EP0269515B1 - Procédé de conversion thermique de fractions lourdes de pétrole et de residus de raffinage, en présence de composés oxygénés du soufre ou de l'azote et compositions contenant ces composés - Google Patents

Procédé de conversion thermique de fractions lourdes de pétrole et de residus de raffinage, en présence de composés oxygénés du soufre ou de l'azote et compositions contenant ces composés Download PDF

Info

Publication number
EP0269515B1
EP0269515B1 EP87402609A EP87402609A EP0269515B1 EP 0269515 B1 EP0269515 B1 EP 0269515B1 EP 87402609 A EP87402609 A EP 87402609A EP 87402609 A EP87402609 A EP 87402609A EP 0269515 B1 EP0269515 B1 EP 0269515B1
Authority
EP
European Patent Office
Prior art keywords
sulfur
oxide
nitrogen
oxides
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87402609A
Other languages
German (de)
English (en)
Other versions
EP0269515A1 (fr
Inventor
Pierre Le Perchec
Bernard Fixari
Béatrice Debled
Michel Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0269515A1 publication Critical patent/EP0269515A1/fr
Application granted granted Critical
Publication of EP0269515B1 publication Critical patent/EP0269515B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/32Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions in the presence of hydrogen-generating compounds
    • C10G47/34Organic compounds, e.g. hydrogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/007Visbreaking

