EP0158629A2 - Cycle à vapeur pour installation énergétique à vapeur - Google Patents

Cycle à vapeur pour installation énergétique à vapeur Download PDF

Info

Publication number
EP0158629A2
EP0158629A2 EP85890073A EP85890073A EP0158629A2 EP 0158629 A2 EP0158629 A2 EP 0158629A2 EP 85890073 A EP85890073 A EP 85890073A EP 85890073 A EP85890073 A EP 85890073A EP 0158629 A2 EP0158629 A2 EP 0158629A2
Authority
EP
European Patent Office
Prior art keywords
steam
temperature
turbine
pressure
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85890073A
Other languages
German (de)
English (en)
Other versions
EP0158629A3 (en
EP0158629B1 (fr
Inventor
Herbert Dipl.-Ing. Dr. Univ. Prof. Jericha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0158629A2 publication Critical patent/EP0158629A2/fr
Publication of EP0158629A3 publication Critical patent/EP0158629A3/de
Application granted granted Critical
Publication of EP0158629B1 publication Critical patent/EP0158629B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K19/00Regenerating or otherwise treating steam exhausted from steam engine plant
    • F01K19/02Regenerating by compression
    • F01K19/04Regenerating by compression in combination with cooling or heating

Definitions

  • the invention relates to a new steam cycle for improving the thermal efficiency of steam power plants.
  • This cycle can be used for condensing power plants as well as for counter pressure plants.
  • the absolute amount of the achievable thermal efficiency is significantly improved
  • the proportion of electrical energy that can be generated is improved compared to the proportion of heat delivery.
  • Heat sources of all kinds are possible as heat sources, in particular the heat can be supplied to the steam cycle to be described below by an atmospherically fired steam boiler, but also by a pressure-fired boiler charged by means of compressors and gas turbines.
  • the state of the art can be determined.
  • the main advantage of the steam circuit in its classical form by Clausius and Rankine is that the compression is carried out in the liquid phase of the cycle medium, and therefore a comparable g le i chswe i se very low compression work is required, the addition in an easy given machine, , namely the feed pump, which works at a relatively low temperature and is therefore simple and reliable to construct. Furthermore, that the subsequent evaporation of the circulating agent in the heating surface of the boiler brings about good cooling of the pipes and therefore ensures relatively low thermal loads on the pipes.
  • the real technical development problem was therefore only the development of a suitable expansion machine, in the current form of the steam turbine, a machine of ever increasing technical complexity, but in which the vast majority of electrical energy generation still takes place worldwide.
  • This cycle consisting of compression, heat exchange, heat supply, expansion, heat exchange and heat dissipation is run through in a simple loop and lies in the T, s diagram of the water vapor above the limit curve and the compression in all cases to the left of the critical point, ie in the range of entropies smaller than the critical entropy.
  • a heat exchanger is arranged in this circuit, which makes it possible to shift the expansion line of the high-temperature turbine to the left in the h, s diagram so that a suitable condensation point is obtained in the vicinity of the saturated steam curve.
  • this heat exchanger also serves to further increase the temperature range of the heat supply to increase by the fact that the supply of heat does not start immediately after the compressor, but only after warming up in the heat exchanger, so that this measure also contributes to significantly increasing the mean temperature of the supply of heat in the process.
  • part of the steam is branched off from this circuit into the condensation turbine, passes through a steam circuit of the usual type with condensation and tap feed water preheating, but the preheated feed water is now injected into the upper steam circuit; that the necessary cooling in front of the steam compressor and in any intermediate stages within the steam compressor is achieved.
  • the mass flow is closed and the heat flow from the supply of heat at high temperature for heat dissipation into power generation and condensation at low temperature is given.
  • the design of the high-temperature steam turbine required here has the advantage that its operating pressure is comparatively low and roughly corresponds to the pressure of an intermediate superheating turbine of a conventional steam turbine, so that in this case the machine can be constructed with a housing with a much smaller wall thickness.
  • suitable ceramic and mineral materials and the corresponding strengthening of an insulation body by means of metallic reinforcements it is easily possible to construct such an internal insulation in a reliable manner.
  • the steam compressor works in the medium pressure and low temperature range and can therefore be designed as a conventional turbomachine.
  • the envisaged water injection in front of the steam compressor is said to result in moisture in the range of 5 to 12%. After the operating experience with saturated steam turbines, which work perfectly in this moisture range, it does not seem to be a problem to offer a steam compressor, especially also for. B. to apply such a radial design with such entry moisture.
