a stage 17C.
  • the mean value of the incoming signal is recalculated from a fixed number of the last read values. In this way, if desired, the long-term deviation of the template can be determined (drift filter).
  • the instantaneous value of the incoming signal is compared with the mean value in stage 17C and the deviation is communicated to the microcomputer 17A as the actual value.
  • the latter is programmed as a PI controller and uses the control algorithm specified in the EPROMs and preprogrammed device-specific data to calculate a control value x from the setpoint of the decades, which forms the setpoint for the AREG controller 17B and is supplied to it, as schematically by means of the corresponding one Arrow between blocks 17A and 17B is indicated. It is also possible to carry out the functions of stage 17C in the microcomputer when installing the corresponding EPROMS, so that a separate stage 17C is unnecessary.
  • the AREG controller represents independent control electronics upstream of the control motor 13.
  • the setpoint specified by the microcomputer 17A is compared in the control electronics with the tachometer actual value 20, the difference is amplified and fed to the motor via the power circuits.
  • the control electronics 17B works as a voltage metering and only supplies the motor with as much voltage 22 as is required to apply the required torque and maintain the speed.
  • the processes in the nip area 23 are defined by the interaction of the feed roller 9 and the feed plate 10, in that area the fiber mat 15 is pressed from the original thickness D to a thickness (not shown) which it immediately before leaving the area 23 has.
  • the clamping gap region 23 thus ends at the edge of the food plate 10, referred to as the fiber delivery edge 24, at which the fiber mat 15 is no longer clamped by the food plate 10.
  • the directions of rotation of the feed roller 9, the breeze 3, the reel 4 and the doffer roller 6 are each identified by the arrows U.
  • the fiber material moves through the card in accordance with these directions of rotation.
  • FIG. 2 shows the fiber feed means 2 from FIG. 1 in an enlarged representation and in somewhat more detail, for which reason the same elements are provided with the same reference symbols.
  • pivot axis 11 is accommodated in a stationary bearing housing 26 belonging to the machine housing 25 (only indicated with hatching).
  • a stop 27 which prevents the feed plate 10 from resting on the feed roller 9 when there is no fiber mat 15.
  • a carrier 28 receiving the set screw 12 and the gear motor 13 are fastened to the machine housing 25.
  • FIG. 3 shows a variant 2.1 of the fiber feed means from FIGS. 1 and 2, so that the same elements are provided with the same reference symbols.
  • This variant has a feed plate 29 arranged below the feed roller 9, as seen in FIG. 3, which is pivotably mounted by means of a pivot axis 31 accommodated in a bearing housing 30 fastened to the machine housing 25.
  • a set screw 32 limits the pivotal movements of the feed plate 29 in a direction away from the feed roller 9, while a stop 33 prevents the feed plate 29 in a direction of movement against the Feed roller 9 can come into contact with this roller, the latter direction of movement of the feed plate 29 being caused by a compression spring 34.
  • the set screw 32 is received by means of a carrier 35 and the spring 34 by means of a carrier 36 each from the machine housing 25.
  • the stop 33 is the end face of a feed plate 37, which is also attached to the machine housing 25.
  • the clamping gap area 23.1 corresponds to the clamping gap area 23 of FIGS. 1 and 2.
  • measuring means are defined which are used to generate the signal 16 emitted by the feed means 2.
  • FIGS. 6, 10, 14, 18 and 22 show elements of the feed means of FIG. 3. Accordingly, the same elements are provided with the same reference numerals in the figures mentioned.
  • FIG. 5 shows the feed plate 10, the pivot axis 11 and the bearing housing 26 as well as a second bearing housing 26.1 which also receives the pivot axis 11.
  • the feed plate 10 has two bearing legs 38, by means of which the feed plate 10 is pivotably mounted on the pivot axis 11.
  • the pivot axis 11 each has a surface 39 (FIGS. 34 and 35)) for accommodating one strain gauge 90 each.
  • These strain gauges 90 are arranged in such a way that they each generate a signal corresponding to the magnitude of a force F (FIGS. 4, 33 to 35) produced during operation on the feed plate 10, both signals 16A, 16B in the mean value generator 16C (not shown here) ) are converted into the previously mentioned signal 16.
  • the force F is determined by two force components together, on the one hand from a force component which is caused by the pressure forces generated by the fiber mat in the wedge gap between the feed plate and the feed roller and on the other hand from a force component which arises from the friction forces occurring in the wedge gap.
  • the total resulting force F R (is equal to compressive force + frictional force) can be broken down into two components, namely a horizontal component F H and a vertical component F V.
  • the vertical force component is relatively small, since the corresponding contributions of the pressure and friction forces point in opposite directions. This component thus changes only slightly when the density of the fiber template changes.
  • the horizontal force component on the other hand, the corresponding contributions of the pressure and friction forces add up, so that there is a pronounced dependency here between F M and the change in density of the fiber template in the clamping gap area.
  • This dependency is exploited according to the invention in that the strain gauges 90 are also essentially placed in a horizontal plane and thus most sensitively determine changes in density of the fiber template in the nip area.
  • the optimal direction of the force F is roughly horizontal and can be determined by experiment. However, an approximation to this optimal direction is enough to make a sensitive measurement.
  • this type of measurement also represents a significant difference from the prior art, in which a relative movement between the feed plate and feed cylinder is used for the measurement.
  • the compressive forces increase with increasing density of the fiber template, but so do the frictional forces, which work against the compressive forces due to the indispensable curvature of the plate around the feed cylinder, so that the measurement cannot be carried out sensitively.
  • the horizontal direction is only the preferred direction for the force measurement if the card is designed as in FIG. 1.
  • the direction of force would have to be selected accordingly.
  • FIG. 7 shows the feed plate 29, the pivot axis 31 and the bearing housing 30 as well as a second bearing housing 30.1 which also receives the pivot axis 31 as a floor plan of FIG. 6.
  • the feed plate 29 has two bearing legs 40 which receive the pivot axis 31.
  • strain gauges for this variant are also arranged in such a way that they each generate a signal corresponding to the magnitude of a force F.1 (FIG. 6) generated during operation on the feed plate 29, with both signals in a mean value generator (not shown) in the Signal 16 mentioned earlier can be converted.
  • the force F.1 builds up in an analogous manner to the force F described for FIGS. 4 and 5.
  • the optimal direction of the force F.1 is also determined by experiments, an approximation to this optimal direction also being sufficiently precise.
  • FIGS. 8 and 9, 12 and 13, 16 and 17, 20 and 21 as well as 24 and 25 show, with the exception of the measuring means for determining the signal 16, the same elements as were shown with FIGS. 4 and 5, which is why they are the same Reference numerals are used for the same elements.
  • FIGS. 10 and 11, 14 and 15, 18 and 19 and 22 and 23 show, with the exception of the measuring means for determining the signal 16, the same elements as were shown with FIGS. 4 and 5, which is why they are the same Reference numerals are used for the same elements.
  • FIGS. 10 and 11, 14 and 15, 18 and 19 and 22 and 23 with respect to the elements shown in FIGS. 6 and 7.
  • the measuring means of FIGS. 8 and 9 is a load cell 41 assigned to the adjusting screw 12 such that it outputs a signal 16 corresponding to the size of a force F.2 (FIG. 8).
  • This force F.2 is one of the fiber mat 15 present in operation of the clamping gap region 23 mentioned (not in FIG. 8) shown) generated forces resulting force which acts in the direction of the longitudinal axis (not shown) of the adjusting screw 12.
  • the set screw 12 is arranged in the middle of the length L of the feed plate 10.
  • the horizontal distance H, as seen in FIG. 8, of the above-mentioned longitudinal axis up to the fiber delivery 24 is not particularly critical, nevertheless the smallest possible distance H should be sought.
  • a load cell 41.1 assigned to the set screw 32 (FIG. 10), to which a force F.3 acts analogously to the force F.2 of FIG. 8.
  • the set screw 32 is in the middle of the length L and with a horizontal distance H.1, as viewed in FIG. 10, from a fiber deflecting nose 44 on the feed plate 29 to that in the direction of the longitudinal axis (not shown) Set screw 32 acting force F.3.
  • Fig. 12 respectively. 13 and 14 resp. 15 each show a variant in the use of load cells to determine the density of the fiber mat in the wedge gap area 23 or. 23.1 (not shown in FIGS. 12 and 14) force generated during operation.
  • the dining plate 10 of FIGS. 12 and 13 in the end face 42 facing the beater 3 has a depth T and a height B (FIG. 12) having groove 43.
  • the height B is selected in such a way that load cells 41.2 can be pushed into the groove 43 without play in a position shown in FIGS. 12 and 13 and held in place (not shown).
  • the fiber mat 15 located in the wedge gap between the feed plate 10 and the feed roller 9 generates forces which tend to have a feed plate part 60 located between the groove 43 and the fiber-dispensing edge 24 around an inner groove edge 61 to pivot in a direction R. These forces result in a force F.4 acting over the entire length L, which generates a corresponding signal in the load cells 41.2.
  • the signals of the individual load cells are averaged to signal 16 in an averager (not shown).
  • FIGS. 14 and 15 functions with respect to the generation of signal 16 essentially the same as described with reference to FIGS. 12 and 13, which is why the elements necessary for generating signal 16 are provided with the same reference numerals as 12 and 13, with the exception of the force F.5, which already has a different size than the force F.4 of FIG. 12 due to the different type of fiber transfer via the nose 44 of the feed plate 29 to the briseur 3, in which the fibers are transferred from the feed roller 9 to the breeze 3 in so-called synchronism.
  • the synchronism arises from the fact that the feed roller 9 and the beater 3 have the same direction of movement at the fiber transfer point (see FIG. 1).
  • the force component F.5 can play a role in the formation of the force component F.5, such as the shape of the food plate 10 or. 29 in the area 23 resp. 23.1 and the distance of the groove edge 61 from the fiber mat 15 leading surface of the food plate 10, respectively. 29. He is also the same not limited to the number and arrangement of the load cells shown in Figures 13 and 15. It is understood that, for example, depending on the strength of the groove 43 to the fiber release edge 24 (FIG. 12) or. up to the nose 44 (FIG. 14) extending plate part, one, two or more load cells 41.2 can be provided.
  • the measuring means consists of three load cells 41.3 which are arranged in a groove 45 which is embedded in the feed plate 10 and opens into the clamping gap region 23 (FIGS. 1 and 2) in the clamping gap.
  • the signals emitted by the individual load cells 41.3 are converted into signal 16 in an averager (not shown).
  • the distribution of the aforementioned load cells in the groove 45 is essentially as shown in FIG. 17.
  • the number of load cells is not limited to the three shown.
  • the number of load cells is not limited to the three shown.
  • the force components are determined more precisely over the length L (FIG. 17) the dining plate 10 is to be detected, a larger number of load cells can be distributed.
  • 18 and 19 is composed of a membrane 47 inserted into the feed plate 29, a pressure converter 48 and a pressure fluid system 49 connecting the membrane 47 to the pressure converter 48.
  • a force component F.7 (FIG. 18) analogous to the force F.6 of FIG. 16 causes a pressure on the diaphragm 47, as a result of which a force transmission is transmitted via the hydraulic fluid system 49 to the pressure converter 48, which is a force F. 7 corresponding signal 16 is generated.
  • This overpressure is recorded with the measuring means shown in FIGS. 20 and 21, in that a measuring groove 50 is let into the food plate 10, which is inside the feed plate 10 is connected to a pressure transducer 53 via a pressure line 51 and a pressure line 52 connected to the feed plate 10.
  • This pressure converter 53 converts the excess pressure determined in the measurement groove 50 into the signal 16.
  • the measurement groove 50 is not continuous over the entire length L, i.e. the length L.1 of the measuring groove 50 is shorter than the length L of the feed plate 10, so that the measuring groove 50 is a groove located in the clamping gap area 23 and only open against the clamping gap.
  • the measurement groove forms an acute angle ⁇ with an imaginary plane E, which includes the mouth edge 54 of the wall 55 of the groove 50 as a tangential plane. This arrangement prevents a fiber jam from occurring in the groove 50.
  • the angle ⁇ has a maximum of 30 degrees.
  • FIGS. 20 and 21 show one of the measurement grooves 50 of FIGS. 20 and 21 analog measurement groove 50.1 with a pressure line 51.1 connected to it and a pressure line 52.1.
  • the measuring means of FIGS. 22 and 23 not only measure the pressure which, as described, arises from the pressing out of the air from the fiber mat, but it also becomes a constant one from a compressed air source 56
  • the amount of compressed air is pressed into the compacting fiber mat using measuring groove 50.1.
  • the enforcement of this predetermined amount of compressed air the fiber mat occurs against the resistance of the fiber mat, so that a pressure corresponding to this resistance is transmitted from the pressure lines 51.1 and 52.1 to a pressure transducer 53.1 connected to the pressure line 52.1.
  • the pressure converter 53.1 converts these pressure variations into the signal 16.
  • the measurement groove 50.1 also has the angle ⁇ described for FIG. 20.
  • FIGS. 24 and 25 show a variant of the measuring means of FIGS. 22 and 23, in that the quantity of compressed air which is constant from the compressed air source 56.1 is blown into the fiber mat located in the wedge gap area 23 by means of an injection groove 58. This air travels in this fiber mat in a direction W opposite to the direction of rotation of the feed roller until it can escape into the atmosphere through a ventilation groove 59 and a ventilation line 57 connected to it.
  • a pressure transducer 53.2 is connected to the pressure line 52.2. This pressure converter 53.2 converts the pressure existing in the pressure line 52.2 into the signal 16.
  • a resistance range can be defined with the distance M between the injection groove 58 and the ventilation groove 59.
  • FIGS. 26 and 27 show a variant 2.2 of the fiber feed means from FIG. 2, in that the feed plate 10 can not only be pivoted about the pivot axis 11, but that it can also be pivoted about a pivot axis 62, which is coaxial with the axis of rotation of the feed roller 9 lies. This pivotability is shown schematically with the radius arrow S.
  • a holding bracket 63 which has two legs 64 (only one visible in FIG. 26), in which the pivot axis 11 is mounted.
  • the legs 64 each have a guide slot 66
  • the lower guide surface 67 (seen with a view of FIG. 26) has a curvature with the radius S.
  • the upper guide surface 68 opposite the lower guide surface 67 is provided parallel to the guide surface 67.
  • These guide slots 66 each serve to receive two guide pins 69, which are fixedly arranged in a machine housing part 70.
  • the distance (not marked) of these two guide bolts 69 is selected in relation to the length (not marked) of the guide slot 66 such that the holding bracket 63 can be pivoted about the pivot axis 62 for a given pivot length (not marked).
  • the holding bracket 63 In order to hold the holding bracket 63 in a selected pivot position, it is held in place by means of two screws 71 screwed into the machine housing part and projecting through the guide slot 66.
  • set screw 12 is arranged on an end part 63.1 of the holding bracket 63 directed against the licker-in roller 3.
  • this variant can also be used to combine all of the elements shown in FIGS. 4 to 25 in order to generate the signal 16. The application of these elements in connection with this variant is therefore not repeated.
  • This mobility of the feed roller 9 is given by the fact that the free ends 73 of the feed roller 9 projecting on both sides (only one shown with FIG. 28) of the feed roller 9 are accommodated in a bearing bush 74, which is between two stationary sliding guides 75 and. 76 are guided.
  • the displacement range of the feed roller 9 is limited on the one hand by a stationary stop 77 and by an adjusting screw 78 which is received in a carrier 79 which in turn is attached to the machine housing 25.
  • the stop 77 has the same function as the stop 27 described earlier.
  • the fiber mat 15 on the feed plate 72 is slidably moved from the feed roller 9 into the wedge gap between the feed roller 9 and the feed plate 72, whereby the feed roller 9 from its starting position, in which the bearing bushes 74 each rest on the corresponding stop 77, until they enter the operating position are raised, in which the bearing bushes 74 each abut the adjusting screws 78.
  • FIG. 30 shows an application of the feed means of FIG. 1 in a rotor open-end spinning machine.
  • the feed roller 9 transfers a fiber sliver 15.1 to an opening roller 80, which transfers these individual fibers to a fiber feed channel 81, which feeds these fibers into a rotor 83 rotating about an axis of rotation 82.
  • a yarn 84 is formed in a manner known per se, which is drawn off by a pair of draw-off rollers 85.
  • the default ratio in the one shown with this figure Spinning machine lies between the peripheral speed of the feed roller 9, given by the speed of the geared motor shaft 21 and the peripheral speed of the take-off rollers 85, given by their speed of rotation of the take-off rollers generating the speed signal 19.1.
  • feed unit shown with FIG. 3 can be combined with the rotor open-end spinning unit shown with FIG. 30.
  • FIG. 31 shows a further application variant in which the feed element 2 feeds fibers of an opening roller 80 analogously to the feed element of FIG. 30.
  • the difference to the textile machine of FIG. 30 in FIG. 31 is that it is not a rotor-open-end spinning machine unit, but a friction-open-end spinning machine unit.
  • the feed roller 9 feeds the sliver 15.1 to the opening roller 80, which transfers the separated fibers to a fiber feed channel 86 connected to them. With the aid of this fiber conveying channel 86, the free-flying fibers are transferred to a friction spinning drum 87, on which a yarn 88 forms within a yarn formation area G, which yarn is drawn off by a pair of take-off rollers 89.
  • FIG. 31 for the sake of simplicity, only one friction spinning drum 87 is shown, but it is known per se that, as a rule, a counter drum is used in this spinning method, which is provided parallel to the drum shown.
  • FIG. 32 shows a drafting system in which a variant 2.4 of the feed means shown in FIG. 1 is used.
  • a counter roller 101 is used instead of the feed plate 10 shown in FIG. 1. This counter roller 101 forms, together with the feed roller 9, the nip.
  • the counter roller 101 is not driven, ie is freely rotating and is dragged through the fiber mat 15 lying between the counter roller and the feed roller.
  • the counter roller 101 is pivotally attached to a pivot lever 102.
  • pivot lever 102 is pivotally mounted by means of the pivot axis 11 and the bearing housing 26.
  • the load cell 41 described with FIGS. 8 and 9 is used as the measuring means for generating the signal 16. Reference is therefore made to the description for FIGS. 8 and 9.
  • roller pairs identified by reference numerals 103 and 104 are best known from drafting technology and are therefore not described further. It should only be mentioned in connection with the function of the feed means that the two lower rollers (viewed with reference to FIG. 32) of the roller pairs 103 and 104 are driven at a fixed speed, which results in the draft in the drafting system. The upper rollers of the roller pairs 103 and 104 are also dragged from the fiber mat in an analogous manner to the roller 104.
  • the draft ratio of the spinning machine shown with this figure lies between the peripheral speed of the feed roller 9, given by the speed of the Ge drive motor shaft 21 and by the peripheral speed of the lower roller 104, given by their speed generating the speed signal 19.2.
  • the signal 19.2 has the same function as the signals 19.1 in FIGS. 30 and 31 and the signal 19 in FIG. 1.
  • Another advantage is that the hysteresis inherent in the displacement measurements is eliminated in the force measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Abstract