Definitions

  • the invention relates to a process for the thermal conversion of a charge consisting of a heavy fraction of organic matter in the presence of oxygenated organic compounds of sulfur, or of nitrogen and a composition comprising these compounds.
  • the object of the invention is in particular to remedy the drawbacks mentioned above.
  • organic monooxides in the process of the invention is probably due to the action at high temperature of oxygenated species such as nascent oxygen, and / or sulfinyl radicals (RSO-) in the case of sulfoxides, and turns out to be different and significantly superior when use in combination with hydrogen donors.
  • oxygenated species such as nascent oxygen, and / or sulfinyl radicals (RSO-) in the case of sulfoxides
  • Another advantage of the process of the invention lies in the fact that some of the organic monooxides involved, after having acted during the heat treatment, can be found in a reduced form, stable at the treatment temperature and can then be recovered for example by distillation to be recycled, after re-oxidation under specific conditions ex situ.
  • the "heavy fractions" of fossil organic materials considered in the invention may more particularly consist of heavy crude oils, heavy petroleum fractions, refining residues, or even shales or bituminous sands or coal.
  • the invention applies to various heat treatments, in particular to visbreaking of distillation residue (at temperatures for example of about 350 to 470 ° C, advantageously from 380 to 450 ° C, preferably from 400 to 440 ° C) and at hydroviscoreduction at temperatures of the same order, under pressures which, in general, are between 10 and 150 bars at treatment temperatures with residence times of approximately 1 to 60 minutes.
  • the invention relates to a process for converting a heavy oil, a heavy petroleum cut or a refined residue, in which said heavy petroleum, said heavy petroleum cut or said refined residue is subjected to a heat treatment, the method being characterized in that the heat treatment considered is carried out in the presence of a minor proportion of at least one oxygenated compound, generator of radicals, containing at least one heteroelement chosen from sulfur and l nitrogen and wherein said heteroelement carries an oxygen atom.
  • the oxygenated radical-generating compound generally an organic sulfur, and / or nitrogen monooxide, can be added to the feed to be treated in a proportion of 1 to 50%, advantageously from 1 to 20% and preferably 5 to 15% by weight relative to said load.
  • the action of the oxygen-containing compound in the process of the invention can be reinforced by the use of a hydrogen donor diluent, generally used in a proportion of 10 to 400%, advantageously from 30 to 200% and preferably 50 to 100% by weight relative to the load to be treated.
  • the dimethyl sulfoxide prepared according to US Pat. No. 3,045,051 has the advantage of being inexpensive and of being a good solvent for oils and diluents which donate hydrogen.
  • Diphenylsulfoxide is more expensive but recyclable, with low severity, from diphenylsulfide resulting from the loss of oxygen (Synthetic communication p.1025, 1981)
  • Didodecylsulfoxide is prepared from didodecylsulfide (Synthésis p.447, 1975), which is then oxidized as described in "Synthetic communication”.
  • Pyridine N-oxide for example, is easily prepared from pyridine which can be recycled (J. of Chem. Soc p.1769, 1957).
  • the substances can be used as they are when they are available.
  • the oxygenated compounds of sulfur, and / or nitrogen in situ in the feed to be treated, by implementing a gentle oxidation of the latter, in particular by means of a peroxide (in general hydrogen peroxide, for example in admixture with water or, preferably, with methanol).
  • a peroxide in general hydrogen peroxide, for example in admixture with water or, preferably, with methanol.
  • the functions treated generally contain sulfur compounds and, in some cases, nitrogen compounds, the mild oxidation produced in the medium mainly by sulfoxides, and in some cases, organic nitrogen oxides according to the invention.
  • the oxygen introduced in this way is then released during the heat treatment.
  • the oxygen compounds of sulfur and / or nitrogen can be produced ex situ in a feed and use this cut as a generator of oxygenated species in the treatment of a heavy cut of petroleum.
  • the invention also relates to a composition
  • a composition comprising at least one monooxygenated organic compound as defined above, and at least one diluent hydrogen donor as defined above, advantageously tetrahydronaphthalene or dihydroanthracene.
  • the weight ratio of the hydrogen donor relative to the monooxygenated organic compound in said composition is generally 0.2: 1 to 400: 1 and preferably from 3: 1 to 20: 1.
  • the proportion by weight of the composition introduced into the filler to be subjected to the heat treatment is usually from 11 to 450 parts per 100 parts of a filler consisting of a heavy fraction of organic matter and preferably from 55 to 115 parts per 100 parts of said charge.
  • Figure 1 shows the temperature profile of the analysis method (pyroanalysis), while Figure 2 shows the pyrogram corresponding to the CO 2 concentration as a function of time or the reference temperature.
  • a first series of tests 1 to 22 relates to a hydroviscoreduction treatment of a residue under vacuum (RSV) 500 ° C + of Safaniya origin.
  • Tests 1, 3, 6, 10, 13, 14, 15, and 18 are given for comparison.
  • Points P 1 and P 2 correspond to n-alkanes heated under the same conditions and whose boiling points are equal to 500 ° C and 620 ° C respectively. From point P 3, the combustion of the residual carbon takes place.
  • the pyrogram obtained ( Figure 2) delivers the CO 2 concentration as a function of the time or the temperature of the oven.
  • You can easily split the pyrogram by integrating the signal between selected temperature values, for example according to the fractions below.
  • the percentages of the various fractions are given below:
  • the fractions F 2 and F 3 represent the fraction 500 ° C - end of distillation in the tables below.
  • centesimal analysis of the charges subjected to hydroviscoreduction shows that the sum of the weights of C, H and S is always greater than or equal to 95%. Consequently, the simple addition of these weights makes it possible to obtain with sufficient precision the actual respective percentages of the various above fractions of the liquid fraction.
  • This analysis method is used for all tests 1 to 22 described in the invention.
  • concentrations by weight of sulfur compound are such that the level of sulfur introduced expressed in% weight by weight relative to the feed is identical in each test, that is: 0.213 mole of sulfur per 100 g of residue under vacuum Safaniya.
  • the petroleum charge (RSV Safaniya) (approximately 30 g), after slight heating (100 ⁇ 120 ° C) to make it less viscous, is introduced into the reactor which is a stainless steel autoclave. Any additives are added after cooling. The whole is constantly agitated.
  • hydroviscoreduction tests were carried out under an initial pressure (at 20 ° C) of 50 bars of hydrogen, at high severity, at 430 ° C for 15 minutes in the presence of hydrogen donor and monooxidized compound and at low severity at 390 ° C., in the presence of a monooxidized compound alone, after a time of rise to the hydroviscoreduction temperature of approximately 25 minutes.
  • the weights chosen by way of example as a hydrogen donor diluent (DDH) are related to the charge comprising 50% of DDH and 50% of RSV to which a quantity of sulfur-containing additive is added such that it represents 0.213 atoms of sulfur per 100 g of residue.
  • Coke is defined as the part insoluble in hot benzene. An assay is carried out for each test. The amount of liquid is calculated after determining the coke level.
  • the load subjected to visbreaking comprises 50 g of RSV Safaniya + 41.7 g of tetralin + 8.3 g of dimethyl sulfoxide, ie 100 g in total.
  • the petroleum liquid fraction consists of 91.9 g - 41.7 g (tetralin) - 1.7 g (oxygen from DMSO being in the form of water), or 48.5 g from the visbreaking of petroleum.
  • Table 1 summarizes the results of tests 1 to 7, carried out at a hydroviscoreduction temperature of 390 ° C.
  • test 2 The addition of dimethylsulfoxide (test 2), didodecylsulfoxide (test 4), diphenylsulfoxide (test 5), pyridine N-oxide (test 7) to the residue (RSV) contributes to improving the conversion of petroleum at 500 ° C. - compared to that carried out on the residue alone (test 1).
  • the additives such as dimethylsulfide (test 3) or diphenylsulfide (test 6) added to the residue contribute to results where the values of the conversion at 500 ° C. and of the distribution of the oil are substantially identical to those obtained on the vacuum residue.
  • Table 2 reports the results of tests 1 and 8 to 15 corresponding to a hydroviscoreduction temperature of 430 ° C.
  • test 1 The RSV alone (test 1) has a conversion of 47.2% and respective coke and gas levels of 6.6 and 7.8% by weight.
  • test 10 The introduction of tetralin into the RSV residue (test 10) results in an inhibition of the formation of coke and of gas but a limited conversion.
  • test 11 and 12 makes it possible to gain in quality and to maintain the level of coke and of gas substantially at the level of Example 10 and also contributes to a favorable effect on the conversion.
  • test 15 shows that the combination of thiophenol and tetralin contributes to a significantly lower conversion and to a better quality of the recovered oil (see gas and liquid rate as well as the distribution in fractions 40-500 ° C of the liquid fraction).
  • Test 14 for its part shows the contribution of thiophenol alone, at a sulfur concentration substantially identical to that of tests 8 and 15.
  • test 13 is also given where the combination of tetralin and dimethylsulfide (with substantially identical sulfur content) does not lead to the good results of Example 12 according to the invention.
  • Table 3 summarizes the results of tests 1, 10 and 16 to 22.
  • Tests 21 and 22 show the influence on the one hand of didodecylsulfoxide and on the other hand that of didodecylsulfoxide and tetralin where the effect on both the conversion and the distribution of petroleum is always observed.
  • test 19 and 20 makes it possible to respectively improve the conversion and the whole conversion and quality of the oil recovered (tests compare with tests 1 and 10) but in a more limited way.
  • Tetralin was used as the hydrogen donor diluent but it was noted that with other hyrogen donors such as dihydroanthracene, used under the same conditions, substantially the same results were observed.
  • a second series of tests 23 to 30 relates to visbreaking treatments of an atmospheric residue of BOSCAN origin. Tests 23, 25, 27 and 39 were carried out for comparison.
  • Tables 4 and 5 give the percentages of the fractions 100 ⁇ 500 ° C, 500 ⁇ 570 ° C, 570 ° C * and of the residue (residual peak) obtained by the pyroanalysis method already described above in connection with tests 1 to 22.
  • the solution is then brought to reflux (70-75 ° C) for 15 hours, then cooled to 20 ° C. Decanting is carried out. The solution is then washed twice with water and dried by azeotropic distillation and then evaporated to dryness.
  • the technique used is that of pyrolysis in a closed reactor under hydrogen or steam pressure, as the case may be.
  • the temperature and pressure inside the reactor are controlled by sensors linked to a computer which ensures data acquisition and automatic piloting of the reactor.
  • the pressure and temperature ranges are 0-60 bar and 0-600 ° C, respectively.
  • the pressure is ensured by the addition of 30 cm3 of water or by an initial hydrogen pressure of 20 bars.
  • the desired temperature is reached after about twenty minutes, the duration of the plateau is fifteen minutes.
  • the temperature level pressure is then about 40 bars for the tests under hydrogen and 20 bars for the tests in the presence of water.
  • the liquid fractions are collected in benzene; the optional coke is separated by filtration in hot benzene.
  • the aqueous phase is separated by decantation or by entrainment with Dean-Stark, which ensures effective drying of the organic phase.
  • the merit results from a spot test carried out on filter paper making it possible to determine the concentration of isooctane in an isooctane-xylene mixture from which the coke or the flocculation of asphaltenes appears.
  • the merit value will be 8.5 for a mixture of 85% xylene and 15% isooctane.
  • the gas rate corresponds approximately to a fraction 100 ° C- and results from the weight loss after evaporation of the benzene which is the recovery solvent.
  • the recipes of tests 23, 24, 25 and 26 are analyzed according to a technique called "pyroanalysis", as described above, which gives in particular access to the residual peak values and to the conversion rates.
  • the conversion rates are calculated by the difference between the 100 ° ⁇ 500 ° C fraction of the recipe and that of the initial RAB, plus the gas rate.
  • the conversion rate for trial 23 is equal to:
  • Table 5 gives the percentages of the different fractions of the liquid phase and Table 6 gives the percentage analyzes (C, H, N, 0, S, metals) of the liquid phase.
  • DHA dihydroanthracene
  • the viscosity is measured over the entire petroleum + dihydroanthracene recipe at a temperature of 60 ° C.
  • the atomic ratio H / C goes from 1.54 for the initial RAB, to 1.41 for test 23 and to 1.34 for test 24, which shows the hydrogen depletion due essentially to the formation of gases, the content of which is very important for the visoreduced RAO (14.5%).
  • test 24 has a higher conversion rate than that of test 23, but this increase is essentially due to the increase in the gas rate.
  • Tests 25 and 23 in Table 5 indicate that the dihydroanthracene used RAB does not act on the formation of light products (practically identical conversion rate), but rather on the heavy fraction: the rate of asphaltenes and the content of the residual peak are falling.
  • the visbreaking residue has a satisfactory even improved stability with a merit of 6.5 and is richer in hydrogen (the atomic ratio H / C which is 1.55, that is to say equal to that of the initial RAB, confirms the ability of the DHA to be a very good inhibitor of dehydrogenation).
  • the conversion gain is due to an increase in the fraction 100-500 ° C. and no longer to an increase in the gas rate.
  • centesimal analyzes of sulfur and metals do not show any change for the hydroviscoreduction tests (Table 6).
  • test 28 results in an increase in the viscosity reduction (high viscosity) recipe but no coke) and a gain in conversion compared to test 27.
  • a 30% increase in the conversion the rate goes from 18 to 24%) and due for the increased formation of the gas and for half, with the fraction 100 ⁇ 500 ° C.
  • test 27 and 29 shows a weak role of dihydroanthracene on the RAB itself.
  • the action of DHA on the RAO increases the gain in conversion compared to test 29 by more than 50% (the conversion rate increases to 28.1%), of which only a small part is due to the gas rate increase. It is always the fraction 500-570 ° + C which is responsible for this modification, but the introduction of DHA in oxidized petroleum makes it possible in particular to act very strongly on the fraction 570 ° + C which sees its reduced importance of a third (from 2.5% to 17.3%).
  • visbreaking without diluent hydrogen donor of preoxidized RAB brings about a conversion gain, but gives a less stable visbreaking recipe.
  • dihydroanthracene allows a much higher gain in conversion compared to the visbreaking of the non-oxidized RAB / DHA mixture, DHA acting more particularly on the 570 0+ C fraction.
  • the oxidative pretreatment with H 2 0 2 / CH 3 0H associated with a hydrogen donor diluent, is favorable in the two visbreaking cases (tests 30 and 26).
  • the gain in conversion is proportionally greater in visbreaking with water, which gives a recipe (test 30) having a percentage of 500 ° "C and a viscosity comparable to those obtained in visbreaking.
  • the quality of the visbreaking liquid for l 'test under hydrogen pressure (test 26) is higher: asphaltenes rate and percentage of residual peak lower, respectively 20.3% against 27% and 18.4% against 24.3%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