  • the desuperheater requires the warmed up condensate to be atomized by means of appropriate injection nozzles, which can be achieved in the necessary fineness by slightly increasing the pressure generated by the feed pump.
  • the droplets injected into the vapor stream of the main stream are carried further by this and evaporated by supplying heat from the superheating area, so that a sufficiently fine distribution of the droplets in the saturated steam area arises in accordance with the selected injection drop size.
  • the steam heat exchanger transfers heat from the steam of low pressure and higher temperature to the steam flow of higher pressure and lower temperature. Its temperature range can generally be selected so that only conventional boiler steels have to be used. It is therefore possible to build such a device with a sufficient cross-section and inexpensively so that low pressure losses occur on both sides.
  • This heating surface represents the only heat-absorbing heating surface of the boiler to be described in the following.
  • the steam must be heated to the maximum temperature of the process.
  • medium pressure according to today's conventional terms. If the temperature is high here and increased above the current peak value, higher quality materials have to be used for the corresponding pipes. However, this can be done in a suitable manner by selecting austenitic tube materials or also nickel-based tube materials.
  • the condensation steam turbine and the condenser, as well as the tap preheating system are designed in a completely conventional manner. The same applies to the feed pump and its drive, only with the precaution to have to apply the pressure difference to atomize the injection water.
  • the boiler can be designed as an atmospherically fired boiler with any fuel. It is only necessary to adapt the flue gases from the boiler and the air drawn in to one another in a heat exchanger so that in the '.
  • the combustion chamber of the boiler creates a temperature with a sufficient temperature difference is above temperature. which the steam heater has. Taking into account the fact that the specific heats of the boiler exhaust gas and the intake air are different due to the combustion process and the fuel content, but also taking into account the fact that the air is drawn in colder than the flue gas is released into the chimney, this is easily possible .
  • the air must be preheated to approximately 500 ° C and the heat removed by exchanging it from the boiler exhaust gas.
  • the states C 15 and C 16 mean the delivery into the condensate pump, C 17 the state after the low-pressure preheater, C 18 the state after the feed water degasser and preheater, C 19 the state after the feed pump and C 20 the state of the injection water after Warming up in the high-pressure preheater, before the injection in the injection coolers 23 and 24.
  • the states of the upper steam circuit C 3 - C 8 run according to the cooling in the overheating area and C 8, C 9 to produce the desired humidity in front of the low-pressure compressor from.
  • the state curve in the intercooler 24 corresponds completely analogously to the state points C 10 to C 11 to C 12.
  • the compression in the two compressors is described by the state curves C 9 to C 10 and C 12 to C 13.
  • the temperature differences corresponding to the condition points C 3 with respect to C 13 and C 2 with respect to C 14 serve to transfer the heat in the heat exchanger by preheating the steam to condition point C 14.
  • the state curve C 14 to C 1 characterizes the heat supply in the steam heater 10.
  • FIG. 3 It means 3.1 the high-temperature steam turbine (13 in FIG. 1) in a two-shaft design with a high-speed compressor drive turbine 3.11 and with a generator drive turbine 3.12 running at mains frequency, also called a utility turbine, also a medium one and the high pressure stage of the compressor, shown here, in the.
  • Design as a high-speed radial compressor these are designated 3.2 as a high-speed medium and high-pressure compressor (12 in Fig. 1).
  • the insulation body, which is filled with filler pieces and stagnant steam, is 3.3, the baffles holding it together with pressure compensation bores and sieve-like plates are denoted by 3.4.
  • the gap between the insulation body and the inside of the housing is 3.5, its drainage 3.6. (The drainage is arranged at the bottom of the housing, shown rotated in Fig. 3).
  • the rotor cooling is designated 3.7 for the compressor turbine and 3.8 for the utility turbine.
  • the supply takes place according to FIG. 1 via line 13, 1 from the compressor, the cooling channels in the rotors themselves can be designed according to ⁇ P 290 927 or ⁇ P 958 337, for example. Otherwise, 3.91 denotes the steam flow from the low-pressure compressor, 3.92 the steam flow to the high-pressure compressor, 3.93 the superheated steam flow from the steam heater, 3.94 the steam outlet to the heat exchanger and 3.95 the supply of the intermediate store with oil and coolant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
EP85890073A 1984-03-23 1985-03-21 Cycle à vapeur pour installation énergétique à vapeur Expired - Lifetime EP0158629B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT98484 1984-03-23
AT984/84 1984-03-23