Das Einspeisemittel (2) für das Einspeisen einer Fasermatte (15) in eine Textilmaschine, z.B. in eine Karde, setzt sich im wesentlichen aus einer angetriebenen Speisewalze (9) und einer mit dieser zusammenwirkenden Speiseplatte (10) zusammen. Dabei ist die Speisewalze (9) stationär angeordnet, während die Speiseplatte (10) um eine Schwenkachse (11) aus einer Ausgangslage ohne Fasermatte (15) bis zu einer Betriebslage mit Fasermatte (15), bei welcher die Speiseplatte (10) an einer Stellschraube (12) ansteht, schwenkbar angeordnet ist. Durch die Fixierung der Schwenkbewegung der Speiseplatte (10) für den Betrieb entstehen im Klemmspaltbereich (23), in welchem die Fasermatte (15) zunehmend verdichtet wird, je nach Dichte der Fasermatte (15), unterschiedliche Kräfte. Diese unterschiedlichen Kräfte können mit Hilfe von verschiedenen Meßmitteln erfaßt werden, um ein Steuersignal (16) zu erzeugen, welches einer Steuerung (17) zugeführt wird, welche dieses Steuersignal mit einem vorgegebenen Stellwertsignal (18) vergleicht und entsprechend ein Ausgangssignal (22) zur Steuerung der Drehzahl eines die Speisewalze (9) antreibenden Getriebemotors (13) produziert.