  • L'invention concerne un procédé de conversion thermique d'une charge consistant en une fraction lourde de matières organiques en présence de composés organiques oxygénés du soufre, ou de l'azote et une composition comprenant ces composés.
  • Elle est particulièrement applicable à l'industrie du raffinage du pétrole et du charbon et notamment aux procédés de viscoréduction et d'hydrotraitement catalytique.
  • L'amélioration de procédés de traitement thermique utilisés dans l'industrie pétrolière pour le raffinage des matières organiques fossiles riches en structures polyaromatiques de haute masse, promoteurs de coke, tels que les pétroles lourds et apparentés: schistes bitumineux, charbon, sables asphaltiques ... et les résidus de raffinage, implique un contrôle des processus de transformations radicalaires par la mise en oeuvre de solvants ou additifs performants.
  • De nombreux travaux ont été consacrés à la mise en oeuvre de solvants donneurs d'hydrogène (structures hydroaromatiques telles que la tétraline, le dihydroanthracène ou des coupes pétrolières partiellement hydrogénées), capable d'inhiber efficacement le développement de réactions radicalaires de polycondensation ou de polymérisation en chaîne.
  • Toutefois, dans des conditions identiques, l'utilisation d'un donneur d'hydrogène efficace entraîne une conversion en fractions légères plus modérée dès lors que l'on a éliminé du milieu réactionnel des intermédiaires réactifs promoteurs des processus de fragmentation des chaînes. Cet aspect du problème a conduit à l'association d'additifs capable de réaliser ensemble la capture radicalaire et l'activation des fragmentations des agrégats polymoléculaires présents dans ces fractions lourdes.
  • Différents travaux mentionnent l'effet de l'hydrogène sulfuré, présent lors de traitements des coupes pétrolières riches en soufre, comme composé susceptible d'un double rôle catalytique: d'une part, l'amélioration des cinétiques des transfert d'hydrogène donc de l'efficacité de capture des radicaux libres; d'autre part, l'activation de réactions de fragmentation. Toutefois, leur mise en synergie avec les solvants donneurs d'hydrogène n'a été que peu exploitée.
  • De récents travaux décrivent l'effet activant de certains thiols (EP 0 175 511) et disulfures organiques (benzènethiol, dodécanethiol et atures; diphényisuifure..) de même qu'un précurseur de l'hydrogène sulfuré, le sulfure d'ammonium. Ces composés présentent l'inconvénient d'être chers et de se décomposer en partie lors du traitement thermique; ils sont alors non régénérables. Dans un document antérieur, en particulier, on utilise le diméthyldisulfure comme promoteur de la viscoréduction en présence de napthénate de nickel (BE 901 092).
  • D'autres types d'activants ont été préconisés dans l'art antérieur, tels que les génerateurs de radicaux (US 4 298 455); d'une façon générale, ces additifs présentent diverses insuffisances réactionnelles, notamment:
    • - le domaine thermique de formation des espèces réactives est trop limité à partir de générateurs tels que l'eau oxygénée, les hydroperoxydes et les peroxydes organiques. Cette température, inférieure en général à 200°C, conduit à une stabilité insuffisante pour leur action efficace dans le milieu aux températures habituellement en vigueur.
    • - leur action consiste plutôt en une modification chimique préalable au traitement thermique proprement dit; de plus, une mauvaise sélectivité est observée du fait de la décomposition souvent brutale et exothermique de ces composés;
    • - ils présentent une non-régénérabilité potentielle du fait de leur décomposition totale.
  • Par ailleurs, l'art antérieur décrit dans le brevet EP 0 183 269 un mélange de composés à base de molybdène choisis parmi le mélange de dithiophosphate et de carboxylate de molybdène et le mélange de dithiocarbonate et de carboxylate de molybdène.
  • On connait enfin le brevet US-A-4.298.455, qui mentionne l'association de l'azobisisobutyronitrile avec des composés sulfurés et/ou chlorés.
  • L'invention a notamment pour objet de remédier aux inconvénients signalés ci-dessus.
  • On a en effet découvert que la mise en jeu, dans les fractions lourdes de matières organiques fossiles à soumettre à des traitements de conversion thermique, d'espacès oxydées, plus particulièrement sous la forme de mono-oxydes organiques du soufre, et/ou de l'azote, permettait d'améliorer la conversion de ces fractions lourdes, vraisemblablement par activation radicalaire (ces espèces oxydées pouvant être adjoutées à la fraction lourde à traiter ou produites in situ).
  • La présence de ces espèces oxydées (adjoutées ou produites in situ) lors du traitement thermique des fractions lourdes considérées, permet notamment d'obtenir à plus basse température, des conversions similaires à celles obtenues, en leur absence, dans les traitements classiques.
  • En association avec des donneurs d'hydrogène, ces espèces oxydées permettent d'améliorer, aux températures usuelles du traitement thermique, la conversion globale des charges avec obtention d'un nette diminution du carbone Conradson et du taux d'asphaltène. De plus, la synergie observée avec les donneurs d'hydrogène permet de réaliser des traitements thermiques convertissants à des températures plus élevées et d'obtenir une plus forte conversion sans apparition de coke.
  • L'efficacité des monooxydes organiques dans le procédé de l'invention est vraisemblablement due à l'action à haute température d'espèces oxygénées tel que l'oxygène naissant, et/ou de radicaux sulfinyles (RSO-) dans les cas des sulfoxydes, et se révèle différente et sensiblement supérieure lors de leur utilisation en association avec des donneurs d'hydrogène.
  • Un autre avantage du procédé de l'invention réside dans le fait que certains des monooxydes organiques mis en jeu, après avoir agi lors du traitement thermique, peuvent se retrouver sous une forme réduite, stable à la température de traitement et être alors récupérés par exemple par distillation pour être recyclés, après ré-oxydation dans des conditions spécifiques ex situ.
  • Les "fractions lourdes" de matières organiques fossiles considérées dans l'invention peuvent consister plus particulièrement en des pétroles bruts lourds, en des coupes pétrolières lourdes, en des résidus de raffinage, ou encore en des schistes ou sables bitumineux ou en charbon.
  • L'invention s'applique à divers traitements thermiques, en particulier à la viscoréduction de résidue de distillation (à des températures par exemple d'environ 350 à 470°C, avantageusement de 380 à 450°C, de préférence de 400 à 440°C) et à l'hydroviscoréduction à des températures du même ordre, sous des pressions qui, en général, se situent entre 10 et 150 bars aux températures de traitement avec des temps de séjour d'environ 1 à 60 minutes.
  • D'une manière générale, l'invention vise un procédé de conversion d'un pétrole lourd, d'un coupe pétrolière lourde ou d'un résidu de raffinage, dans lequel ledit pétrole lourd, ladite coupe pétrolière lourde ou ledit résidu de raffinage est soumis à un traitement thermique, le procédé étant caractérisé par le fait que le traitement thermique considéré est effectué en présence d'un proportion mineure d'au moins un composé oxygéné, générateur de radicaux, renfermant au moins un hétéroélément choisi parmi le soufre et l'azote et dans lequel ledit hétéroélement porte un atome d'oxygène.
  • Le composé oxygéné générateur de radicaux, en général un monooxyde organique de soufre, et/ou d'azote, peut être ajouté à la charge à traiter en une proportion de 1 à 50%, avantageusement de 1 à 20% et de préférence 5 à 15% en poids par rapport à ladite charge.
  • L'action du composé oxygéné dans le procédé de l'invention peut être renforcée par la mise en jeu d'un diluant donneur d'hydrogène, utilisé en général en une proportion de 10 à 400%, avantageusement de 30 à 200% et de préférence de 50 à 100% en poids par rapport à la charge à traiter.
  • Parmi les monooxydes organiques considérés dans ce procédé de l'invention, on peut citer plus particulièrement;
    • - des oxydes de composés soufrés ayant de 2 à 30 atomes de carbone tel que les dialkylsulfoxydes, par exemple le diméthylsulfoxyde, les diarylsulfoxydes, par exemple le diphénylsulfoxyde, les alkylarylsulfoxydes et les oxydes de soufre thiophénique, par exemple le benzothiophène-sulfoxyde ou le dibenzo- thiophène-sulfoxyde;
    • - des oxydes d'amines contenant de 1 à 30 atomes de carbone et de préférence de 1 à 10 atomes de carbone tels que les oxydes de trialkyl- et de triarylamines ou les oxydes d'amines avec au moins un groupement alkyl et au moins un groupement aryl et les oxydes d'azote aromatiques, par exemple le N-oxyde de pyridine ou le N-oxyde de quinoléine.