Publications (3)

Publication Number Publication Date
EP0158629A2 true EP0158629A2 (fr) 1985-10-16
EP0158629A3 EP0158629A3 (en) 1986-02-26
EP0158629B1 EP0158629B1 (fr) 1990-08-16

Family

ID=3504276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85890073A Expired - Lifetime EP0158629B1 (fr) 1984-03-23 1985-03-21 Cycle à vapeur pour installation énergétique à vapeur

Country Status (2)

Country Link
EP (1) EP0158629B1 (fr)
DE (1) DE3579183D1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046566A1 (fr) * 1999-12-21 2001-06-28 Siemens Aktiengesellschaft Procede d'exploitation d'une installation de turbine a vapeur et installation de turbine a vapeur fonctionnant selon ledit procede
WO2006035256A2 (fr) * 2004-09-29 2006-04-06 Elthom Enterprises Limited Procedes de production de l'exergie
CN101696643B (zh) * 2009-10-30 2012-09-19 北京联合优发能源技术有限公司 热电联产低温热能回收装置及其回收方法
WO2015000536A1 (fr) * 2013-07-05 2015-01-08 Siemens Aktiengesellschaft Procédé de préchauffage de l'eau d'appoint dans des centrales électriques à vapeur avec découplage de la vapeur de processus
CN107448249A (zh) * 2017-07-14 2017-12-08 中国神华能源股份有限公司 燃机透平冷却控制方法及装置、存储介质
CN107780982A (zh) * 2017-12-07 2018-03-09 华电郑州机械设计研究院有限公司 一种在线的间接空冷高背压供热机组背压控制***及方法
CN112360571A (zh) * 2020-10-26 2021-02-12 北京动力机械研究所 一种低散热闭式布雷顿循环热电转换***
CN117682593A (zh) * 2024-02-02 2024-03-12 广东美的暖通设备有限公司 负压自除氧设备及其控制***和控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012223024A1 (de) * 2012-12-13 2014-06-18 Zf Friedrichshafen Ag Abwärmenutzungseinheit für einen Fahrzeugantrieb

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1212561B (de) * 1962-09-05 1966-03-17 Licentia Gmbh Axial-Hochdruckheissdampf-Turbine
DE1220671B (de) * 1963-02-15 1966-07-07 Escher Wyss Ag Gehaeuse fuer Gas- oder Dampfturbinen
AT290927B (de) * 1968-10-28 1971-06-25 Elin Union Ag Kühlung des Trommelrotors von Gasturbinen
DE2262305A1 (de) * 1972-12-01 1974-06-20 Bbc Brown Boveri & Cie Dampfkraftanlage mit druckgefeuertem dampfkessel
DE2637924A1 (de) * 1975-09-12 1977-03-17 Stal Laval Turbin Ab Kombinierte dampf- und gasturbinenanlage
GB1470527A (en) * 1974-10-08 1977-04-14 Lang W Steam power plant
DE2003954B2 (de) * 1969-01-29 1977-05-05 Elin-Union A G für elektrische Industrie, Wien Ueber rohrleitungen und ventile beaufschlagte gasturbine
FR2435600A1 (fr) * 1978-08-10 1980-04-04 Bbc Brown Boveri & Cie Installation de turbine a vapeur
US4433545A (en) * 1982-07-19 1984-02-28 Chang Yan P Thermal power plants and heat exchangers for use therewith