Description

  • Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zum Ausgleichen der Dichte einer in eine Textilmaschine gespeisten Faserwatte, wie dies im Ober­begriff des ersten Verfahrens und des ersten Vorrich­tungsanspruches definiert ist.
  • Die Vergleichmäßigung der Faserwatte am Eingang einer die Watte - auch Matte genannt - verarbeitenden Textil­maschine ist eine wesentliche Vorbedingung für die Gleichmäßigkeit des von dieser Maschine abgegebenen Produktes. Mit zunehmender Verarbeitungsgeschwindigkeit erhält diese Vorbedingung einen noch größeren Stellen­wert, da weniger Maschinen für die gleiche Menge zu ver­arbeitender Faserwatte benutzt werden, so daß die Mög­lichkeit der Dublierung aus einer größeren Anzahl Ma­schinen und die hierdurch erreichbare Vergleichmäßigung des Produktes kleiner wird.
  • Es besteht deshalb ein erheblicher Stand der Technik, um diese Aufgabe zu lösen, von welchem die folgenden Patentschriften als Beispiele zitiert sind.
  • Aus der US-A-4275483 ist ein Einspeisemittel einer Karde bekannt, bestehend aus einer fest angeordneten Speiseplatte und einer darüber beweglich angeordneten antreibbaren Speisewalze. Diese Speisewalze wird an ihren beiden Enden mittels Federn gegen die sich zwi­schen der Speisewalze und der Muldenplatte befindliche Faserwatte gepreßt. Eine ähnliche Anordnung ist aus der DE-A-32 05 776 bekannt.
  • Die durch die Unebenheiten in der Faserwatte entstehen­den Bewegungen der Speisewalze werden durch an beiden Enden der Speisewalze vorgesehene Sensoren als Signale an eine Steuereinheit abgegeben, welche daraus die not­wendige Drehzahl-Veränderung der Speisewalze rechnet, um diese Unebenheiten nach Möglichkeit auszugleichen.
  • Der wesentliche Nachteil dieses Systems besteht darin, dass die anzutreibende Speisewalze ebenfalls zur Ab­tastung der Unebenheiten in der Faserwatte verwendet wird, was zwangsläufig zu Störungen der Messignale führt, selbst dann, wenn in der Anordnung des Antriebes der Speisewalze Vorkehrungen getroffen werden, um die Richtungen der Antriebskraft des Speisewalzen-Antriebs senkrecht zur Bewegungs-Richtung dieser Walze bei der Abtastung zu erhalten.
  • Dieser Nachteil wird durch die Vorrichtung der FR-A-23 22 943 behoben. Diese schlägt eine sta­tionäre Speisewalze vor und tastet die Unebenheiten der einzuspeisenden Watte mittels einer durchgehen­den oder einer in Pedalen unterteilten Muldenplatte ab. Dabei ist die Muldenplatte, resp. sind die Pedalen schwenkbar gelagert, so daß sie sich gegen oder weg von der Speisewalze bewegen können, um dadurch die Uneben­ heiten der Faserwatte abzutasten.
  • Ein Nachteil dieses Systems besteht nicht im Messprin­zip, sondern in der Art der Faserübergabe an eine nach­folgende Vorreisserwalze (auch Briseur genannt), indem sich die Faserübergabestelle an der Muldenplatte (resp. Pedale) infolge der genannten Schwenkbarkeit der Muldenplatte gegenüber der stationären Vorreisserwalze bewegt, wodurch die Lage der Uebergabe-Stelle der Fa­serwatte von der Muldenplatte, (resp. Pedale) an die Vorreisserwalze sich ebenfalls abwechslungsweise in Drehrichtung der Vorreisserwalze und dagegen bewegt, was eine Unruhe in der Uebergabe der Fasern an die Vor­reisserwalze erzeugt.
  • Ein weiteres Beispiel, um die zuerst erwähnten Nachtei­le zu beheben, ist in der DE-A-29 12 576 gezeigt, indem ein nahe oder angrenzend an die feststehende Mudenplatte vorgesehenes Sensor-Element die Dichte der auf der Muldenplatte liegenden Faser­watte erfasst und als Signal an eine Steuer-Einrichtung abgibt, um die Drehzahl der Speisewalze anzupassen.
  • Der Nachteil dieses Systems besteht darin, dass die Messung der Dichte der Faserwatte vor dem Einzug zwi­schen der Muldenplatte und dem Speisezylinder erfolgt, so dass noch Veränderungen in der Faserwatte bis zum Einzug zwischen Muldenplatte und Speisezylinder entste­hen könnten, welche dann nicht mehr mit den gemessenen Werten übereinstimmen würden.
  • Grundsätzlich sei erwähnt, dass es sich bei einer Mul­denplatte und einer Speiseplatte sowie bei einem Spei­sezylinder und einer Speisewalze je um die selben Ele­ mente handelt.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, System zu finden, welches einfach und doch genügend genau die Un­gleichheiten der einzuspeisenden Faserwatten-Dichte erfaßt und korrigiert.
  • Diese Aufgabe wird mit den im Kennzeichen des ersten Ver­fahrens und im Kennzeichen des ersten Vorrichtungs-Anspru­ches definierten Erfindungen gelöst.
  • Die durch die Erfindung erreichten Vorteile bestehen darin, daß die Dichte der einzuspeisenden Faserwatte ohne die er­wähnten Nachteile erfaßt werden kann.
  • Ein weiterer Vorteil besteht außerdem darin, daß der Meßpunkt oder die Meßebene, resp. die Meßrichtung, derart vorgesehen werden kann, daß die Feststellung der Dickenveränderung der Fasermatte nahe an der engsten Klemmstelle zwischen der Speiseplatte und der Speisewalze vorgenommen werden kann, d.h. im wesentlichen nahe an derjenigen Stelle, an welcher die Fasermatte von der Vorreißerwalze übernommen wird. Da­durch entsteht eine sehr kleine Wegstrecke, zwischen der Meß­stelle und der Faserübergabestelle, d.h. der Zeitpunkt der Messung ist sehr nahe am Zeitpunkt der notwenigen Drehzahl­korrektur.
  • Im folgenden wird die Erfindung anhand von lediglich Ausführungs­wege darstellenden Zeichnungen näher erläutert. Es zeigt:
    • Fig. 1 eine Längsansicht einer Karde mit einem erfindungsge­mäßen Faser-Einspeisemittel, schematisch dargestellt,
    • Fig. 2 das erfindungsgemäße Faser-Einspeisemittel von Fig. 1, vergrößert dargestellt,
    • Fig. 3 eine Variante des Faser-Einspeisemittels von Fig. 2,
    • Fig. 4 Teile des Faser-Einspeisemittels von Fig. 1, vergrößert dargestellt,
    • Fig. 5 ein Grundriß eines Teiles von Fig. 4,
    • Fig. 6 bis 29 je Varianten der Faser-Einspeisemittel, in einer Darstellung mit Längsansicht und Grund­riss analog Fig. 4 und 5.
    • Fig. 30 eine Rotor-Offenend-Spinnmaschine mit dem erfindungsgemässen Faser-Einspeisemittel, schematisch dargestellt,
    • Fig. 31 eine Friktions-Offenend-Spinnmaschine mit dem erfindungsgemässen Faser-Einspeisemittel, schematisch dargestellt,
    • Fig. 32 ein Streckwerk mit dem erfindungsgemässen Faser-Einspeisemittel, schematisch dargestellt.
    • Fig. 33 das Teil von Fig. 4 mit weiteren Detailanga­ben, schematisch dargestellt,
    • Fig. 34 ein Teil der Vorrichtung von Fig. 4, vergrös­sert und im Schnitt gemäss den Linien I von Fig. 35 dargestellt,
    • Fig. 35 ein Teil der Vorrichtung von Fig. 4, vergrös­sert und in Blickrichtung II (Fig. 33) darge­stellt.
  • Eine Karde 1 umfaßt von links nach rechts, auf Fig. 1 gesehen, am Kardeneingang ein Fasereinspeisemittel 2, mit strichpunktierter Linie dargestellt, eine Vorreißerwalze 3, auch Briseur genannt, ein Tam­bour 4 mit einem Deckel 5, eine Faserflor-Abnahmewalze 6, auch Doffer-Walze genannt, und eine Faserflor-Verdich­tungseinheit 7 zum Bilden eines Kardenbandes 8.
  • Das Fasereinspeisemittel 2 umfasst eine dreh- und an­treibbare Speisewalze 9, auch Speisezylinder genannt, eine mit dieser zusammenwirkenden Speiseplatte 10, auch Muldenplatte genannt, welche um eine Schwenkachse 11 schwenkbar gelagert ist.
  • Die Speisewalze 9 ist stationär angeordnet, und die Schwenkbarkeit der Speiseplatte 10 wird durch eine Stellschraube 12, in der Bewegungsrichtung weg von der Speisewalze 9, sowie durch einen später erwähnten An­schlag in der entgegengesetzten Richtung begrenzt.
  • Die Speisewalze 9 wird durch einen Getriebemotor 13 an­getrieben.
  • Im Betrieb wird dem Fasereinspeisemittel 2 auf einer Zufuhrplatte 14 eine Fasermatte 15 zugeführt. Durch die Drehung der Speisewalze 9 in Umfangsrichtung U wird, in an sich bekannter Weise, die Fasermatte der wesentlich schneller drehenden Vorreisserwalze als komprimierte Fasermatte zugespeist.
  • Das zwischen Tambour 4 und Deckel 5 verarbeitete Faser­vlies wird von der Dofferwalze 6 abgenommen und an die Faservlies-Verdichtungseinheit 7 weitergeleitet, in wel­cher das Faservlies zum Kardenband 8 verdichtet wird.
  • Das Verhältnis der Umfangsgeschwindigkeit der Doffer­walze 6 zur Umfangsgeschwindigkeit der Speisewalze 9 er­gibt das sogenannte Verzugsverhältnis der Karde.
  • Im weiteren wird durch das Einführen der Fasermatte 15 die Speiseplatte 10 so weit von der Speisewalze 9 weg­geschwenkt, bis die Speiseplatte an der Stellschraube 12 ansteht. Diese Lage der Speiseplatte 10 wird als Be­triebslage bezeichnet.
  • Mit Hilfe dieser Stellschraube 12 wird demnach das Mass der Verdichtung der sich zwischen Speiseplatte 12 und Speisewalze 9 befindlichen Fasermatte 15 festgelegt.
  • Diese Klemmwirkung verursacht später beschriebene meß­bare Größen im Faser-Speisemittel 2, mittels welchen fortlaufend ein der Dichte der "eingeklemmten" Faser­matte 15 entsprechendes Signal 16 gewonnen wird.
  • Zur Gewinnung des Signales 16 können, wie später anhand der Fig. 5 beschrieben wird, zwei Signale 16A, 16B von links nach rechts an der Schwenkachse 11 der Speise­platte 10 angebrachten Dehnmeßstreifen, welche die Querkraft der Lagerzapfen der Speisemulde spüren, heran­gezogen werden. Diese Signale 16A, 16B sind an einen Meßverstärker 16C angelegt, welcher die Signale zu­nächst addiert und dann verstärkt, so daß das Signal 16 entsteht, welches ein verstärktes Mittelwertsignal dar­stellt. Der Meßverstärker 16C wandelt die Signale der DMS-Aufnehmer um in eine DC-Spannung, die zwischen -10 und +10 V liegt.
  • Das Signal 16 wird einer Steuerung 17, zusammen mit einem Stellwert-Signal 18 für die Wattendicke, einem Drehzahl-­Signal 19 der Doffer-Walze 6 und einem Drehzahl-Signal 20 der Getriebemotor-Welle 21 eingegeben, wobei das Stellwert-Signal 18 und das Drehzahl-Signal 19 der Doffer-­Walze 6 einen vorgegebenen Wert haben. Der Wert des Stellwert-Signales 18 kann an einem Dekadenschalter 18A gewählt werden und bestimmt schließlich die gewünschte Bandnummer.
  • Die Steuerung "verarbeitet" die vorgenannten Signale zu einem Ausgangssignal 22, mittels welchem die Dreh­zahl des Getriebe-Motors 13, entsprechend der Abwei­chungen in der Dichte der Fasermatte 15 in einem Klemm­spalt-Bereich 23 derart korrigiert wird, daß die Dich­te der Fasermatte beim Verlassen des Klemmspalt-Berei­ches im wesentlichen ausgeglichen ist.