  • A concentration en atome (porteur de l'oxygène) de soufre ou d'azote équivalent, il est préférable d'utiliser des additifs de faible masse moléculaire. Le diméthylsulfoxyde préparé selon le brevet US 3 045 051 a l'avantage d'être peu cher et d'être un bon solvant des pétroles et des diluants donneurs d'hydrogène. Le diphénylsulfoxyde est plus onéreux mais recyclable, à faible sévérité, à partir du diphénylsulfure résultant de la perte de l'oxygène (Synthetic communication p.1025, 1981) Le didodécylsulfoxyde est préparé à partir du didodécylsulfure (Synthésis p.447, 1975), qui est ensuite oxydé comme décrit dans "Synthétic communication". La pyridine N-oxyde, par exemple, est aisément préparée à partir de la pyridine qui peut être recyclée (J. of Chem. Soc p.1769, 1957).
  • Pour introduire ces monooxydes organiques dans la charge à traiter, on peut utiliser les substances telles quelles lorsqu'elles sont disponibles. On peut aussi avantageusement utiliser des coupes hydrocarbonées contenant du soufre, et/ou de l'azote organique à l'état de monooxydes, produites par des traitements oxydatifs spécifiques connus décrits par exemple dans la publication J. C. Petersen et al, A.C.S., Div. Fuel 26(4), 898, 1981 et dans le brevet USSR, SU 1,214,660.
  • Selon un autre mode de réalisation du procédé de l'invention, ou peut produire les composés oxygénés du soufre, et/ou de l'azote in situ, dans la charge à traiter, en mettant en oeuvre une oxydation douce de celle-ci, en particulier au moyen d'un peroxyde (en général le peroxyde d'hydrogène, par exemple en mélange avec de l'eau ou, de préférence, avec du méthanol). Comme les fonctions traitées contiennent en général des composés du soufre et, dans certains cas, des composés de l'azote, l'oxydation douce produit dans le milieu principalement des sulfoxydes, et dans certains cas, des oxydes organiques d'azote selon l'invention. L'oxygène introduit de cette manière est ensuite libéré au cours du traitement thermique.
  • Selon un autre mode d'utilisation, on peut produire ex situ les composés oxygènes du soufre et/ou de l'azote dans une charge et utiliser cette coupe comme générateur d'espèces oxygénées dans le traitement d'un coupe lourde de pétrole.
  • Parmi les diluants donneurs d'hydrogène utilisable en association avec les monooxydes organiques, on peut citer ceux décrits dans le brevet EP 0 032 019 et avantageusement par exemple le tétrahydronaphtalène (ou "Tétraline"), ou le dihydroanthracène (DHA), ou comme dans l'art antérieur, une coupe LCO partiellement hydrogénée.
  • L'invention concerne également une composition comprenant au moins un composé organique monooxygéné tel que défini ci-avant, et au moins un diluant donneur d'hydrogène tel que défini ci-avant, avantageusement le tétrahydronaphtalène ou le dihydroanthracène.
  • Le rapport pondéral du donneur d'hydrogène par rapport au composé organique monooxygéné dans ladite composition est en général 0,2:1 à 400:1 et de préférence de 3:1 à 20:1.
  • La proportion pondérale de la composition introduite dans la charge devant subir le traitement thermique est habituellement de 11 à 450 parties pour 100 parties d'un charge consistant en une fraction lourde de matières organiques et de préférence de 55 à 115 parties pour 100 parties de ladite charge.
  • Les exemples suivants illustrent l'invention et ne doivent en aucune manière être considéres comme limitatifs.
  • La figure 1 montre le profil de température de la méthode d'analyse (pyroanalyse), tandis que la figure 2 représente le pyrogramme correspondant à la concentration en CO2 en fonction du temps ou de la température de référence.
  • Exemple 1
  • Une première série d'essais 1 à 22 porte sur un traitement d'hydroviscoréduction d'un résidu sous vide (RSV) 500°C+ d'origine Safaniya.
  • Les essais 1, 3, 6, 10, 13, 14, 15, et 18 sont donnés à titre comparatif.
  • Les caractéristiques du résidu sont les suivantes:
    Figure imgb0001
  • Analyse élementaire:
    Figure imgb0002
  • Le résidu sous vide non traité et la fraction liquide résultant de l'hydroviscoréduction ont été analysés par pyroanalyse. Cette méthode comprend les étapes suivantes:
    • - on chauffe l'échantillon sous atmosphère inerte à une température T1 et on réalise une combustion par un mélange de gaz (He + 3% 02) des effluents de chauffage en présence d'un catalyseur d'oxydation (CuO); les composés d'oxydation, notamment CO2, sont détectés par exemple par un détecteur à infrarouge; et
    • - le résidu restant après chauffage en atmosphère inerte est à son tour oxydé avec le même mélange (He + 02 à 3%) jusqu'à une température T2 et, après passage dans un catalyseur CuO, les composés d'oxydation du résidu (carbone résiduel) sont détectés par le même type de détecteur et les signaux traités par un calculateur.
  • Le profil de température de chauffage est le suivant (figure 1):
    • VA = VC = 20°C/mn; Ve = 30° C/mn; VG = 100°C/mn
    • tA=11 mn, tB = 10 mn, te 6 mn; tD = 10 mn, te = 12 mn,
    • tF=1 mn, tG = 2 mn, tH = 2 mn.
  • Les points P1 et P2 correspondent aux n-alcanes chauffés dans les mêmes conditions et dont les points d'ébullition sont respectivement égaux à 500°C et 620°C. A partir du point P3 s'effectue la combustion du carbone résiduel.
  • Le pyrogramme obtenu (figure 2) délivre la concentration en CO2 en fonction du temps ou de la température du four. On peut étalonner l'échelle des abscisses en température d'ébullition de composés de référence (des n-alcanes par exemple), chauffés dans les mêmes conditions. On peut facilement fractionner le pyrogramme par intégration du signal entre des valeurs de température choisies par exemple selon les fractions ci-dessous. Dans le cas du résidu sous vide non traité les pourcentages des diverses fractions sont indiaués ci-après:
    Figure imgb0003
    Les fractions F2 et F3 représentent la fraction 500°C- fin de distillation dans les tableaux ci-dessous.
  • Par étalonnage de la réponse du détecteur il est facile d'obtenir les poids de carbone correspondant aux fractions ci-dessus. De la même manière, les pourcentages et poids d'hydrogène et de soufre contenus dans l'échantillon sont obtenus en simultanéité avec ceux du carbone.
  • L'analyse centésimale des charges soumises à hydroviscoréduction montre que le somme des poids de C, H et S est toujours supérieur ou égale à 95%. Par conséquent la simple addition de ces poids permet d'obtenir avec suffisamment de précision les pourcentages respectifs réels des diverses fractions ci-dessus de la fraction liquide.
  • Cette méthode d'analyse est utilisée pour tous les essais 1 à 22 décrits dans l'invention.
  • Les concentrations en poids en composé soufré, sont telles que le taux de soufre introduit exprimé en % poids part rapport à la charge est identique dans chaque essai soit: 0,213 mole de soufre pour 100 g de résidu- sous-vide Safaniya.
  • La charge pétrolière (RSV Safaniya) (30 g environ), après un léger chauffage (100―120°C) pour la rendre moins visqueuse, est introduite dans le réacteur qui est un autoclave en acier inox. Les additifs éventuels sont ajoutés après refroidissement. L'ensemble est constamment agité.
  • Tous les essais d'hydroviscoréduction ont été réalisés sous une pression intiale (à 20°C) de 50 bars d'hydrogène, à forte sévérite, à 430°C pendant 15 minutes en présence de donneur d'hydrogène et composé monooxydé et à faible sévérité à 390°C, en présence de composé monooxydé seul, après un temps de montée à la temperature d'hydroviscoréduction de 25 minutes environ.
  • Les poids choisis à titre d'exemple en diluant donneur d'hydrogène (DDH) sont rapportés à la charge comprenant 50% de DDH et 50% de RSV à laquelle on ajoute une quantité d'additif soufré telle qu'elle représente 0,213 atomes de soufre pour 100 g de résidu.
  • En présence simultanément de DDH et de composé monooxydé du soufre et de l'azote, les concentrations pondérais par rapport au RSV sont identiques à celles utilisées avec les additifs seuls.
  • Après le traitement de viscoréduction, on obtient généralement un systemè polyphasique:
    • - une phase solide, le coke,
    • - une phase liquide contenant une partie des produits initiaux ou des produits de craquage, et
    • - une phase gazeuse.
  • Les produits liquides et le coke éventuel sont recueillis directement ou par dissolution dans le benzène, cette opération étant suivie d'une évaporation; les gaz ne sont pas récupérés mais sont calculés par différence entre les quantités introduites et recueilles.