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1212561B (de) * 1962-09-05 1966-03-17 Licentia Gmbh Axial-Hochdruckheissdampf-Turbine
DE1220671B (de) * 1963-02-15 1966-07-07 Escher Wyss Ag Gehaeuse fuer Gas- oder Dampfturbinen
AT290927B (de) * 1968-10-28 1971-06-25 Elin Union Ag Kühlung des Trommelrotors von Gasturbinen
DE2003954B2 (de) * 1969-01-29 1977-05-05 Elin-Union A G für elektrische Industrie, Wien Ueber rohrleitungen und ventile beaufschlagte gasturbine
DE2262305A1 (de) * 1972-12-01 1974-06-20 Bbc Brown Boveri & Cie Dampfkraftanlage mit druckgefeuertem dampfkessel
GB1470527A (en) * 1974-10-08 1977-04-14 Lang W Steam power plant
DE2637924A1 (de) * 1975-09-12 1977-03-17 Stal Laval Turbin Ab Kombinierte dampf- und gasturbinenanlage
FR2435600A1 (fr) * 1978-08-10 1980-04-04 Bbc Brown Boveri & Cie Installation de turbine a vapeur
US4433545A (en) * 1982-07-19 1984-02-28 Chang Yan P Thermal power plants and heat exchangers for use therewith

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046566A1 (fr) * 1999-12-21 2001-06-28 Siemens Aktiengesellschaft Procede d'exploitation d'une installation de turbine a vapeur et installation de turbine a vapeur fonctionnant selon ledit procede
JP2003518220A (ja) * 1999-12-21 2003-06-03 シーメンス アクチエンゲゼルシヤフト 蒸気タービン設備の運転方法およびこの方法で運転される蒸気タービン設備
CN1297732C (zh) * 1999-12-21 2007-01-31 西门子公司 汽轮机装置的运行方法以及按此方法工作的汽轮机装置
CZ300521B6 (cs) * 1999-12-21 2009-06-10 Siemens Aktiengesellschaft Zpusob provozu parního turbosoustrojí a podle neho pracující parní turbosoustrojí
WO2006035256A2 (fr) * 2004-09-29 2006-04-06 Elthom Enterprises Limited Procedes de production de l'exergie
WO2006035256A3 (fr) * 2004-09-29 2006-08-24 Elthom Entpr Ltd Procedes de production de l'exergie
CN101696643B (zh) * 2009-10-30 2012-09-19 北京联合优发能源技术有限公司 热电联产低温热能回收装置及其回收方法
CN105358909A (zh) * 2013-07-05 2016-02-24 西门子公司 用于借助工艺蒸汽耦合输出预加热蒸汽发电厂中的补充水的方法
WO2015000536A1 (fr) * 2013-07-05 2015-01-08 Siemens Aktiengesellschaft Procédé de préchauffage de l'eau d'appoint dans des centrales électriques à vapeur avec découplage de la vapeur de processus
US9890948B2 (en) 2013-07-05 2018-02-13 Siemens Aktiengesellschaft Method for preheating feed water in steam power plants, with process steam outcoupling
CN107448249A (zh) * 2017-07-14 2017-12-08 中国神华能源股份有限公司 燃机透平冷却控制方法及装置、存储介质
CN107780982A (zh) * 2017-12-07 2018-03-09 华电郑州机械设计研究院有限公司 一种在线的间接空冷高背压供热机组背压控制***及方法
CN107780982B (zh) * 2017-12-07 2024-05-14 华电郑州机械设计研究院有限公司 一种在线的间接空冷高背压供热机组背压控制***及方法
CN112360571A (zh) * 2020-10-26 2021-02-12 北京动力机械研究所 一种低散热闭式布雷顿循环热电转换***
CN117682593A (zh) * 2024-02-02 2024-03-12 广东美的暖通设备有限公司 负压自除氧设备及其控制***和控制方法
CN117682593B (zh) * 2024-02-02 2024-05-07 广东美的暖通设备有限公司 负压自除氧设备及其控制***和控制方法