  • Die Steuerung 17 setzt sich dabei im wesentlichen aus einem Mikrocomputer 17A der Firma Texas Instr. Typ 990/­100MA mit der notwendigen Anzahl EPROMS Typ TMS 2716, ebenfalls von Texas Instr., zur Programmierung der Steuer­funktionen, sowie einer Regeleinheit 17B Typ D 10 AKN RV 419D-R der Firma AREG, Bundesrepublik Deutschland, Gem­righeim zusammen. Die Regeleinheit 17B verstärkt ein vom Mikrocomputer abgegebenes Drehzahlsignal zum Aus­gangssignal 22 und nimmt das Signal 20 zur Kontrolle und Regelung der Speisewalzendrehzahl auf.
  • Das Einlaufsignal 16 wird zunächst in einer Stufe 17C verarbeitet. In regelmäßigen, kurz nacheinanderfolgenden Zeitabständen wird der Mittelwert des Einlaufsignals neu berechnet, und zwar aus einer festen Anzahl der letzten gelesenen Werte. Auf diese Weise kann man, falls erwünscht, die Langzeitabweichung der Vorlage feststel­len (Drift Filter). In sehr kurzen Zeitabständen von etwa 100 ms wird in der Stufe 17C der momentane Wert des Einlaufsignales mit dem Mittelwert verglichen und die Ab­weichung dem Mikrocomputer 17A als Istwert mitgeteilt. Letzteres ist als P.I-Regler programmiert und errech­net aus dem Sollwert der Dekaden, anhand des in den EPROM's vorgegebenen Regelalgorithmus sowie vorpro­grammierter gerätespezifischer Daten einen Regelwert x, der den Sollwert für den AREG-Regler 17B bildet und diesem zugeführt wird, wie schematisch mittels des ent­sprechenden Pfeils zwischen den Blöcken 17A und 17B angedeutet wird. Es ist auch möglich, die Funktionen der Stufe 17C in dem Mikrocomputer durchzuführen, beim Ein­bau der entsprechenden EPROMS, so daß eine getrennte Stufe 17C entbehrlich ist.
  • DER AREG-Regler stellt eine selbständige, dem Regelmotor 13 vorgeschaltete Regelelektronik dar. Der vom Mikro­computer 17A vorgegebene Sollwert wird in der Regel­elektronik mit dem Tacho-Istwert 20 verglichen, die Differenz verstärkt und über die Leistungskreise dem Motor zugeführt. Die Regelelektronik 17B arbeitet als Spannungsdosierung und führt dem Motor nur so viel Spannung 22 zu, wie zum Aufbringen des geforderten Drehmomentes und Einhalten der Drehzahl erforderlich ist.
  • Die Vorgänge im Klemmspalt-Bereich 23 werden durch das Zusammenwirken der Speisewalze 9 und der Speiseplatte 10 definiert, indem in diesem Bereich die Fasermatte 15 aus der ursprünglichen Dicke D auf eine Dicke (nicht gezeigt) zusammengepreßt wird, welche diese unmittelbar vor dem Verlassen des Bereiches 23 aufweist. Der Klemm­spalt-Bereich 23 endet somit an der als Faserabgabe­kante 24 bezeichneten Kante der Speiseplatte 10, an welcher die Fasermatte 15 nicht mehr durch die Speise­platte 10 geklemmt wird.
  • Die Drehrichtungen der Speisewalze 9, des Briseurs 3, des Tambours 4 und der Dofferwalze 6 sind je mit den Pfeilen U gekennzeichnet. Entsprechend diesen Drehrich­tungen wandert das Fasermaterial durch die Karde.
  • Mit Hilfe der von der Regelung bewirkten Drehzahl-Varia­tionen der Speisewalze 9 werden Ungleichheiten in der Dichte der Fasermatte 15 im Klemmspaltbereich 23 beim Übergang der Fasermatte von der Speiseplatte 10 an eine Vorreißerwalze 3 ausgeglichen.
  • Fig. 2 zeigt in vergrösserter Darstellung und etwas de­taillierter das Fasereinspeisemittel 2 von Fig. 1, wes­halb dieselben Elemente mit denselben Bezugszeichen ver­sehen sind.
  • Aus dieser Figur ist ersichtlich, dass die Schwenkachse 11 in einem stationären, zum Maschinengehäuse 25 (nur andeutungsweise mit einer Schraffierung gezeigt) gehö­renden Lagergehäuse 26 aufgenommen ist.
  • Ebenfalls am Maschinengehäuse 25 ist ein Anschlag 27 befestigt, welcher verhindert, dass die Speiseplatte 10 bei fehlender Fasermatte 15 auf der Speisewalze 9 aufliegt.
  • Ebenso ist ein die Stellschraube 12 aufnehmender Träger 28 und der Getriebemotor 13 am Maschinengehäuse 25 befestigt.
  • Fig. 3 zeigt eine Variante 2.1 des Fasereinspeisemittels von Fig. 1 und 2, so dass dieselben Elemente mit den­selben Bezugszeichen versehen sind.
  • Diese Variante weist eine unterhalb der Speisewalze 9, mit Blick auf Fig. 3 gesehen, angeordnete Speiseplatte 29 auf, welche mittels einer in einem am Maschinenge­häuse 25 befestigen Lagergehäuse 30 aufgenommenen Schwenkachse 31 schwenkbar gelagert ist.
  • Eine Stellschraube 32 begrenzt die Schwenkbewegungen der Speiseplatte 29 in einer Richtung weg von der Speise­walze 9, während ein Anschlag 33 verhindert, dass die Speiseplatte 29 in einer Bewegungsrichtung gegen die Speisewalze 9 in Berührung mit dieser Walze gelangen kann, wobei die letztgenannte Bewegungsrichtung der Speiseplatte 29 durch eine Druckfeder 34 hervorgerufen wird.
  • Die Stellschraube 32 wird mittels eines Trägers 35 und die Feder 34 mittels eines Trägers 36 je vom Maschinen­gehäuse 25 aufgenommen.
  • Der Anschlag 33 ist die Endfläche einer Zufuhrplatte 37, welche ebenfalls am Maschinengehäuse 25 befestigt ist.
  • Der Klemmspaltbereich 23.1 entspricht dem Klemmspalt­bereich 23 von Fig. 1 und 2.
  • Im folgenden werden mit Hilfe der weiteren Figuren Mess­mittel definiert, welche verwendet werden, um das vom Einspeisemittel 2 abgegebene Signal 16 zu erzeugen.
  • Die Fig. 4, 8, 12, 16, 20 und 24 zeigen Elemente des Einspeisemittels von Fig. 2, während die Fig. 6, 10, 14, 18 und 22 Elemente des Einspeisemittels von Fig. 3 auf­weisen. Dementsprechend sind in den genannten Figuren dieselben Elemente mit denselben Bezugszeichen versehen.
  • Aus dem in Fig. 5 dargestellten Grundriss von Fig. 4 ist die Speiseplatte 10, die Schwenkachse 11 und das Lagergehäuse 26 sowie ein zweites, die Schwenkachse 11 ebenfalls aufnehmendes Lagergehäuse 26.1 gezeigt.
  • Die Speiseplatte 10 weist zwei Lagerschenkel 38 auf, mittels welchen die Speiseplatte 10 an der Schwenkachse 11 schwenkbar gelagert ist.
  • In den Zwischenräumen, zwischen den Lagerschenkeln 38 und den Lagergehäusen 26 resp. 26.1, weist die Schwenk­achse 11 je eine Fläche 39 (Fig. 34 und 35)) für die Auf­nahme von je einem Dehnmeßstreifen 90 auf. Dabei sind diese Dehnmeßstreifen 90 derart angeordnet, daß diese je ein der Größe einer im Betrieb an der Speiseplatte 10 hervorgerufenen Kraft F (Fig. 4, 33 bis 35) entspre­chendes Signal erzeugen, wobei beide Signale 16A, 16B im Mittelwertbildner 16C (hier nicht gezeigt) in das früher erwähnte Signal 16 umgewandelt werden.
  • Die Kraft F wird bestimmt durch zwei Kraftkomponenten zusammen, und zwar einerseits aus einer Kraftkomponente, welche aus den von der Fasermatte im Keilspalt zwischen Speiseplatte und Speisewalze erzeugten Druckkräfte her­vorgerufen wird und andererseits aus einer Kraftkompo­nente, die durch die im Keilspalt auftretenden Reib­kräfte entsteht.
  • Die gesamte resultierende Kraft FR (ist gleich Druck­kraft + Reibkraft) kann in zwei Komponenten aufgelöst werden, nämlich eine horizontale Komponente FH und eine vertikale Komponente FV. Die vertikale Kraftkomponente ist verhältnismäßig klein, da die entsprechenden Bei­träge der Druck- und Reibungskräfte in entgegengesetzten Richtungen zeigen. Somit ändert sich diese Komponente nur wenig bei Änderung der Dichte der Faservorlage. Bei der horizontalen Kraftkomponente dagegen summieren sich die entsprechenden Beiträge der Druck- und Reibungs­kräfte, so daß hier eine ausgeprägte Abhängigkeit gege­ben ist zwischen FM und der Dichteänderung der Faser­vorlage im Klemmspaltbereich. Diese Abhängigkeit wird erfirdungsgemäß ausgenutzt, indem die Dehnmeßstreifen 90 ebenfalls im wesentlichen in einer horizontalen Ebene ge­legt sind und somit Dichteänderungen der Faservorlage im Klemmspaltbereich am empfindlichsten ermitteln.
  • Die optimale Richtung der Kraft F ist in etwa horizontal und kann durch Versuche ermittelt werden. Eine Annähe­rung an diese optimale Richtung ist jedoch genug, um eine feinfühlige Messung durchzuführen.
  • Mit Fig. 33 wird gezeigt, daß die auf die Schwenkachse 11 wirkende Kraft F zwar in etwa derselben Richtung, jedoch nicht unbedingt in derselben Ebene liegen soll wie die Kraft FH.
  • Diese Art der Messung stellt aber auch einen wesentli­chen Unterschied zum Stand der Technik dar, bei dem eine relative Bewegung zwischen Speiseplatte und Speise­zylinder für die Messung benutzt wird. Im letzteren Fall steigen zwar die Druckkräfte mit steigender Dichte der Faservorlage, es steigen aber auch die Reibungskräfte, welche aufgrund der unentbehrlichen Krümmung der Speise­platte um den Speisezylinder herum gegen die Druck­kräfte arbeiten, so daß die Messung nicht feinfühlig durchgeführt werden kann. Beim Stand der Technik ist es auch nicht möglich dieses Problem dadurch zu überwin­den, daß die relative Bewegung in der horizontalen Ebene gemessen wird;hier ist eine relative Bewegung durchaus unerwünscht, da die sich ändernde Breite des Klemm­spaltes die Steuerung der Geschwindigkeit des drehbaren Speisezylinders wesentlich erschweren würde.
  • Natürlich ist die horizontale Richtung nur dann die be­vorzugte Richtung für die Kraftmessung, wenn die Karde so ausgelegt wird, wie in der Fig. 1. Bei einer anders ausgelegten Winkelstellung zwischen Fasereinspeisemittel 2 und Vorreißerwalze 3, (d.h. etwa die Neigung einer Ebene, die die Drehachsen der Speisewalze 9 der Vor­reißerwalze 3 verbindet, zu der horizontalen Ebene) müßte die Kraftrichtung entsprechend gewählt werden.
  • Mit den Figuren 34 und 35 wird vergrößert und damit detaillierter als mit Fig. 5 gezeigt, daß die Fläche 39 mit den Dehnmeßstreifen 90 die ebene Grundfläche einer Bohrung 91 ist und daß mittels einer weiteren, gegenüber der vorgenannten, spiegelbildlich angeordne ten Bohrung 92 ein Steg 93 als schwächste Stelle ent­steht. Diese Meßpraxis ist bekannter Stand der Tech­nik und wird beispielsweise von der Firma Reglus in Adliswil, Schweiz, angewendet.
  • Im weiteren zeigt Fig. 35 die infolge der Kraft F ent­stehenden Kompensationskräfte FK1 und FK2. Dabei wirken die Kräfte F und FK1 derart, daß die Dehnmeßstreifen 90 im wesentlichen die Querkräfte im Steg 93 wiedergeben.
  • Die vorgenannten Kräfte sind dabei weder in der rich­tigen Proportion noch in der genauen Richtung darge­stellt.
  • Die vorbeschriebene Kraftmeßmethode gilt ebenfalls für die noch zu beschreibenden Elemente der Figuren 6 und 7.