  • Le coke est défini come étant la partie insoluble dans le benzène chaud. Un dosage est effectué pour chaque essai. La quantité de liquide est calculée après détermination du taux de coke.
  • Les taux de gaz, liquide et coke sont exprimés par rapport au pétrole seul après déduction des additifs. Deux exemples de déduction sont présentés ci-dessous, avec les remarques suivantes relatives à l'additif (DDH) et au composé soufré monooxygéné:
    • - un additif tel que la tétraline (TET) est, après pyrolyse, contenu intégralement dans la fraction liquide de laquelle il est déduit.
    • - Le diméthylsulfoxyde est totalement converti (confirmé par dosage en chromatographie en phase gaz) en eau, méthane et hydrogène sulfuré. L'eau est déduite de la fraction liquide, les deux autres composés de la fraction gazeuse.
  • La conversion du pétrole lors de l'hydroviscoréduction est obtenue de la façon suivante (exemple de l'eassai 12):
  • Etape 1 Calcul de la répartition du pétrole entre les phases
  • La charge soumise à viscoréduction comprend 50 g de RSV Safaniya + 41,7 g de tétraline + 8,3 g de diméthylsulfoxyde soit 100 g au total.
  • Après traitement, on isole 0,5 g de coke (insoluble benzène de la fraction liquide) et 91,9 g de fraction liquide globale. Par différence à 100 g on déduit le poids de la fraction gazeuse globale soit 7,6 g. Le gaz est composé de H2S et de CH4 provenant du DMSO soit 6,6 g, par conséquent le poids du gaz de craquage du pétrole est de 1 g. La fraction liquide pétrolière est constituée de 91,9 g - 41,7 g (tétraline) - 1,7 g (oxygène provenant du DMSO étant sous forme d'eau), soit 48,5 g issus de la viscoréduction du pétrole.
  • Ces résultats fournissent la répartition gaz/liquide/coke de la recette d'hydroviscoréduction (additifs déduits), soit:
    Figure imgb0004
  • Etape 2 Calcul de la conversion du pétrole
  • Par pyroanalyse on mesure le pourcentage de la fraction liquide globale possédant un point d'ébullition inférieur à 500°C, soit 74,2% en tenant compte des additifs (tetraline et DMSO) dans le cas de l'essai 12. Cela représente donc 91,9 x 74,2 = 68,2 des 100 g de la charge initiale. Après déduction des 41,7 g de tétraline et des 1,7 g d'eau on obtient 24,8 g de pétrole possédant un point d'ébullition inférieur à 500°C dans la fraction liquide.
  • Le RSV Safaniya possédant déjà 6% de fraction 500°C-, cela représente 3 g pour les 50 g de pétrole mis en jeu. Ils sont donc déduits des 24,8 g pour donner 21,8 g de liquide 500°C- et finalement on ajoute le poids de gaz pour aboutir au poids de 22,8 g de 500°C- créé par l'hydroviscoréduction.
  • La conversion est donc (22,8 x 100)/50 = 45,6%.
  • Cette méthode de calcul est valable pour tous les essais 1 à 22.
  • Le tableau 1 récapitule les résultats des essais 1 à 7, réalisés à une température d'hydroviscoréduction de 390°C.
  • L'addition de diméthylsulfoxyde (essai 2), de didodécylsulfoxyde (essai 4), de diphénylsulfoxyde (essai 5), de N-oxyde de pyridine (essai 7) au résidu (RSV) contribue à améliorer la conversion du pétrole en 500°C- par rapport à celle réalisée sur le résidu seul (essai 1). Par comparaison respective, les additifs tels que le diméthylsulfure (essai 3), ou le diphénylsulfure (essai 6) ajoutés au résidu contribuent à des résultats où les valeurs de la conversion en 500°C- et de la répartition du pétrole sont sensiblement identiques à celles obtenues sur le résidu sous vide.
  • Le tableau 2 relate les résultats des essais 1 et 8 à 15 correspondant à une température d'hydroviscoréduction de 430°C.
  • Le RSV seul (essai 1) présente une conversion de 47,2% et des taux de coke et gaz respectifs de 6,6 et 7,8% poids. L'introduction de DMSO dans le résidu (essais 8,9) amène la conversion à un niveau élevé et permet d'obtenir un taux de coke et de gaz plus important traduisant un effet convertissant interessant.
  • L'introduction de la tétraline dans le résidu RSV (essai 10) entraîne une inhibition de la formation de coke et de gaz mais une conversion limitée.
  • L'association tétraline et DMSO (essais 11 et 12) permet de gagner en qualité et de maintenir le taux de coke et de gaz sensiblement au niveau de l'exemple 10 et contribue aussi à un effet favorable sur la conversion.
  • A titre de comparison, l'essai 15 selon l'art antérieur à taux de soufre comparable avec celui de l'essai 12 réalise selon l'invention, montre que l'association thiophénol et tétraline contribue à une conversion sensiblement plus faible et à une meilleure qualité du pétrole récupéré (voir taux de gaz et de liquide ainsi que la répartition en fractions 40-500°C de la fraction liquide). L'essai 14 montre de son côté la contribution du thiophénol seul, à concentration en soufre sensiblement identique à celle des essais 8 et 15.
  • Enfin, a titre comparatif, est également donné l'essai 13 où l'association tétraline et diméthylsulfure (à teneur en soufre sensiblement identique) n'aboutit pas aux bons résultats de l'exemple 12 selon l'invention.
  • Le tableau 3 récapitule les résultats de essais 1, 10 et 16 à 22.
  • Par les essais 16 et 17 que l'on compare aux essais 1 et 10 on montre que le diphénylsulfoxyde contribue essentiellment à une meilleure conversion, que l'association tétraline et diphénylsulfoxyde contribue à la fois à une bonne conversion et à une bonne répartition du pétrole, ces résultats étant meilleurs que ceux observés sur l'association tétraline et diphényl sulfure (essai 18).
  • Les essais 21 et 22 montrent l'influence d'une part du didodécylsulfoxyde et d'autre part celle du didodécyle sulfoxyde et de la tétraline où l'effet à la fois sur la conversion et la répartition du pétrole est toujours observé.
  • Efin, l'ajout de pyridine N-oxyde et de l'association pyridine N-oxyde et tétraline selon l'invention (essais 19 et 20) permet d'améliorer respectivement la conversion et l'ensemble conversion et qualité du pétrole récupéré (essais à comparer avec les essais 1 et 10) mais de manière plus limitée.
  • On a utilise la tétraline comme diluant donneur d'hydrogène mais on a remarqué qu'avec d'autres donneurs d'hyrogène tel que le dihydroanthracène, utilisé dans les mêmes conditions on observait sensiblement les mêmes résultats.
  • Il a également été montré qu'on pouvait obtenir des résultats sensiblement similaires, particulièrement au niveau des faibles taux de gaz et de coke dans les unités de viscoréduction opérant en dynamique.
  • Exemple 2
  • Une seconde série d'essais 23 à 30 porte sur des traitements de viscoréduction d'un résidu atmosphérique d'origine BOSCAN. Les essais 23, 25, 27 et 39 ont été réalisés à titre comparatif.
  • Certaines caractéristiques du résidu atmosphérique utilisé, noté dans la suite RAB, sont données dans les tableaux 4, 5 et 6 ci-après. On donne dans le tableau 4 notamment:
    • le % poids d'asphaltènes: 27,5%
    • et la viscosité à 100°C: 2500 cP (mPa.s).
  • Le tableau 6 donne l'analyse élémentaire du RAB.
  • Les tableaux 4 et 5 donnent les pourcentages des fractions 100―500°C, 500―570°C, 570°C* et du résidu (pic résiduel) obtenus par le méthode de pyroanalyse déjà décrite plus haut en liaison avec les essais 1 à 22.
  • Le résidu atmosphérique a été soumis à une oxydation douce au moyen de peroxyde d'hydrogène selon la procédure décrite ci-après.
  • On dissout 20 g de résidu atmosphérique d'origine BOSCAN dans 450 ml d'un mélange 50/50 en volumes de méthanol et de benzène. On ajoute 6,5 ml d'une solution aqueuse à 30% en peroxyde d'hydrogène (H202) à au moins 110 volumes, ce qui correspond à 0,076 mole de H202, soit un rapport molaire H202/soufre de 2,3.
  • On porte alors la solution au reflux (70-75°C) pendant 15 heures, puis on la refroidit à 20°C. On réalise un décantation. La solution est ensuite lavée deux fois à l'eau et séchée par distillation azéotropique puis évaporée à sec.
  • Certaines de caractéristiques du résidu atmosphérique oxydé obtenu, noté dans la suite RAO, sont données dans les tableaux 4, 5 et 6 peuvent être comparées à celles du résidu atmosphérique avant oxydation.
  • On a precédé à des essais de viscoréduction sous pression d'hydrogène (hydroviscoréduction) et de viscoréduction à l'eau.
  • La technique utilisée est celle d'une pyrolyse en réacteur fermé sous pression d'hydrogène ou de vapeur d'eau, selon la cas.
  • La température et la pression à l'intérieur du réacteur sont contrôlées par des capteurs réliés à un ordinateur qui assure une acquisition des données et un pilotage automatique du réacteur. Les gammes de pression et de température sont respectivement de 0-60 bars et 0-600°C. La pression est assurée par l'addition de 30 cm3 d'eau ou par une pression initiale en hydrogène de 20 bars.