Also Published As

Publication number Publication date
EP0158629A3 (en) 1986-02-26
DE3579183D1 (de) 1990-09-20
EP0158629B1 (fr) 1990-08-16

Similar Documents

Publication Publication Date Title
DE69013981T2 (de) Wärmerückgewinnung in einem Kraftwerk mit kombiniertem Zyklus.
EP0778397B1 (fr) Procédé d'opération d'une centrale combinée avec une chaudière de récuperation et un consommateur de vapeur
DE19645322B4 (de) Kombinierte Kraftwerksanlage mit einem Zwangsdurchlaufdampferzeuger als Gasturbinen-Kühlluftkühler
EP2368021B1 (fr) Générateur de vapeur à récupération de chaleur et procédé pour améliorer le fonctionnement d'un générateur de vapeur à récupération de chaleur
DE60033357T2 (de) Kombikraftwerk mit Gasturbine
DE69929918T2 (de) Gasturbinenkombikraftwerk
DE19544226B4 (de) Kombianlage mit Mehrdruckkessel
DE4321081A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende GuD-Anlage
WO2008107406A2 (fr) Installation à turbine à vapeur et procédé pour faire démarrer une installation à turbine à vapeur
EP0158629A2 (fr) Cycle à vapeur pour installation énergétique à vapeur
DE2630456A1 (de) Brennkraftmaschine
EP0981681B1 (fr) Systeme de turbines a gaz et a vapeur et procede de refroidissement de l'agent refrigerant de la turbine a gaz d'un tel systeme
WO2005056994A1 (fr) Groupe moteur a reservoir d'air
DE19720789B4 (de) Verfahren und Vorrichtung zur Erzeugung von Dampf
EP0037845A1 (fr) Centrale combinée de turbines à gaz et à vapeur
DE102006028007A1 (de) Dampfkraftanlage
DE3815993A1 (de) Zweistoff-turbinenanlage
EP2449228A2 (fr) Procédé pour faire fonctionner une centrale comportant un dispositif de turbine à gaz
DE19612921A1 (de) Kraftwerksanlage und Verfahren zum Betrieb einer Kraftwerksanlage
EP2559867A1 (fr) Procédé de production d'énergie électrique à l'aide d'une centrale électrique combinée et centrale électrique combinée destinée à l'exécution du procédé
AT395635B (de) Kombinierte gasturbine - dampfkraftanlage
DE102013205053B4 (de) Verfahren zum Betrieb eines einen Wasser-Dampf-Kreislauf aufweisenden Kraftwerks
DE3415768C2 (fr)
DE60217476T2 (de) Luftkühlungssystem und Verfahren für ein Kraftwerk mit kombiniertem Kreislauf
EP1242729B1 (fr) Procede permettant de faire fonctionner une turbine a vapeur, ainsi qu'ensemble turbine dote d'une turbine a vapeur fonctionnant selon ledit procede

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19860515

17Q First examination report despatched

Effective date: 19861217

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900816

Ref country code: FR

Effective date: 19900816

REF Corresponds to:

Ref document number: 3579183

Country of ref document: DE

Date of ref document: 19900920

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910331

Ref country code: CH

Effective date: 19910331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950524

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961203