  • Die Fig. 7 zeigt als Grundriss von Fig. 6 die Speise­platte 29, die Schwenkachse 31 und das Lagergehäuse 30 sowie ein zweites, die Schwenkachse 31 ebenfalls auf­nehmendes Lagergehäuse 30.1.
  • Die Speiseplatte 29 weist zwei die Schwenkachse 31 auf­nehmende Lagerschenkel 40 auf.
  • In analoger Weise, wie für die Fig. 4 und 5 beschrieben, weist die Schwenkachse 31 in den Zwischenräumen, zwi­ schen den Lagerschenkeln 40 und den Lagergehäusen 30 resp. 30.1, je eine Fläche 39 für die Aufnahme von je einem Dehnmessstreifen (nicht gezeigt) auf.
  • Dabei sind auch für diese Variante die Dehnmessstreifen derart angeordnet, dass diese je ein der Grösse einer im Betrieb an der Speiseplatte 29 hervorgerufenen Kraft F.1 (Fig. 6) entsprechendes Signal erzeugen, wobei bei­de Signale in einem Mittelwertbildner (nicht gezeigt) in das früher erwähnte Signal 16 umgewandelt werden.
  • Die Kraft F.1 baut sich in analoger Weise auf wie die für die Fig. 4 und 5 beschriebene Kraft F.
  • Ebenfalls wird die optimale Richtung der Kraft F.1 durch Versuche ermittelt, wobei eine Annäherung an die­se optimale Richtung ebenfalls genügend genau ist.
  • Die folgenden Fig. 8 und 9, 12 und 13, 16 und 17, 20 und 21 sowie 24 und 25 zeigen mit Ausnahme des Messmit­tels zur Ermittlung des Signals 16 dieselben Elemente wie sie mit den Fig. 4 und 5 gezeigt wurden, weshalb die gleichen Bezugszeichen für dieselben Elemente verwendet werden. Dasselbe gilt für die folgenden Fig. 10 und 11, 14 und 15, 18 und 19 sowie 22 und 23 bezüglich der in den Fig. 6 und 7 gezeigten Elemente.
  • Das Messmittel der Fig. 8 und 9 ist eine der Stell­schraube 12 derart zugeordnete Kraftmessdose 41, dass diese ein der Grösse einer Kraft F.2 (Fig. 8) entpre­chendes Signal 16 abgibt. Dabei ist diese Kraft F.2 eine aus den im Betrieb von der im genannten Klemmspalt­bereich 23 vorhandenen Fasermatte 15 (in Fig. 8 nicht gezeigt) erzeugten Kräfte resultierende Kraft, welche in Richtung der Längsachse (nicht gezeigt) der Stell­schraube 12 wirkt. Die Stellschraube 12 ist in der Mitte der Länge L der Speiseplatte 10 angeordnet. Der horizontale Abstand H, mit Blick auf Fig. 8 gesehen, der genannten Längsachse bis zur Faserabgabe 24 ist nicht besonders kritisch, trotzdem ist ein möglichst kleiner Abstand H anzustreben.
  • Dasselbe gilt für eine der Stellschraube 32 (Fig. 10) zugeordneten Kraftmessdose 41.1, auf welche eine Kraft F.3 analog zur Kraft F.2 der Fig. 8 wirkt. Ebenfalls ist die Stellschraube 32 in der Mitte der Länge L und mit einem horizontalen Abstand H.1, mit Blickrichtung auf Fig. 10 gesehen, von einer Faserumlenknase 44 an der Speiseplatte 29, bis zu der in der Richtung der Längs­achse (nicht gezeigt) der Stellschraube 32 wirkenden Kraft F.3, angeordnet.
  • Die Fig. 12 resp. 13 sowie 14 resp. 15 zeigen je eine Variante in der Anwendung von Kraftmessdosen zur Er­mittlung der durch die Dichte der Fasermatte im Keil­spaltbereich 23 resp. 23.1 (in den Fig. 12 und 14 nicht gezeigt) im Betrieb erzeugten Kraft.
  • Dazu weist die Speiseplatte 10 der Fig. 12 und 13 in der dem Briseur 3 (Fig. 2) zugewandten Stirnseite 42 eine auf der ganzen Länge L (Fig. 13) der Speiseplatte 10 durchgehende, eine Tiefe T und eine Höhe B (Fig. 12) aufweisende Nute 43 auf. Die Höhe B ist dabei derart gewählt, dass Kraftmessdosen 41.2 spielfrei in die Nute 43 in eine mit Fig. 12 und 13 gezeigte Lage eingeschoben und festgehalten (nicht gezeigt) werden können.
  • Im Betrieb erzeugt die sich im Keilspalt zwischen der Speiseplatte 10 und der Speisewalze 9 befindliche Faser­matte 15 (in Fig. 12 nicht gezeigt) Kräfte, welche die Tendenz haben, einen sich zwischen der Nute 43 und der Faserabgabekante 24 befindlichen Speiseplattenteil 60 um einere innere Nutenkante 61 in einer Richtung R zu schwenken. Aus diesen Kräften resultiert eine über die ganze Länge L wirkende Kraft F.4, welche in den Kraft­messdosen 41.2 ein entsprechendes Signal erzeugt. Die Signale der einzelnen Kraftmessdosen werden in einem Mittelwertbildner (nicht gezeigt) zum Signal 16 gemit­telt.
  • Die mit den Fig. 14 und 15 gezeigte Variante funktio­niert in bezug auf die Erzeugung des Signals 16 im we­sentlichen gleich wie mit Bezug auf die Fig. 12 und 13 beschrieben, weshalb die für das Erzeugen des Signals 16 notwendigen Elemente mit denselben Bezugszeichen ver­sehen sind wie in den Fig. 12 und 13, mit Ausnahme der Kraft F.5, welche schon wegen der unterschiedlichen Art der Faserübergabe über die Nase 44 der Speiseplatte 29 an den Briseur 3 eine andere Grösse aufweist als die Kraft F.4 von Fig. 12, in welcher die Fasern im soge­nannten Gleichlauf von der Speisewalze 9 an den Briseur 3 übergeben werden. Der Gleichlauf entsteht dabei da­durch, dass die Speisewalze 9 und der Briseur 3 an der Faserübergabestelle dieselbe Bewegungsrichtung aufweisen (siehe Figur 1). Es können jedoch noch andere Faktoren eine Rolle in der Bildung der Kraftkomponente F.5 spie­len, wie beispielsweise die Form der Speiseplatte 10 resp. 29 im Bereich 23 resp. 23.1 sowie der Abstand der Nutenkante 61 von der die Fasermatte 15 führenden Flä­che der Speiseplatte 10 resp. 29. Ebenso ist die Er­ findung nicht auf die in den Figuren 13 und 15 gezeigte Anzahl und Anordnung der Kraftmessdosen eingeschränkt. Es versteht sich, dass z.B. je nach Festigkeit des sich von der Nute 43 bis zur Faserabgabekante 24 (Fig. 12) resp. bis zur Nase 44 (Fig. 14) erstreckenden Speise­plattenteiles eine, zwei oder mehrere Kraftmessdosen 41.2 vorgesehen werden können.
  • In den Fig. 16 und 17 besteht das Messmittel aus drei Kraftmessdosen 41.3, welche in einer in der Speiseplatte 10 eingelassenen, im Klemmspaltbereich 23 (Fig. 1 und 2) in den Klemmspalt mündenden Nute 45 angeordnet sind.
  • Um die von der sich im Klemmspalt befindlichen Fasermat­te erzeugten, auf der ganzen Länge L wirkenden Kraft­komponente F.6 auf die Kraftmessdosen 41.3 zu übertragen, werden diese Kraftmessdosen durch einen Kraftübertra­gungsbalken 46 abgedeckt, welcher die Nute 45 völlig und ohne störende Durchbiegung der Form der Speiseplatte ganz angepasst abschliesst.
  • Die von den einzelnen Kraftmessdosen 41.3 abgegebenen Signale werden in einem Mittelwertsbildner (nicht ge­zeigt) in das Signal 16 umgewandelt.
  • Die Verteilung der genannten Kraftmessdosen in der Nu­te 45 ist im wesentlichen wie mit Fig. 17 gezeigt. Es versteht sich jedoch, dass die Anzahl der Kraftmessdosen nicht auf die drei gezeigten eingeschränkt ist. Beispiels­weise kann bei einem mit entsprechender Festigkeit aus­gelegten Kraftübertragungsbalken mit nur zwei Kraftmess­dosen gearbeitet werden, während, wenn eine feinere Ermittlung der Kraftkomponenten über die Länge L (Fig. 17) der Speiseplatte 10 erfasst werden soll, eine grös­sere Anzahl Kraftmessdosen verteilt werden kann.
  • Das Messmittel der Fig. 18 und 19 setzt sich aus einer in die Speiseplatte 29 eingefügten Membrane 47, einem Druckumwandler 48 und einem die Membrane 47 mit dem Druckumwandler 48 verbindenden Druckflüssigkeits-System 49 zusammen.
  • Eine der Kraft F.6 von Fig. 16 analoge Kraftkomponente F.7 (Fig. 18) verursacht einen Druck auf die Membrane 47, wodurch eine Kraftübertragung über das Druckflüssig­keits-System 49 an den Druckumwandler 48 übermittelt wird, welcher ein der Kraft F.7 entsprechendes Signal 16 erzeugt.
  • Das Messmittel der Fig. 20 und 21 beruht auf der Erkenntnis, dass beim Einführen der Fasermatte 15 in den Keilspalt zwischen die Speiseplatte 10 und die Speisewalze 9, d.h. in den Keilspaltbereich 23, infolge des sich zunehmend verengenden Klemmspaltes Luft aus der Fasermatte verdrängt wird.
  • Dem Verdrängen dieser Luft setzt sich der Widerstand der Fasermatte selbst entgegen, so dass in der Faser­matte 15 in Richtung Faserabgabekante 24 ein zunehmender Ueberdruck in der Fasermatte entsteht, wobei der Wider­stand der Dichte der Fasermatte und der zu verdrängenden Luftmenge entsprechend unterschiedlich ist.
  • Dieser Ueberdruck wird mit dem mit den Fig. 20 und 21 gezeigten Messmittel erfasst, indem eine Messnute 50 in die Speiseplatte 10 eingelassen ist, die innerhalb der Speiseplatte 10 über eine Druckleitung 51 und eine an die Speiseplatte 10 angeschlossene Druckleitung 52 mit einem Druckumwandler 53 verbunden ist. Dieser Druck­umwandler 53 wandelt den in der Messnute 50 ermittelten Ueberdruck in das Signal 16 um.
  • Wie aus Fig. 21 ersichtlich, ist die Messnute 50 nicht über die ganze Länge L durchgehend, d.h. die Länge L.1 der Messnute 50 ist kürzer als die Länge L der Speise­platte 10, so dass es sich bei der Messnute 50 um eine sich im Klemmspaltbereich 23 befindliche, lediglich gegen den Klemmspalt geöffnete Nute handelt.
  • Wie in Fig. 20 gezeigt, bildet die Messnute einen spitzen Winkel α mit einer gedachten Ebene E, welche als Tangentialebene die Mündungskante 54 der Wand 55 der Nute 50 beinhaltet. Durch diese Anordnung wird vermie­den, dass ein Faserstau in der Nute 50 entsteht. Der Winkel α weist im Maximum 30 Winkelgrade auf.
  • Die Fig. 22 und 23 zeigen eine der Messnute 50 der Fig. 20 und 21 analoge Messnute 50.1 mit einer daran ange­schlossenen Druckleitung 51.1 sowie einer Druckleitung 52.1.
  • Im Unterschied zum Messmittel der Fig. 20 und 21 wird mit dem Messmittel der Fig. 22 und 23 nicht nur der Druck gemessen, welcher wie beschrieben durch das Aus­pressen der Luft aus der Fasermatte entsteht, sondern es wird zusätzlich noch aus einer Druckluftquelle 56 eine gleichbleibende Druckluftmenge mittels der Mess­nute 50.1 in die sich verdichtende Fasermatte gepresst. Das Durchsetzen dieser vorgegebenen Druckluftmenge durch die Fasermatte geschieht gegen den Widerstand der Faser­matte, sodass ein diesem Widerstand entsprechender Druck von den Druckleitungen 51.1 und 52.1 an einen an die Druckleitung 52.1 angeschlossenen Druckwandler 53.1 übertragen wird.
  • Da der Widerstand mit der Dichte der Fasermatte im Klemmspaltbereich 23 ändert, ändert auch der Druck in den Leitungen 51.1 und 52.1. Der Druckumwandler 53.1 wandelt diese Druckvariationen in das Signal 16 um.
  • Wie aus Fig. 22 ersichtlich, weist auch die Messnute 50.1 den für Fig. 20 beschriebenen Winkel α auf.