  • La température désirée est atteinte au bout d'une vingtaine de minutes, la durée du palier est de quinze minutes. La pression en palier de température est alors de 40 bars environ pour les essais sous hydrogène et de 20 bars pour les essais en présence d'eau.
  • Les fractions liquides sont recueillies dans le benzène; le coke éventuel est séparé par filtration dans le benzène à chaud. Dans les essais à l'eau, la phase aqueuse est séparée par décantation ou par entraînement au Dean-Stark, ce qui assure un séchage efficace de la phase organique.
  • Sur le tableau 4, les valeurs de la viscosité, du mérite et du taux d'asphaltènes des différents essais, sont indiquées.
  • Le mérite, coté de 1 à 10, résulte d'un test à la tache réalisé sur papierfiltre permettant de déterminer la concentration en isooctane dans un mélange isooctane-xylène à partir de laquelle apparait le coke ou la floculation des asphaltènes. Par exemple, la valeur du mérite sera de 8,5 pour un mélange de 85% de xylène et 15% d'isooctane.
  • Le taux de gaz correspond environ à une fraction 100°C- et résulte de la perte de poids après évaporation du benzène qui est le solvant de récupération.
  • La température de viscoréduction est fixée à 420°C ce qui correspond à l'obtention d'une recette de stabilité satisfaisante (mérite = 7, dans l'essai 23).
  • Les recettes des essais 23, 24, 25 et 26, sont analysées selon une technique dite de "pyroanalyse", telle que décrits plus haut, qui donne notamment accès aux valeurs de pic résiduel et aux taux de conversion.
  • Le programme de montée en température de cette pyroanalyse est le suivant:
  • 20° C/min pendant 22,5 mn de chauffage en atmosphère inerte et 100°C/mn pendant 2,5 mn de combustion du résidu. Les points d'ébullition de n-alcanes à 500°C et 570°C correspondent à des temps de chauffage de 13,5 mn et 16 mn.
  • Les taux de conversion se calculent par différence entre la fraction 100°―500°C de la recette et celle du RAB initial, plus le taux de gaz. Par exemple, le taux de conversion de l'essai 23 est égal à:
    Figure imgb0005
  • Le tableau 5 donne les pourcentages des différentes fractions de la phase liquide et le tableau 6 donne les analyses centésimales (C, H, N, 0, S, métaux) de la phase liquide.
  • Dans les essais 25 et 26, on a mis en jeu 15% en poids de dihydroanthracène (DHA). Le poids de DHA a été déduit chaque fois que cels est possible: pour le % 100―500°C, le % d'asphaltènes, les % C et H des analyses centésimales.
  • La mesure de la viscosité se fait sur la totalité de la recette pétrole + dihydroanthracène à une température de 60°C.
  • La comparaison des essais 23 et 24 amène les remarques suivantes:
  • Dans les mêmes conditions de température, on retrouve le phénomène d'avance à la cokéfaction. Avec le prétraitement d'oxydation, il y a 8% de coke et le liquide présente une viscosité, un pic résiduel et un taux d'asphaltènes plus éléves qu'avec le RAB non oxydé (170 cP contre 115 cP; 33,3% d'asphaltènes Cs contre 26%).
  • D'autre part, le rapport atomique H/C passe de 1,54 pour le RAB initial, à 1,41 pour l'essai 23 et à 1,34 pour l'essai 24, ce qui montre l'appauvrissement en hydrogène dû essentiellement à la formation des gaz dont la teneur est très importante pour le RAO viscoréduit (14,5%).
  • En effet, l'essai 24 a un taux de conversion supérieur à celui de l'essai 23, mais cet accroissement est essentiellement dû à l'augmentation du taux de gaz.
  • Les essais 25 et 23 dans le tableau 5, indiquent que le dihydroanthracène utilisé le RAB n'agit pas sur la formation des produits légers (taux de conversion pratiquement identique), mais plutôt sur la fraction lourde: le taux d'asphaltènes et la teneur du pic résiduel sont en baisse. Le résidu de viscoréduction a une stabilité satisfaisante voire améliorée avec un mérite de 6,5 et est plus riche en hydrogène (le rapport atomique H/C qui est de 1,55, c'est-à-dire égal à celui du RAB initial, confirme l'aptitude du DHA à être un très bon inhibiteur des dehydrogénation). La comparaison entre les essais 24 et 26 indique que la présence du donneur d'hydrogène avec le RAB oxydé permet d'eviter totalement la formation de coke et aussi de conserver un gain de conversion important par rapport au RAB non préoxydé, tout en ayant un liquide viscoréduit de bonne stabilité.
  • Le gain de conversion est dû à une augmentation de la fraction 100-5000C et non plus à une progression du taux de gaz.
  • La stabilité est satisfaisante; elle se manifeste par des teneurs en pic résiduel et surtout en asphaltènes assez faibles (18,4% et 20,3% respectivement). De plus, la viscosité est inférieure à celle du mélange RAB-DHA pyrolysé dans les mêmes conditions, mais non préoxydé (330 cP à 60°C contre 420 cP pour l'essai 25).
  • D'une mainère générale, les analyses centésimales du soufre et des métaux ne font apparaître aucun changement pour les essais d'hydroviscoréduction (tableau 6).
  • La comparaison entre les essais 25 et 26 montre l'intérêt du prétraitement oxydatif associé à un diluant donneur d'hydrogène; il en résulte une meilleure conversion de la fraction lourde (% d'asphaltènes, % 570"C en diminution) en liquide valorisable qui présente une viscosité abaissée et une stabilité satisfaisante.
  • Les résultats des essais de viscoréduction sous pression de vapeur d'eau (P = 20 bars à 420°C) au RAB et du RAO en présence ou non du donneur d'hydrogène, sont indiqués sur les tableaux 7, 8 et 9.
  • Comme en hydroviscoréduction, le prétraitement oxydatif (essai 28) donne un alourdissement de la recette de viscoréduction (viscosité) élevée mais pas de coke) et un gain en conversion par rapport à l'essai 27. Une augmentation de 30% de la conversion (le taux passe de 18 à 24%) et due pour à la formation accrue du gaz et pour moitié, à la fraction 100―500°C.
  • L'étude de la distribution de la phase liquide de l'essai 28 comparée à celle de l'essai 27 montre que 15% environ de la fraction 500-570°+C (48,3% à 41,4%) se transforment par dismutation pour former d'une part, des produits plus légers, responsables de la conversion, et, d'autre part, des produits plus lourds.
  • L'analyse des métaux (vanadium et nickel) montre que le traitement thermique de la charge oxydée fournit une bonne démétallisation, puisque plus de la moitié du nickel et du vanadium en place est éliminée dans la phase aqueuse, tandis que l'essai 27 donne, après extraction, une démétallisation de 25% environ. L'oxydation par le peroxyde d'hydrogène en présence de méthanol ne donne pas une démétallisation directe.
  • La comparaison des essais 27 et 29 fait apparaître un faible rôle du dihydroanthracène sur le RAB lui- même. La valeur élevée du mérite pour l'essai 18 (mérite = 8) est due à la présence du mélange DHA/ antracène qui fausse la validité du test à la tache. Par contre, l'action du DHA sur le RAO augmente le gain en conversion par rapport à l'essai 29 de plus de 50% (le taux de conversion passe à 28,1 %), dont une faible partie seulement est due à l'augmentation de taux de gaz. C'est toujours la fraction 500-570°+C qui est responsable de cette modification, mais l'introduction du DHA dans le pétrole oxydé permet notamment d'agir très fortement sur la fraction 570°+C quie voit son importance réduite d'un tiers (de 2,5% à 17,3%).
  • Ainsi, la viscoréduction sans diluant donneur d'hydrogène du RAB préoxydé amène un gain de conversion, mais donne une recette de viscoréduction moins stable.
  • L'emploi du dihydroanthracène permet un gain en conversion très supérieur par rapport à la viscoréduction du mélange RAB non oxydé/DHA, le DHA agissant plus particulièrement sur la fraction 5700+C.
  • Le prétraitement oxydatif par H202/CH30H associé à un diluant donneur d'hydrogène, est favorable dans les deux cas de viscoréduction (essais 30 et 26). Le gain en conversion est proportionnellement plus important en viscoréduction à l'eau, ce qui donne une recette (essai 30) ayant un pourcentage de 500°"C et une viscosité comparables à ceux obtenus en hydroviscoréduction. Mais la qualité du liquide viscoréduit pour l'essai sous pression d'hydrogène (essai 26) est supérieure: taux d'asphaltènes et pourcentage de pic résiduel inférieurs, respectivement 20,3% contre 27% et 18,4% contre 24,3%.
  • Un autre intérêt de la viscoréduction à l'eau des pétroles préoxydés repose sur l'élimination de la phase aqueuse ultérieure qui permet une démétallisation pouvant atteindre 60% grâce au prétraitement d'oxydation (essai 28).
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
    Figure imgb0014

Claims (12)

1. Procédé de conversion thermique d'une charge consistant en une fraction lourde de matières organiques, caractérisé en ce que l'on soumet ladite fraction à un traitement thermique en présence d'une proportion mineure d'au moins un composé organique monooxygéné générateur de radicaux, choisi dans le groupe formé par les oxydes de soufre et les N-oxydes d'azote, et dans lequel l'oxygène est porté par l'atome de soufre et/ou d'azote, ledit composé monooxygéné étant mis en jeu à raison de 1 à 50% en poids par rapport à la fraction lourde.
2. Procédé selon la revendication 1, caractérisé en ce que l'oxyde de soufre est un dialkylsulfoxyde, un diarylsulfoxyde, un alkylarylsulfoxyde ou un oxyde de soufre thiophénique, en ce que le N-oxyde d'azote est un oxyde de trialkylamine, un oxyde de triarylamine, un oxyde d'amine ayant au moins un groupement alkyl et au moins un groupement aryl ou un oxyde d'azote aromatique.
3. Procédé selon l'une des revendications 1 à 2, caractérisé en ce que ledit composé oxygéné est le diméthylsulfoxyde, le diphénylsulfoxyde, le didodécylsulfoxyde, l'oxyde de thiophène ou de benzothiophène, ou une coupe hydrocarbonée contenant du soufre et/ou de l'azote, oxygénée ex situ.
4. Procédé selon l'une des revendications 1 à 2, caractérisé en ce que ledit composé oxygéné, réduit après traitement thermique, est séparé, régénéré par oxydation ex situ et recyclé dans la charge.
5. Procédé selon la revendication 1, caractérisé en ce que l'on soumet avant le traitement thermique ladite fraction lourde à une oxydation douce par au moins un peroxyde, de préférence du peroxyde d'hydrogène.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'on utilise en outre au moins un diluant donneur d'hydrogène.
7. Procédé selon la revendication 6, caractérisé en ce que l'on utilise ledit diluant donneur d'hydrogène dans une proportion comprise entre 10 et 400% en poids par rapport à ladite charge.
8. Procédé selon la revendication 7, caractérisé en ce que ledit diluant donneur d'hydrogène est le tétrahydronaphtalène ou le dihydroanthracène, ou une coupe hydroaromatique de pétrole, telle qu'une coupe L.C.O. partiellement hydrogénée.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que ledit traitement thermique consisté en une viscoréduction ou une hydroviscoréduction.
10. Composition utilisable pour la mise en oeuvre du procédé selon l'une des revendications 1 à 9, caractérisé en ce qu'elle comprend d'une part au moins un composé organique monooxygéné générateur de radicaux choisi dans le groupe formé par les oxydes de soufre et les N-oxydes d'azote, et dans lequel l'oxygène est porté par l'atome de soufre et/ou d'azote et d'autre part au moins un diluant donneur d'hydrogène, le rapport pondéral dudit donneur d'hydrogène par rapport au composé organique étant de 0,2:1 à 400:1.
11. Procédé selon la revendications 10 dans laquelle le diluant donneur d'hydrogène est le tétrahydro- naphthalène, le dihydroanthracène ou une coupe hydroaromatique de pétrole.
12. Composition selon l'une des revendications 10 à 11 dans laquelle ledit composé monooxygéné est un oxyde de soufre choisi parmi les dialkylsulfoxydes, les diarylsulfoxydes, les alkylarylsulfoxydes, et les oxydes de soufre thiophénique, et dans laquelle ledit composé est un oxyde d'azote choisi parmi les oxydes de trialkylamine, les oxydes de triarylamine, les oxydes d'amines ayant au moins un groupement alkyl et au moins un groupement aryl et les oxydes d'azote aromatiques.
EP87402609A 1986-11-25 1987-11-19 Procédé de conversion thermique de fractions lourdes de pétrole et de residus de raffinage, en présence de composés oxygénés du soufre ou de l'azote et compositions contenant ces composés Expired - Lifetime EP0269515B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8616408A FR2607145B1 (fr) 1986-11-25 1986-11-25 Procede ameliore de conversion thermique de fractions lourdes de petrole et de residus de raffinage, en presence de composes oxygenes du soufre, de l'azote ou du phosphore
FR8616408 1986-11-25