  • Die Fig. 24 und 25 zeigen eine Variante des Messmittels von Fig. 22 und 23, indem die von der Druckluftquelle 56.1 gleichbleibende Druckluftmenge mittels einer Ein­blasnute 58 in die sich im Keilspaltbereich 23 befind­liche Fasermatte eingeblasen wird. Diese Luft wandert in dieser Fasermatte in einer gegenüber der Drehrichtung der Speisewalze umgekehrten Richtung W bis sie durch eine Entlüftungsnute 59 und einer daran angeschlossenen Entlüftungsleitung 57 in die Atmosphäre entweichen kann.
  • Der Druckleitung 52.2 ist ein Druckwandler 53.2 ange­schlossen. Dieser Druckwandler 53.2 wandelt den in der Druckleitung 52.2 bestehenden Druck in das Signal 16 um. Mit dem Abstand M zwischen der Einblasnute 58 und der Entlüftungsnute 59 kann ein Widerstandsbereich festgelegt werden.
  • Die Figuren 26 und 27 zeigen insofern eine Variante 2.2 des Fasereinspeisemittels von Fig. 2, als die Speise­platte 10 nicht nur um die Schwenkachse 11 schwenkbar ist, sondern dass diese zusätzlich noch um eine Schwenk­achse 62 schwenkbar ist, welche koaxial mit der Dreh­achse der Speisewalze 9 liegt. Diese Schwenkbarkeit ist schematisch mit dem Radiuspfeil S dargestellt.
  • Um diese Schwenkbarkeit zu ermöglichen, ist ein Halte­bügel 63 vorgesehen, welcher zwei Schenkel 64 aufweist (in Fig. 26 nur einer sichtbar), in welchen die Schwenk­achse 11 gelagert ist.
  • Diese Schenkel sind mit einem unter der Speiseplatte 10 (mit Blick auf Fig. 26 gesehen) durchgehenden Steg 65 verbunden, der zur Aufnahme des Anschlages 27 dient.
  • Im weiteren weisen die Schenkel 64 je einen Führungs­schlitz 66 auf, dessen untere Führungsfläche 67 (mit Blick auf Fig. 26 gesehen) eine Krümmung mit dem Radius S aufweist. Die der unteren Führungsfläche 67 gegenüber­liegende obere Führungsfläche 68 ist parallel zur Füh­rungsfläche 67 vorgesehen.
  • Diese Führungsschlitze 66 dienen je zur Aufnahme von zwei Führungsbolzen 69, die in einem Maschinengehäuse­teil 70 fest angeordnet sind. Der Abstand (nicht gekenn­zeichnet) dieser beiden Führungsbolzen 69 ist im Ver­hältnis zur Länge (nicht gekennzeichnet) des Führungs­schlitzes 66 derart gewählt, dass der Haltebügel 63 eine gegebene Schwenklänge (nicht gekennzeichnet) um die Schwenkachse 62 schwenkbar ist.
  • Um den Haltebügel 63 in einer gewählten Schwenkposition festzuhalten, wird dieser mittels zweier im Maschinen­gehäuseteil eingeschraubte und durch den Führungsschlitz 66 ragende Schrauben 71 festgehalten.
  • Im weiteren ist die Stellschraube 12 an einem gegen die Vorreisserwalze 3 gerichteten Endteil 63.1 des Halte­bügels 63 angeordnet.
  • Es versteht sich, dass auch mit dieser Variante alle mit den Fig. 4 bis 25 gezeigten Elemente, um das Signal 16 zu erzeugen, kombiniert werden können. Auf eine Wieder­holung der Anwendung dieser Elemente im Zusammenhang mit dieser Variante wird deshalb verzichtet.
  • Die Fig. 28 und 29 zeigen eine Variante 2.3 des Einspeise­mittels von Fig. 3, indem eine Speiseplatte 72 fest mit dem Maschinengehäuse 25 verbunden ist, während die Spei­sewalze 9 in einem gegebenen Bereich bewegbar ist.
  • Diese Bewegbarkeit der Speisewalze 9 ist dadurch gege­ben, dass die auf beiden Seiten (mit Fig. 28 nur eine gezeigt) der Speisewalze 9 herausragenden freien Enden 73 der Drehachse der Speisewalze je in einer Lagerbüchse 74 aufgenommen sind, die zwischen zwei stationären Gleit­führungen 75 resp. 76 verschiebbar geführt sind.
  • Der Verschiebebereich der Speisewalze 9 ist einerseits durch einen stationären Anschlag 77 sowie durch eine Stellschraube 78 begrenzt, welche in einem Träger 79 aufgenommen ist, der seinerseits am Maschinengehäuse 25 befestigt ist. Der Anschlag 77 hat dieselbe Funktion wie der früher beschriebene Anschlag 27.
  • Im Betrieb wird die Fasermatte 15 auf der Speiseplatte 72 gleitend von der Speisewalze 9 in den Keilspalt zwi­schen Speisewalze 9 und Speiseplatte 72 bewegt, wodurch die Speisewalze 9 aus ihrer Ausgangsposition, in welcher die Lagerbüchsen 74 je auf dem entsprechenden Anschlag 77 aufliegen, bis sie in die Betriebsposition hochgehoben werden, in welcher die Lagerbüchsen 74 je an den Stellschrauben 78 anliegen.
  • Es versteht sich, dass mit der mit diesen Figuren ge­zeigten Variante die mit den Fig. 8 bis 25 gezeigten Elemente zur Erzeugung des Signales 16 verwendet werden können.
  • Die Fig. 30 zeigt eine Anwendung des Einspeisemittels von Fig. 1 in einer Rotor-Offenend-Spinnmaschine.
  • Da es sich bei diesen Spinnmaschinen um ein an sich bestbekanntes Verfahren handelt, sind nur die wesentli­chen Elemente schematisch angedeutet, um den Zusammen­hang zwischen dem Einspeisemittel und der Spinnmaschine zu zeigen. Dementsprechend sind bisher beschriebene Elemente mit denselben Bezugszeichen versehen.
  • Im Betrieb übergibt die Speisewalze 9 ein Faserband 15.1 an eine Oeffnerwalze 80, welche diese vereinzelten Fa­sern einem Faserförderkanal 81 übergibt, der diese Fa­sern in einen sich um eine Drehachse 82 drehenden Rotor 83 speist. In diesem Rotor 83 wird in an sich bekannter Weise ein Garn 84 gebildet, welches durch ein Abzugs­walzenpaar 85 abgezogen wird.
  • Das Verzugverhältnis in der mit dieser Figur gezeigten Spinnmaschine liegt zwischen der Umfangsgeschwindigkeit der Speisewalze 9, gegeben durch die Drehzahl der Ge­triebemotor-Welle 21 und durch die Umfangsgeschwindig­keit der Abzugswalzen 85, gegeben durch ihre das Dreh­zahl-Signal 19.1 erzeugende Drehzahl der Abzugswalzen.
  • Im weiteren versteht es sich, dass, trotzdem dieselben Elemente mit denselben Bezugszeichen versehen sind, in der Praxis die Dimensionen dieser Elemente unterschied­lich gross sein können, da eine Rotor-Offenend-Spinn­maschinen-Einheit eine wesentlich kleinere Textilmaschi­nen-Einheit ist, als die mit Fig. 1 schematisch gezeigte Karde.
  • Ebenso versteht es sich, dass die mit Fig. 3 gezeigte Einspeise-Einheit mit der mit Fig. 30 gezeigten Rotor­Offenend-Spinneinheit kombiniert werden kann.
  • Im weiteren ist es ebenfalls selbstverständlich, dass alle mit den Figuren 4 bis 27 gezeigten Varianten, um das Signal 16 zu erzeugen, mit der mit Fig. 30 gezeigten Rotor-Offenend-Spinnmaschinen-Einheit kombiniert werden können.
  • Mit der Fig. 31 ist eine weitere Anwendungsvariante gezeigt, indem das Einspeise-Element 2 analog zum Ein­speise-Element der Fig. 30 Fasern einer Oeffnerwalze 80 zuspeist.
  • Der Unterschied zur Textilmaschine von Fig. 30 liegt in Fig. 31 darin, dass es sich nicht um eine Rotor-Offen­end-Spinnmaschinen-Einheit, sondern um eine Friktions-­Offenend-Spinnmaschinen-Einheit handelt.
  • Dementsprechend sind dieselben Elemente mit denselben Bezugszeichen versehen.
  • Im Betrieb speist die Speisewalze 9 das Faserband 15.1 an die Oeffnerwalze 80, welche die vereinzelten Fasern einem daran angeschlossenen Faserförderkanal 86 über­gibt. Mit Hilfe dieses Faserförderkanales 86 werden die frei fliegenden Fasern einer Friktions-Spinntrommel 87 übergeben, auf welcher sich innerhalb eines Garnbildungs­bereiches G ein Garn 88 bildet, welches vom einem Ab­zugswalzenpaar 89 abgezogen wird.
  • In Fig. 31 ist der Einfachheit halber nur eine Friktions­spinntrommel 87 gezeigt, es ist jedoch an sich bekannt, dass in der Regel bei diesem Spinnverfahren eine Gegen­trommel verwendet wird, welche parallel zur gezeigten Trommel vorgesehen ist.
  • Im weiteren ist es, analog zur Beschreibung für Fig. 30, selbstverständlich, dass auch die mit Fig. 3 gezeigte Art von Einspeiseelement mit einer solchen Friktions-­Spinneinheit verwendet werden kann und dass sämtliche mit den Figuren 4 bis 27 gezeigten Varianten verwendet werden können, um das Signal 16 zu erzeugen.
  • Die Fig. 32 zeigt ein Streckwerk, in welchem eine Variante 2.4 des mit Fig. 1 gezeigten Einspeisemittels ver­wendet wird. In dieser Variante wird anstelle der in Fig. 1 gezeigten Speiseplatte 10 eine Gegenwalze 101 verwendet. Diese Gegenwalze 101 bildet zusammen mit der Speisewalze 9 den Klemmspalt.
  • Im Gegensatz zur Speisewalze 9 ist die Gegenwalze 101 nicht angetrieben, d.h. ist frei drehend und wird durch die zwischen der Gegenwalze und der Speisewalze liegende Fasermatte 15 geschleppt.
  • Die Gegenwalze 101 ist schwenkbar an einem Schwenkhebel 102 drehbar befestigt.
  • Die weiteren, aus der Beschreibung für Fig. 1 bekannten Elemente, welche in dieser Variante in analoger Weise verwendet werden können, sind dementsprechend mit den­selben Bezugszeichen versehen. Daraus folgt, dass bei­spielsweise der Schwenkhebel 102 mittels der Schwenk­achse 11 und dem Lagergehäuse 26 schwenkbar gelagert ist.
  • Als Messmittel, um das Signal 16 zu erzeugen, wird die mit den Fig. 8 und 9 beschriebene Kraftmessdose 41 ver­wendet. Es wird deshalb auf die Beschreibung für die Fig. 8 und 9 verwiesen.
  • Die mit den Bezugszeichen 103 und 104 gekennzeichneten Walzenpaare sind aus der Streckwerktechnik bestens be­kannt und deshalb nicht weiter beschrieben. Es sei le­diglich im Zusammenhang mit der Funktion des Einspeise­mittels erwähnt, dass die beiden unteren Walzen (mit Blick auf Fig. 32 gesehen) der Walzenpaare 103 und 104 mit einer fixen, den Verzug im Streckwerk ergebenden Drehzahl angetrieben werden. Die oberen Walzen der Wal­zenpaare 103 und 104 sind in analoger Weise zur Walze 104 ebenfalls von der Fasermatte geschleppt.
  • Das Verzugsverhältnis der mit dieser Figur gezeigten Spinnmaschine liegt zwischen der Umfangsgeschwindigkeit der Speisewalze 9, gegeben durch die Drehzahl der Ge­ triebemotorwelle 21 und durch die Umfangsgeschwindigkeit der unteren Walze 104, gegeben durch ihre das Drehzahl­signal 19.2 erzeugende Drehzahl. Das Signal 19.2 hat dieselbe Funktion wie die Signale 19.1 der Fig. 30 und 31 sowie das Signal 19 der Fig. 1.
  • Elemente, welche dieselben Funktionen aufweisen, wie bereits früher beschriebene, weisen dementsprechend dieselben Bezugszeichen auf.
  • Ein Vorteil des erfindungsgemässen Festlegens des Klemm­spaltes, um die Dichte der dazwischenliegenden Faser­matte 15 resp. des dazwischenliegenden Faserbandes 8 zu messen, liegt im Vergleich zu dem an sich bekannten Messen der durch die genannte Dichte veränderten Klemm­spaltweite darin, dass die Messignale infolge der inten­siven Kraftvariationen eine entsprechend grosse Amplitude aufweisen.
  • Ein weiterer Vorteil besteht darin, daß die den Weg­messungen innewohnende Hysteresis bei der Kraftmessung wegfällt.