Publications (2)

Publication Number Publication Date
EP0269515A1 EP0269515A1 (fr) 1988-06-01
EP0269515B1 true EP0269515B1 (fr) 1991-01-23

Family

ID=9341186

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87402609A Expired - Lifetime EP0269515B1 (fr) 1986-11-25 1987-11-19 Procédé de conversion thermique de fractions lourdes de pétrole et de residus de raffinage, en présence de composés oxygénés du soufre ou de l'azote et compositions contenant ces composés

Country Status (7)

Country Link
US (1) US4869804A (fr)
EP (1) EP0269515B1 (fr)
JP (1) JPS63142094A (fr)
DE (1) DE3767673D1 (fr)
ES (1) ES2021383B3 (fr)
FR (1) FR2607145B1 (fr)
ZA (1) ZA878797B (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814065A (en) * 1987-09-25 1989-03-21 Mobil Oil Company Accelerated cracking of residual oils and hydrogen donation utilizing ammonium sulfide catalysts
FR2628437B1 (fr) * 1988-03-14 1992-12-31 Inst Francais Du Petrole Procede de traitement thermique de charges hydrocarbonees en presence de polysulfures et de donneurs d'hydrogene
US5318697A (en) * 1990-02-20 1994-06-07 The Standard Oil Company Process for upgrading hydrocarbonaceous materials
US5068027A (en) * 1990-02-20 1991-11-26 The Standard Oil Company Process for upgrading high-boiling hydrocaronaceous materials
US5316655A (en) * 1990-02-20 1994-05-31 The Standard Oil Company Process for making light hydrocarbonaceous liquids in a delayed coker
US6494944B1 (en) 2000-03-02 2002-12-17 Akzo Nobel N.V. Amine oxides as asphalt emulsifiers
FR2850041B1 (fr) * 2003-01-16 2006-07-07 Totalfinaelf France Catalyseur d'hydrotraitement, son procede de preparation et son utilisation dans un procede de purification d'hydrocarbures.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292168A (en) * 1979-12-28 1981-09-29 Mobil Oil Corporation Upgrading heavy oils by non-catalytic treatment with hydrogen and hydrogen transfer solvent
US4298455A (en) * 1979-12-31 1981-11-03 Texaco Inc. Viscosity reduction process
US4469586A (en) * 1982-09-30 1984-09-04 Chevron Research Company Heat exchanger antifoulant
FR2568580B1 (fr) * 1984-08-02 1987-01-09 Inst Francais Du Petrole Procede et appareil pour craquage catalytique en lit fluide
AU580617B2 (en) * 1984-09-10 1989-01-19 Mobil Oil Corporation Process for visbreaking resids in the presence of hydrogen- donor materials and organic sulfur compounds
US4608152A (en) * 1984-11-30 1986-08-26 Phillips Petroleum Company Hydrovisbreaking process for hydrocarbon containing feed streams

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tetrahedron Lett. 24, 651-654, 1983 *

Also Published As

Publication number Publication date
US4869804A (en) 1989-09-26
FR2607145A1 (fr) 1988-05-27
DE3767673D1 (de) 1991-02-28
EP0269515A1 (fr) 1988-06-01
JPS63142094A (ja) 1988-06-14
ZA878797B (en) 1989-07-26
ES2021383B3 (es) 1991-11-01
FR2607145B1 (fr) 1990-06-08

Similar Documents

Publication Publication Date Title
CA2092787C (fr) Procede d'hydroconversion de fractions lourdes en phase liquide en presence d'un catalyseur disperse et d'additif polyaromatique
EP0073690B1 (fr) Procédé d'hydroconversion catalytique d'hydrocarbures lourds en phase liquide et en présence d'un catalyseur dispersé et de particules charbonneuses
US5496464A (en) Hydrotreating of heavy hydrocarbon oils in supercritical fluids
US5316659A (en) Upgrading of bitumen asphaltenes by hot water treatment
CA2615197A1 (fr) Procede de conversion de residus incluant 2 desasphaltages en serie
CA2890371C (fr) Procede de desasphaltage selectif de charges lourdes
FR3053047A1 (fr) Procede ameliore d'hydroconversion profonde au moyen d'une extraction des aromatiques et resines avec valorisation de l'extrait a l'hydroconversion et du raffinat aux unites aval.
FR3098522A1 (fr) Procédé de conversion d’une charge contenant de l’huile de pyrolyse
EP0269515B1 (fr) Procédé de conversion thermique de fractions lourdes de pétrole et de residus de raffinage, en présence de composés oxygénés du soufre ou de l'azote et compositions contenant ces composés
FR2504144A1 (fr) Nouveau procede d'hydrotraitement d'hydrocarbures lourds en presence de metaux reduits
FR2459276A1 (fr) Procede pour transformer le charbon en produits liquides
EP0235027B1 (fr) Procédé de fractionnement d'asphaltes solides
US3310484A (en) Thermal cracking in an oxygen free atmosphere
CA2815618A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique et extraction liquide/liquide de la fraction lourde
EP0333554B1 (fr) Procédé de traitement thermique de charges hydrocarbonées en présence de polysulfures et de donneurs d'hydrogène
WO2012085408A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par decontamination, hydroconversion en lit bouillonnant, et fractionnement par distillation atmospherique
BE1019627A3 (fr) Procede de valorisation de bruts lourds et de residus petroliers.
NL2020504B1 (en) Process for preparing a sweetened hydrocarbon liquid composition with reduced tendency to form gums, a scavenger composition for use in said process, and the sweetened hydrocarbon liquid composition with reduced tendency to form gums so prepared.
Savel'Ev et al. High-sulfurous Argentinian asphaltites and their thermal liquefaction products
FR2540882A1 (fr) Hydrodesulfuration catalytique de melanges d'hydrocarbures
FR2631631A1 (fr) Procede d'hydroviscoreduction d'une charge d'hydrocarbures en presence d'une composition catalytique comprenant un sulfure metallique en suspension dans un liquide contenant des asphaltenes
BE424910A (fr)
SU1461756A1 (ru) Способ получени непредельных углеводородов и синтез-газа
FR2829771A1 (fr) Procede de desulfuration et/ou de desazotation d'un melange d'hydrocarbures
EP3121249A1 (fr) Procédé d'élimination de mercure d'une charge hydrocarbonée lourde en amont d'une unité de fractionnement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19880829

17Q First examination report despatched

Effective date: 19890927

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 3767673

Country of ref document: DE

Date of ref document: 19910228

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920917

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921022

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921110

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19921127

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921130

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921219

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931120

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931130

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 19931130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931119

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940802

EUG Se: european patent has lapsed

Ref document number: 87402609.9

Effective date: 19940610

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19941214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041013

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060731