Claims (29)

1. Verfahren zum Ausgleichen der Dichte einer mittels eines Einspeisemittels in eine Textilmaschine ge­speisten Fasermatte (15) resp. Faserband (15.1) durch Gewinnung eines von der Dichte der sich im Einspeisemittel (2; 2.1; 2.2; 2.3; 2.4) befindlichen Fasermatte (15) resp. Faserband (15.1) abhängigen Signales (16) und Verwendung dieses Signales (16) zur Beeinflussung der Einspeisegeschwindigkeit des Einspeisemittels (2; 2.1; 2.2; 2.3; 2.4),
dadurch gekennzeichnet,
dass das Einspeisemittel (2; 2.1; 2.2; 2.3; 2.4) ei­nen vorgewählten, im Betrieb gleichbleibenden Klemmspalt aufweist und dass das Signal (16) in Abhängigkeit der Faserdichte in diesem Klemmspalt gewonnen wird.
2. Verfahren nach Anspruch 1 oder 28,
dadurch gekennzeichnet,
dass das Einspeisemittel (2; 2.1; 2.2; 2.3; 2.4) ei­ne Speisewalze (9) und ein damit zusammenwirkendes Einspeiseelement (10, 29, 63, 72, 101) umfaßt und dass die Einspeisegeschwindigkeit die Drehzahl der Speisewalze (9) ist.
3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
dass das Einspeiseelement eine Speiseplatte (10, 29, 63, 72) beinhaltet.
4. Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
dass das Einspeiseelement eine frei drehende Gegen­walze (101) beinhaltet.
5. Verfahren nach Anspruch 1 oder 28,
dadurch gekennzeichnet,
dass das Signal (16) aus dem Widerstand gewonnen wird, welcher einem Luftstrom entgegengesetzt wird, der durch die sich im Klemmspalt befindliche Faser­matte (15) resp. Faserband (15.1) strömt.
6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet,
dass der Luftstrom durch das Verdrängen der Luft aus der sich gegen die engste Stelle des Klemm­spaltes bewegenden Fasermatte (15) resp. Faserband (15.1) erzeugt wird.
7. Verfahren nach Anspruch 6,
dadurch gekennzeichnet,
dass der Luftstrom zusätzlich noch durch eine durch die sich gegen die engste Stelle des Klemmspaltes bewegende Fasermatte (15) resp. Faserband (15.1) eingeblasene Luftstömung erzeugt wird.
8. Verfahren nach Anspruch 5,
dadurch gekennzeichnet,
dass das Signal (16) aus dem Widerstand eines Tei­les des sich im Klemmspalt befindlichen Wattenab­schnittes erzeugt wird.
9. Verfahren nach Anspruch 3 und 8,
dadurch gekennzeichnet,
dass der Wattenabschnitt in Umfangsrichtung der Speisewalze durch eine vorgegebene Strecke und durch die Länge der Speisewalze gegeben ist.
10. Verfahren nach Anspruch 1 oder 28,
dadurch gekennzeichnet,
dass das Signal aus einer durch die Faserdichte im Klemmspalt erzeugten Kraft gewonnen wird.
11. Verfahren nach Anspruch 10,
dadurch gekennzeichnet,
dass die Kraft mechanisch an ein Kraftmessmittel übertragen wird, in welchem en elektrisches Signal erzeugt wird.
12. Verfahren nach Anspruch 10,
dadurch gekennzeichnet,
dass die Kraft hydraulisch an ein Kraftmessmittel übertragen wird, in welchem ein elektrisches Si­gnal erzeugt wird.
13. Verfahren nach den vorangehenden Ansprüchen,
gekennzeichnet dadurch,
dass das Signal (16) in einer Steuerung (17) in ein die Drehzahl der Speisewalze (9) steuerndes Signal (22) ausgewertet wird.
14. Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
dass die Textilmaschine eine Karde resp. Krempel oder eine Offenend-Rotor-Spinnmaschine oder eine Offenend-Friktionsspinnmaschine ist.
15. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 oder 28,
      - mit einem Einspeisemittel (2; 2.1; 2.2; 2.3; 2.4), welches mindestens eine antreibbare, die Faser­ matte (15) resp. Faserband (15.1) in die Textil­maschine fördernde Speisewalze (9) und ein mit dieser Speisewalze zusammenwirkendes und dabei ei­nen Klemmspalt für die Fasermatte bildendes Ein­speiseelement (10, 29, 63, 72, 101) umfasst, sowie
      - mit einem Messmittel zur Ermittlung der Dichte der Fasermatte (15) im Klemmspalt und Abgabe ei­nes der Dichte entsprechenden Messignales (16),
dadurch gekennzeichnet,
      - dass die Speisewalze (9) oder
      - das Einspeiseelement (10, 29, 63, 72, 101) aus einer Ausgangsposition in eine Betriebsposition beweg­bar ist, welche durch
      - ein einstellbares Stellglied (12, 78) gegeben wird, während das Einspeiseelement (10, 29, 63, 72, 101) oder die Speisewalze (9) stationär ist, um im Betrieb einen gleichbleibenden Klemmspalt zwischen Speisewalze (9) und Einspeiseelement zu bilden.
16. Vorrichtung nach Anspruch 15,
dadurch gekennzeichnet,
dass das Einspeiseelement (10, 29, 63) eine um eine Schwenkachse (11, 31) schwenkbare Speiseplatte (10, 29) und das einstellbare Stellglied mindestens eine Stellschraube (12) umfasst, an welcher die Speiseplatte für die Begrenzung des Klemmspaltes im Betrieb ansteht.
17. Vorrichtung nach Anspruch 15,
dadurch gekennzeichnet,
      - dass das Einspeiseelement eine stationäre Spei­seplatte (72) beinhaltet und
      - dass die Speisewalze (9) aus einer Ausgangsposi­ tion in eine Betriebsposition bewegbar ist, welche durch ein einstellbares Stellglied (78) gegeben wird.
18. Vorrichtung nach Anspruch 15,
dadurch gekennzeichnet,
dass das Einspeiseelement eine um eine Schwenkachse (11) schwenkbare Gegenwalze (101) und das einstell­bare Stellglied mindestens eine Stellschraube (12) umfasst, welche die Schwenkbewegung der Gegenwalze (101) für die Begrenzung des Klemmspaltes begrenzt.
19. Vorrichtung nach Anspruch 16,
dadurch gekennzeichnet,
dass das Messmittel zwei Dehnmessstreifen (nicht gezeigt) sind, welche mit Abstand zueinander an der Schwenkachse befestigt sind und welche die durch die Speiseplatte in der Schwenkachse verur­sachte Querkraft ermitteln und ein entsprechendes elektrisches Signal (16) ergeben.
20. Vorrichtung nach Anspruch 16 oder 18,
dadurch gekennzeichnet,
dass das Messmittel mindestens eine Kraftmessdose (41, 41.1) ist, welche als Bestandteil der Stell­schraube (12, 12.1, 32) die im Klemmspalt erzeugte und an die Stellschraube (12, 12.1, 32) abgegebene Kraft ermittelt und ein entsprechendes elektrisches Signal (16) ergibt.
21. Vorrichtung nach Anspruch 16 oder 17,
dadurch gekennzeichnet,
dass das Messmittel mindestens eine Kraftmessdose (41.2) ist, welche derart in einer in der Speise­platte (10, 29) vorgesehene Nute (43) spielfrei eingeschoben ist, dass die im Klemmspalt erzeugte Kraft mindestens mit einem proportionalen Anteil an die Kraftmessdose (41.2) übertragen wird und diese dadurch ein entsprechendes elektrisches Si­gnal (16) ergibt.
22. Vorrichtung nach Anspruch 16 oder 17,
dadurch gekennzeichnet,
dass das Messmittel mindestens zwei Kraftmessdosen (41.3) sind, welche auf dem Grund einer in der Spei­seplatte (10) vorgesehenen, in den Klemmspalt mün­denden Nute (45) aufliegen und mit einem auf diesen Kraftmessdosen (41.3) aufliegenden Kraftübertragungs­balken (46) abgedeckt sind, welcher mit seiner ge­gen den Klemmspalt gerichteten Fläche einen Bestand­teil der den Klemmspalt bildenden Fläche der Speise­platte bildet, und zwar derart, dass die vom Kraft­übertragungsbalken (46) an die Kraftmessdosen (41.3) übertragene Kraft ein entsprechendes elektrisches Signal (16) ergibt.
23. Vorrichtung nach Anspruch 16 oder 17,
dadurch gekennzeichnet,
dass das Messmittel zum ersten eine Membrane (47) um­fasst, welche im wesentlichen über die Länge der Speiseplatte (29) in dieser in der den Klemmspalt bildenden Fläche integriert ist und zum zweiten einen Druckumwandler (48) beinhaltet, an welchen die von der Membrane (47) übernommene Kraft hydrau­lisch übertragen wird und welcher ein entsprechendes elektrisches Signal (16) abgibt.
24. Vorrichtung nach Anspruch 16 oder 17,
dadurch gekennzeichnet,
dass das Messmittel eine in der Speiseplatte (10) vorgesehene, in den Klemmspalt mündende, sich im wesentlichen über die Länge (L) der Speiseplatte erstreckende, parallel zur Schwenkachse (11) der Speiseplatte (10) angeordnete Nute (50), sowie einen mit dieser Nute verbundenen Druckumwandler (53) umfasst, wobei die Nute (50) mit der der Schwenk­achse zugewandten Nutenwand (55) mit der Klemm­spaltfläche der Speiseplatte (10) einen Winkel von maximal 30 Winkelgraden einschliesst und dass der Druckumwandler (53) ein dem Druck in der Nute entsprechendes Signal (16) abgibt.
25. Vorrichtung nach Anspruch 16 oder 17,
dadurch gekennzeichnet,
dass das Messmittel
      - eine in der Speiseplatte (29) vorgesehene, in den Klemmspalt mündende, sich im wesentlichen über die Länge (L) der Speiseplatte (29) erstreckende, parallel zur Schwenkachse (31) der Speiseplatte (29) oder zur Drehachse der Speisewalze (9) an­geordnete Nute (50.1),
      - sowie einen mit dieser Nute (50.1) verbundenen Druckumwandler (53.1),
      - sowie eine mit der Nute (50.1) verbundene Druck­luftquelle (56) mit gleichbleibender Druckluft­menge beinhaltet,
      - wobei die Nute (50.1) mit der der Schwenkachse (31) zugewandten Nutenwand (55.1) mit der Klemm­spalt-Fläche der Speiseplatte einen Winkel von maximal 30 Winkelgraden einschliesst und       - der Druckumwandler (53.1) ein dem Druck in der Nute (50.1) entsprechendes Signal (16) abgibt.
26. Vorrichtung nach Anspruch 16 oder 17,
dadurch gekennzeichnet,
dass das Messmittel eine erste und eine zweite, je in der Speiseplatte (10) vorgesehene, je in den Klemmspalt mündende, sich im wesentlichen über die Länge (L) der Speiseplatte (10) erstreckende, pa­rallel zur Schwenkachse (11) der Speiseplatte (10) angeordnete Nute umfasst, wobei die erste Nute eine Einblasnute (58) und die zweite eine Entlüftungs­nute (59) ist und beide Nuten mit ihrer der Schwenk­achse zugewandten Nutenwand mit der Klemmspalt-­Fläche der Speiseplatte einen Winkel von maximal 30 Winkelgraden einschliesst und,
dass die erste Nute mit einem vorgegebenen Abstand (M) entfernt von der zweiten Nute vorgesehen ist, sowie,
dass die erste Nute (58) mit einer Druckluftquelle (56.1) von gleichbleibender Luftmenge und mit ei­nem Druckumwandler (53.2) verbunden ist, der ein dem Druck entsprechendes Signal (16) abgibt, wäh­rend die zweite Nute (59) mit der Atmosphäre ver­bunden ist.
27. Vorrichtung nach den vorangehenden Ansprüchen 15 und 19 bis 26,
dadurch gekennzeichnet,
dass die Schwenkachse (11) der Speiseplatte (10) in einem vorgegebenen Bereich um die Drehachse (62) der Speisewalze (9) herum schwenk- und fest­stellbar ist.
28. Verfahren zur Gewinnung eines von der Dichte einer mittels eines Einspeisemittels in eine Textilma­schine gespeisten Fasermatte (15) resp. Faserband (15.1) abhängigen Signales (16) und Verwendung die­ses Signales (16) zur Beeinflussung der Einspeise geschwindigkeit des Einspeisemittels (2; 2.1; 2.2; 2.3; 2.4),
dadurch gekennzeichnet,
dass das Einspeisemittel (2; 2.1; 2.2; 2.3; 2.4) ei­nen vorgewählten, im Betrieb stationären Klemmspalt aufweist und dass das Signal (16) in Abhängigkeit der Faserdichte in diesem Klemmspalt gewonnen wird.
29. Verfahren nach Anspruch 3, dadurch gekennzeichnet,
daß das Signal nahe an, jedoch vor derjenigen Stelle festgestellt wird, an welcher das Einspeise­element die Fasermatte an das die Fasermatte übernehmende Element übergibt.
EP87118415A 1986-12-12 1987-12-11 Verfahren und Vorrichtung zum Ausgleichen der Dichte einer Fasermatte am Eingang einer Textilmaschine Revoked EP0275471B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4950/86 1986-12-12
CH495086 1986-12-12

Publications (2)

Publication Number Publication Date
EP0275471A1 true EP0275471A1 (de) 1988-07-27
EP0275471B1 EP0275471B1 (de) 1991-04-24

Family

ID=4285350

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87118415A Revoked EP0275471B1 (de) 1986-12-12 1987-12-11 Verfahren und Vorrichtung zum Ausgleichen der Dichte einer Fasermatte am Eingang einer Textilmaschine

Country Status (5)

Country Link
US (2) US4860406A (de)
EP (1) EP0275471B1 (de)
JP (1) JPS63309622A (de)
DE (1) DE3769625D1 (de)
IN (1) IN170276B (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289283A2 (de) * 1987-04-29 1988-11-02 Carding Specialists (Canada) Limited Steuerung von Karden
US5052080A (en) * 1988-06-23 1991-10-01 Maschinenfabrik Rieter, Ag Method and apparatus for controlling yarn preparation operations to enhance product uniformity
US5121523A (en) * 1989-02-14 1992-06-16 Machinenfabrik Rieter Ag Metering method and metering apparatus for dispensing predeterminable quantities of fiber flocks
US5247721A (en) * 1990-10-16 1993-09-28 Maschinenfabrik Rieter Ag Grid for the opening roll of a spinning machine
EP0754788A1 (de) * 1995-07-19 1997-01-22 Zellweger Luwa Ag Verfahren und Vorrichtung zur Vermeidung von Masseschwankungen in Fasermaterial
EP0754789A1 (de) * 1995-07-19 1997-01-22 Zellweger Luwa Ag Verfahren und Vorrichtung zur Erfassung der Masse von Fasermaterial in einer Spinnmaschine
DE19826070A1 (de) * 1998-06-12 1999-12-16 Truetzschler Gmbh & Co Kg Vorrichtung an einer Spinnereimaschine zum Herstellen eines Faserflockenvlieses, z. B. aus Baumwolle, Chemiefasern
CN112481750A (zh) * 2020-11-23 2021-03-12 舒城娃娃乐儿童用品有限公司 一种自动调节梳理密度的梳理装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN170275B (de) * 1986-12-12 1992-03-07 Rieter Ag Maschf
DE3827520A1 (de) * 1988-08-12 1990-02-15 Rieter Ag Maschf Abgesaugte gleichlaufspeisevorrichtung fuer eine karde
IT1236911B (it) * 1989-12-21 1993-04-26 Marzoli & C Spa Procedimento e dispositivo di alimentazione di materiale in fibre in una macchina di preparazione alla filatura, in particolare un apritoio
DE4018803A1 (de) * 1990-06-12 1991-12-19 Rieter Ag Maschf Verfahren und vorrichtung zur regelung eines oeffnungsvorganges, beispielsweise an einer karde
US5146651A (en) * 1990-12-21 1992-09-15 E. I. Du Pont De Nemours And Company Process and apparatus for tow cross-section measurement and control
DE4200394B4 (de) * 1991-03-19 2004-12-02 Trützschler GmbH & Co KG Vorrichtung zum Reinigen und Öffnen von in Flockenform befindlichem Fasergut z. B. Baumwolle, synthetischem Fasergut u. dgl.
DE4215682B4 (de) * 1991-06-04 2004-07-22 Rieter Ingolstadt Spinnereimaschinenbau Ag Verfahren und Vorrichtung zur Korrektur des Reguliereinsatzpunktes und der Regulierintensität
US5870890A (en) * 1995-07-19 1999-02-16 Zellweger Luwa Ag Method and apparatus for detecting the mass of fiber material in a spinning machine
US5915509A (en) * 1996-04-05 1999-06-29 Maschinenfabrik Rieter Ag Method and device for regulating the sliver in a card
US6581248B1 (en) 1997-01-23 2003-06-24 Maschinenfabrik Rieter Ag Carding machine with drawing rollers at the outlet
CZ284124B6 (cs) * 1997-02-07 1998-08-12 Rieter Elitex A.S. Způsob výroby vláken a zařízení k provádění tohoto způsobu
DE59811509D1 (de) 1997-12-23 2004-07-08 Rieter Ag Maschf Elastische Speisemulde
ITMI981618A1 (it) * 1998-07-14 2000-01-14 Marzoli & C Spa Dispositivo e procedimento equalizzatore della alimentazione delle fibre in materassino ad una carda
DE19950901A1 (de) * 1998-11-18 2000-05-25 Truetzschler Gmbh & Co Kg Vorrichtung zum Messen der Dicke und/oder der Ungleichmäßigkeit von Faserbändern
DE102004012236A1 (de) * 2004-03-12 2005-09-22 Trützschler GmbH & Co KG Vorrichtung an einer Spinnereivorbereitungsmaschine, z.B. Flockenspeiser, mit einer Speiseeinrichtung
CN101104966B (zh) * 2006-07-16 2010-12-29 苏拉(金坛)纺织机械有限公司 梳棉机棉层厚度精确采集装置
CA2901182C (en) 2013-02-20 2019-04-02 Provo Craft & Novelty, Inc. Electronic cutting machine
CN103966704A (zh) * 2014-05-26 2014-08-06 苏州东茂纺织实业有限公司 一种加压调节给棉装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1118068B (de) * 1959-10-07 1961-11-23 Hergeth Kg Masch Apparate Speiseregler an Spinnereivorbereitungsmaschinen
GB956146A (en) * 1959-12-17 1964-04-22 Cotton Silk & Man Made Fibres Improvements in or relating to machines for the processing of fibrous material
DE2050111A1 (de) * 1969-10-15 1971-04-29 Maschinenfabrik Rieter AG, Winter thur (Schweiz) Verfahren zum Erzeugen eines gleich maßigen kontinuierlichen Faserverbandes und Vorrichtung zur Durchfuhrung des Ver fahrens
FR2379624A1 (fr) * 1977-02-02 1978-09-01 Truetzschler & Co Procede et dispositif pour produire un ruban regul ier et continu de fibres
DE3205776A1 (de) * 1982-02-18 1983-08-25 Truetzschler & Co Vorrichtung zur regulierung der einer textilmaschine zuzufuehrenden fasermenge

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1476319A (en) * 1973-11-10 1977-06-10 English Card Clothing Fibre processing machines
FR2322943A1 (fr) * 1975-09-03 1977-04-01 Alsacienne Constr Meca Dispositif de regulation pour carde
JPS5831403B2 (ja) * 1976-02-12 1983-07-06 三菱電機株式会社 繊維の厚さ制御装置
CH627498A5 (de) * 1978-04-26 1982-01-15 Zellweger Uster Ag Verfahren und vorrichtung zur ausregulierung von bandgewichtsschwankungen an karden, krempeln und strecken.
US4275483A (en) * 1979-12-05 1981-06-30 Roberson James H Control apparatus for a carding machine
CH640890A5 (de) * 1980-01-17 1984-01-31 Zellweger Uster Ag Verfahren und vorrichtung zur regulierung von bandgewichtsschwankungen an karden und krempeln.
DE3425345A1 (de) * 1984-07-10 1986-01-30 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und vorrichtung zum erzeugen einer gleichmaessigen, kontinuierlichen fasermenge
DE3608513C2 (de) * 1986-03-14 1998-02-12 Truetzschler Gmbh & Co Kg Vorrichtung bei einer Karde, Krempel o. dgl. zur Vergleichmäßigung des Faserbandes oder -vlieses
DE3617525A1 (de) * 1986-05-24 1987-11-26 Truetzschler & Co Vorrichtung zur vergleichmaessigung eines kardenbandes oder krempelvlieses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1118068B (de) * 1959-10-07 1961-11-23 Hergeth Kg Masch Apparate Speiseregler an Spinnereivorbereitungsmaschinen
GB956146A (en) * 1959-12-17 1964-04-22 Cotton Silk & Man Made Fibres Improvements in or relating to machines for the processing of fibrous material
DE2050111A1 (de) * 1969-10-15 1971-04-29 Maschinenfabrik Rieter AG, Winter thur (Schweiz) Verfahren zum Erzeugen eines gleich maßigen kontinuierlichen Faserverbandes und Vorrichtung zur Durchfuhrung des Ver fahrens
FR2379624A1 (fr) * 1977-02-02 1978-09-01 Truetzschler & Co Procede et dispositif pour produire un ruban regul ier et continu de fibres
DE3205776A1 (de) * 1982-02-18 1983-08-25 Truetzschler & Co Vorrichtung zur regulierung der einer textilmaschine zuzufuehrenden fasermenge

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289283A2 (de) * 1987-04-29 1988-11-02 Carding Specialists (Canada) Limited Steuerung von Karden
EP0289283A3 (en) * 1987-04-29 1990-04-25 Carding Specialists (Canada) Limited Controlling carding machines
US5052080A (en) * 1988-06-23 1991-10-01 Maschinenfabrik Rieter, Ag Method and apparatus for controlling yarn preparation operations to enhance product uniformity
US5121523A (en) * 1989-02-14 1992-06-16 Machinenfabrik Rieter Ag Metering method and metering apparatus for dispensing predeterminable quantities of fiber flocks
US5247721A (en) * 1990-10-16 1993-09-28 Maschinenfabrik Rieter Ag Grid for the opening roll of a spinning machine
EP0754789A1 (de) * 1995-07-19 1997-01-22 Zellweger Luwa Ag Verfahren und Vorrichtung zur Erfassung der Masse von Fasermaterial in einer Spinnmaschine
EP0754788A1 (de) * 1995-07-19 1997-01-22 Zellweger Luwa Ag Verfahren und Vorrichtung zur Vermeidung von Masseschwankungen in Fasermaterial
CN1082104C (zh) * 1995-07-19 2002-04-03 泽韦格路瓦有限公司 避免在纤维材料中质量波动的方法和装置
CN1082106C (zh) * 1995-07-19 2002-04-03 泽韦格路瓦有限公司 用于在纺纱机中检测纤维材料之质量的方法和装置
DE19826070A1 (de) * 1998-06-12 1999-12-16 Truetzschler Gmbh & Co Kg Vorrichtung an einer Spinnereimaschine zum Herstellen eines Faserflockenvlieses, z. B. aus Baumwolle, Chemiefasern
US6216318B1 (en) 1998-06-12 2001-04-17 TRüTZSCHLER GMBH & CO. KG Feed tray assembly for advancing fiber material in a fiber processing machine
CN112481750A (zh) * 2020-11-23 2021-03-12 舒城娃娃乐儿童用品有限公司 一种自动调节梳理密度的梳理装置
CN112481750B (zh) * 2020-11-23 2021-09-24 舒城娃娃乐儿童用品有限公司 一种自动调节梳理密度的梳理装置

Also Published As

Publication number Publication date
EP0275471B1 (de) 1991-04-24
DE3769625D1 (de) 1991-05-29
US4860406A (en) 1989-08-29
IN170276B (de) 1992-03-07
JPS63309622A (ja) 1988-12-16
US4955266A (en) 1990-09-11

Similar Documents

Publication Publication Date Title
EP0275471B1 (de) Verfahren und Vorrichtung zum Ausgleichen der Dichte einer Fasermatte am Eingang einer Textilmaschine
EP0271115B1 (de) Verfahren und Vorrichtung zum automatischen Ausgleichen von Banddichte-Schwankungen in Textilmaschinen, wie Karden, Strecken und dergleichen
DE68926199T2 (de) Streckvorrichtung mit selbsttätigem Ausgleich
DE102005033180B4 (de) Vorrichtung zum Erfassen eines Parameters an mehreren, einem Streckwerk einer Spinnereimaschine zugeführten Faserbändern
CH627498A5 (de) Verfahren und vorrichtung zur ausregulierung von bandgewichtsschwankungen an karden, krempeln und strecken.
EP0043815B1 (de) Verfahren und vorrichtung zur regulierung von bandgewichtsschwankungen an karden, krempeln und dergleichen
DE102005023992A1 (de) Vorrichtung an einer Spinnereivorbereitungsmaschine, z.B. Karde, Krempel, Strecke, Kämmmaschine o.dgl., zum Ermitteln der Masse und/oder Masseschwankungen eines Fasermaterials, z.B. mindestens ein Faserband, Faservlies o.dgl., aus Baumwolle, Chemiefasern o. dgl.
DE2506061B2 (de) Wiegeeinrichtung zum kontinuierlichen Wiegen einer durchlaufenden Faserschicht
DE2543839B1 (de) Vorrichtung zum erzeugen eines gleichmaessigen textilen faserbandes
CH699383A2 (de) Vorrichtung für eine oder an einer Spinnereivorbereitungsmaschine, die ein Streckwerk zum Verstrecken von strangförmigem Fasermaterial aufweist.
DE2704241A1 (de) Verfahren und vorrichtung zum erzeugen eines gleichmaessigen, kontinuierlichen faserverbandes
DE19906139B4 (de) Regulierstreckwerk für einen Faserverband, z. B. Baumwolle, Chemiefasern o. dgl., mit mindestens einem Verzugsfeld
EP1215312A1 (de) Online Messtechnik
DE3540689C2 (de)
EP0347715B1 (de) Verfahren und Vorrichtung zur Herstellung eines gleichmässigen Faserbandes
DE10140645B4 (de) Verfahren zum Betreiben eines Streckwerks sowie Streckwerk
CH699382A2 (de) Vorrichtung für eine oder an einer Spinnereivorbereitungsmaschine, die ein Streckwerk zum Verstrecken von strangförmigem Fasermaterial aufweist.
CH694333A5 (de) Streckwerk für eine Spinnereimaschine, insbesondere eine Regulierstrecke für Baumwolle oder Chemiefasern.
CH695316A5 (de) Vorrichtung zum Zuführen von Faserbändern an einer Spinnereimaschine.
DE4018803A1 (de) Verfahren und vorrichtung zur regelung eines oeffnungsvorganges, beispielsweise an einer karde
DE102011052367A9 (de) Streckwerk einer Textilmaschine sowie Verfahren zu dessen Betrieb
GB2344111A (en) Apparatus for advancing and monitoring a running sliver in a fibre processing machine
CH692987A5 (de) Vorrichtung an einer Spinnereivorbereitungsmaschine, insbesondere Karde oder Strecke.
DE10153999B4 (de) Simulationsverfahren für eine Spinnereimaschine, Spinnereimaschine, sowie Softwareprogamm-Erzeugnis
DE19819728A1 (de) Vorrichtung an einer Strecke zur Messung eines Faserverbandes aus Faserbändern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

17P Request for examination filed

Effective date: 19881007

17Q First examination report despatched

Effective date: 19900913

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19910424

Ref country code: GB

Effective date: 19910424

REF Corresponds to:

Ref document number: 3769625

Country of ref document: DE

Date of ref document: 19910529

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: TRUETZSCHLER GMBH & CO. KG

Effective date: 19920124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19971201

Year of fee payment: 11

APCC Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981126

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19991108

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO