EP0153235B1 - Verfahren zur Produktion von Synthesegas - Google Patents

Verfahren zur Produktion von Synthesegas Download PDF

Info

Publication number
EP0153235B1
EP0153235B1 EP19850400229 EP85400229A EP0153235B1 EP 0153235 B1 EP0153235 B1 EP 0153235B1 EP 19850400229 EP19850400229 EP 19850400229 EP 85400229 A EP85400229 A EP 85400229A EP 0153235 B1 EP0153235 B1 EP 0153235B1
Authority
EP
European Patent Office
Prior art keywords
reactor
gas
temperature
production
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19850400229
Other languages
English (en)
French (fr)
Other versions
EP0153235A1 (de
Inventor
Gérard Chrysostome
Jean-Michel Lemasle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva NP SAS
Original Assignee
Framatome SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Framatome SA filed Critical Framatome SA
Publication of EP0153235A1 publication Critical patent/EP0153235A1/de
Application granted granted Critical
Publication of EP0153235B1 publication Critical patent/EP0153235B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • C10J2300/1238Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma

Definitions

  • the subject of the invention is a process for the production, from a hydrocarbon material, of a synthesis gas based on CO and H 2 which can be used for the synthesis of a chemical substance such as for example methanol, or else as combustible.
  • synthesis gas consisting essentially of carbon monoxide and hydrogen and which can be used as raw material for the synthesis of bodies.
  • chemicals such as methanol or ammonia, or industrial fuel, or even allow reduction and hydrogenation reactions to be carried out.
  • the production of synthesis gas takes place in two successive stages.
  • the gasification proper of the hydrocarbon substance is first carried out, with the production of a gaseous mixture based on CO and H 2 also containing significant proportions of other so-called "fatal” species such as dioxide. carbon, water vapor, methane, unburnt carbon and, in particular in the case of gasification of a biomass product, CnHm hydrocarbons and grouds.
  • agglomerating ash processes the process is carried out at high temperature, which makes it possible to increase the gasification yield.
  • the agglomeration and the evacuation of the ash pose problems which are difficult to solve, in particular in the case of large reactors and this is why, in many cases, it is preferred to maintain in the fluidized bed a moderate temperature, of l '' order of 700 to 800 ° C which allows to remain below the melting or softening temperature of the ash, the latter being close to 1000 ° C in the case of wood.
  • This tempera- ture operating mode Moderate ture is simpler to implement but nevertheless leads, in the case of wood in particular, to the production of relatively large quantities of methane and of hydrocarbon.
  • the gas obtained can have, for example, the following composition, expressed in% by volume on the raw gas: + Traces of tar + unburnt carbon
  • a second reactor is used for this purpose in which a conversion is carried out where the main reactions can be as follows:
  • the partial combustion of the gas produces significant amounts of C0 2 at the expense of CO.
  • approximately 35% of the carbon originating from the raw material can be found in the form of C0 2 , which represents a potential carbon loss of approximately one third.
  • the subject of the invention is a new process which is simpler to implement and which makes it possible to carry out on the one hand the gasification reaction at moderate temperature and on the other hand the conversion reaction at higher temperature without partial combustion of the CO and by therefore without loss of carbon.
  • the method according to the invention makes it easier to adjust the relative proportions of the constituents of the gas produced.
  • a rise in the conversion temperature in the second reactor is obtained by blowing a stream of gas previously brought to a temperature between 3000 and 5000 ° C. by passing it through a plasma torch placed at the outlet of a gas blowing circuit in the conversion reactor, the blown gas flow is adjusted as a function of the temperature and of the proportions of carbon monoxide and hydrogen already existing in the mixture coming from the first reactor gasification.
  • the blown gas is hydrogen
  • the blown gas is nitrogen.
  • the invention also relates to an installation in which the conversion reactor is equipped on the one hand with a plasma torch placed at the outlet of a hydrogen insufflation lance carried by said plasma torch at a temperature comprised between 3000 and 5000 ° C and means for adjusting the flow rate of the blown hydrogen taking into account the flow rate and the temperature of the gases coming from the gasification reactor so that the average temperature of the gas mixture in the conversion reactor is raised to a level sufficient for the conversion of fatal species.
  • Figure 1 is a diagram of an improved installation according to the invention.
  • Figure 2 is a detail view schematically showing the gas blowing lance in the conversion reactor, provided with a plasma torch for heating the gas.
  • FIG 1 there is shown schematically a synthesis gas production installation comprising two reactors 1 and 2 respectively of gasification and conversion.
  • the reactor 1 operates, in a conventional manner, in a fluidized bed or in a circulating bed. It therefore consists of a vertical cylindrical enclosure provided at its base with means for fluidizing the hydrocarbon raw material introduced at 11, by ascending circulation of a gas introduced at 12.
  • the fluidizing gas is preferably a gas useful for reaction, for example water vapor.
  • Oxidizing gas, air or oxygen is injected at 13 to carry out the partial combustion of the hydrocarbon material in the fluidized bed. As indicated, the respective flow rates of hydrocarbon raw material and oxygen are adjusted so that the gasification reaction takes place at moderate temperature, the gases produced leaving at 14, at the top of reactor 1, at a temperature of 700 to 800 ° C.
  • the conversion reactor 2 which consists of a vertical enclosure furnished with refractories and at the end of which are introduced at 21, the gases coming from the gasification reactor 1.
  • the conversion reactor is provided with a lance 3 for blowing a gas brought to very high temperature.
  • the lance 3 is connected to a circuit 31 for injecting pressurized gas and is provided with means 4 for heating the gas to very high temperature before it enters the reactor 2.
  • the means 4 for heating the gas advantageously consists of a plasma torch.
  • a plasma torch which may be commercially available, does not need to be described in detail. It suffices to indicate that it may comprise electrodes 41, 42 offset in the direction of circulation of the gas, between which an electric arc blown by the gas is formed and which allows, at the outlet of the lance 3 in the reactor 2, to produce a zone 43 at very high temperature, of the order of 3000 to 5000 ° C.
  • the inlet 21 of the gases from the gasification reactor 1 takes place at substantially the same level as the inlet of the high temperature gases so that the very high temperature zone is limited around the injection orifice 32 which can be made of a material capable of withstanding such temperatures. It is also possible to use known means for mixing the two gas streams as soon as they enter the reactor, for example by injecting the gas at high temperature in the axis of a vortex formed by the gases introduced by the inlet. 21. The flow rates of the two gas streams are adjusted in suitable proportions so that the temperature inside the reactor 2 is homogeneous and maintained at an average level of between 1200 and 1500 ° C. which favors the conversion reactions (1) to (5) indicated above.
  • a gas is thus obtained very simply free of methane, higher hydrocarbons, and whose carbon dioxide content is lower than that obtained for example by a catalytic process of oxygen reforming.
  • carbon dioxide content is lower than that obtained for example by a catalytic process of oxygen reforming.
  • 10 to 20% of the carbon originating from the starting material is found in the form of CO 2 , the rest, ie 80 to 90% being in the CO form.
  • Another advantage is that the oxygen consumption is lower than in known methods.
  • the high temperature heating of the injected gas leads to an increase in energy consumption, in particular electrical energy for the supply of the plasma torch 4.
  • the association of a plasma torch with the conversion reactor will be advantageous in many cases, in particular whenever there is a large and inexpensive source of energy, for example example of hydroelectric origin.
  • the process makes it possible to save the biomass for the production of synthesis gas and this saving can be significant even in countries where there is a large amount of biomass because it is not possible to conceive the realization of gasification installation.
  • these should not be exploited from the gasification installation and this is why, even in a country very favored from the point of view of the renewal of the biomass, it is useful to draw the maximum potential energy, including CO and H2 of this substance.
  • the consumption, even important, of electric energy can thus be advantageous, and it is in particular the case when important installations of production of hydroelectric or nuclear power are placed in relatively isolated regions which can also be suitable for crops energetic.
  • the gas injected at high temperature, after passing through the plasma torch, can simply be synthetic gas recycled in suitable proportions.
  • the gas leaving at 22 from the conversion reactor 2 contains practically only CO + H 2 + C0 2 + H 2 0 but the H 2 / CO ratio must be adjusted to the appropriate value before the chemical synthesis carried out in a installation 5 provided for this purpose.
  • this ratio must be close to 2 whereas it is generally close to 1 at the outlet of the conversion reactor 2.
  • this gas can be converted subsequently by the known conversion reaction of CO:
  • the reaction therefore consumes part of the CO and also generates additional CO 2 .
  • the blown gas is hydrogen. Taking into account the flow rate and the temperature of the gases resulting from the gasification, and the temperature which makes it possible to obtain the plasma torch 4, it is possible to inject by the lance 3 a controlled flow of hydrogen, so as to control the H 2 / CO ratio in the gas produced. The CO conversion step is then saved and it suffices to eliminate the water vapor in a simple condensing device 51.
  • the installation can operate only with a source of hydrocarbon material and a source of electrical energy because the electrolysis of water makes it possible to generate at the same time, in sufficient quantity, the oxygen injected in 13 in the reactor 1 to supply the quantity of heat necessary for the gasification reaction. It will even be possible to produce a certain amount of excess oxygen, recovered at 15.
  • the use of an electrolysis device will therefore make it possible to avoid the production of oxygen by distillation of the air.
  • electrolysis lies in the fact that there are electrolysis devices supplying hydrogen under a pressure which can be up to 70 bars. The hydrogen can therefore be led directly, through the circuit 31 in the plasma torch 4 without prior compression.
  • gasification and conversion in reactors 1 and 2 can be carried out under pressure and therefore more economically thanks to the resulting reduction in the dimensions of the equipment and the savings made on gas compression. before the synthesis, this must, in all cases, be carried out under pressure.
  • the high temperature gas injected into the conversion reactor could, in general, be any gas useful for synthesis, for example nitrogen in the case of the production of ammonia.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Claims (5)

1. Verfahren zur Produktion von Synthesegas, bei dem zunächst in einem ersten Reaktor (1) eine Vergasung einer teerhaltigen Substanz pflanzlichen Ursprungs, wie beispielsweise ein Biomasseprodukt, durchgeführt wird, bei einer mäßigen Temperatur, die unterhalb der Fusionstemperatur von Aschen liegt, mit der Produktion über verwendbarem Kohlenmonoxyd und Wasserstoff hinaus von sogenannten "fatalen" Stoffen, wie beispielsweise nicht konvertiertem Kohlenstoff, Kohlenwasserstoffen und Teeren, und anschließend, in einem zweiten Reaktor (2) eine Konversion bzw. Umwandlung bei hoher Temperatur der fatalen Stoffe in Wasserstoff und Kohlenmonoxyd durchgeführt wird, dadurch gekennzeichnet, daß eine Erhöhung auf die Konversionstemperatur in dem zweiten Reaktor (2) durch Einblasen eines Gasstromes erreicht wird, der vorher auf eine Temperatur zwischen 3000 und 5000°C durch Hindurchströmen des letzteren in einem Plasmabrenner (4) gebracht wird, der an der Mündung einer Einblasschleife (3) des Gases in den Konversionsreaktor (2) angeordnet ist, wobei die Rate des eingeblasenen Gases in Abhängigkeit der Temperatur und der schon in der Mischung existierenden Verhältnisse von Kohlenmonoxyd und Wasserstoff geregelt wird, die aus dem ersten Vergasungsreaktor (1) ausgestoßen wird.
2. Verfahren zur Produktion von Synthesegas nach Anspruch 1, dadurch gekennzeichnet, daß das eingeblasene Gas Wasserstoff ist.
3. Verfahren zur Produktion von Synthesegas nach Anspruch 1, dadurch gekennzeichnet, daß das eingeblasene Gas Lachgas ist.
4. Verfahren zur Produktion von Synthesegas nach Anspruch 1, dadurch gekennzeichnet, daß die Vergasungstemperatur im ersten Reaktor (1) zwischen 700°C und 800°C liegt.
5. Produktionsanlage von Synthesegas mit einem ersten Reaktor (1) der Vergasung einer teerhaltigen Substanz pflanzlichen Ursprungs, wie einem Biomasseprodukt, und mit einem zweiten Reaktor (2) zur Konversion der sog. "fatalen" Stoffe, die in der Gasmischung enthalten sind, die von dem ersten Reaktor (1) ausgestoßen wird, dadurch gekennzeichnet, daß der Konversionsreaktor (2) einerseits mit einem Plasmabrenner (4), der an der Mündung einer Einblaslanze (3) von Wasserstoff angeordnet ist, welcher durch den Plasmabrenner auf eine Temperatur zwischen 3000 und 5000°C gebracht wird und mit Einrichtungen zur Regelung der eingeblasenen Wasserstoffmenge versehen ist, unter Berücksichtigung der Rate und der Temperatur der von dem Vergasungsreaktor (1) ausgestoßenen Gase, derart, daß die mittlere Temperatur der Gasmischung in dem Konversionsreaktor (2) auf ein Niveau gebracht wird, das für die Konversion der fatalen Stoffe ausreicht.
EP19850400229 1984-02-16 1985-02-12 Verfahren zur Produktion von Synthesegas Expired EP0153235B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8402331A FR2559776B1 (fr) 1984-02-16 1984-02-16 Procede de production de gaz de synthese
FR8402331 1984-02-16

Publications (2)

Publication Number Publication Date
EP0153235A1 EP0153235A1 (de) 1985-08-28
EP0153235B1 true EP0153235B1 (de) 1989-01-18

Family

ID=9301088

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850400229 Expired EP0153235B1 (de) 1984-02-16 1985-02-12 Verfahren zur Produktion von Synthesegas

Country Status (7)

Country Link
EP (1) EP0153235B1 (de)
AU (1) AU578660B2 (de)
BR (1) BR8500707A (de)
DE (1) DE3567672D1 (de)
ES (1) ES8602916A1 (de)
FR (1) FR2559776B1 (de)
PT (1) PT79952B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8306665B2 (en) 2006-05-05 2012-11-06 Plasco Energy Group Inc. Control system for the conversion of carbonaceous feedstock into gas
US8435315B2 (en) 2006-05-05 2013-05-07 Plasco Energy Group Inc. Horizontally-oriented gasifier with lateral transfer system
US8852693B2 (en) 2011-05-19 2014-10-07 Liquipel Ip Llc Coated electronic devices and associated methods
US9109172B2 (en) 2006-05-05 2015-08-18 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier
DE102016214242A1 (de) 2016-08-02 2018-02-08 Thyssenkrupp Ag Anlage und Verfahren zur Umwandlung kohlenstoffhaltiger Brennstoffe in Synthesegas

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE457355B (sv) * 1985-09-25 1988-12-19 Skf Steel Eng Ab Saett att framstaella en ren, koloxid och vaetgas innehaallande gas
AU7975487A (en) * 1986-10-16 1988-04-21 Edward L. Bateman Pty. Ltd Plasma treatment of waste h/c gas to produce synthesis gas
US5656044A (en) * 1992-05-07 1997-08-12 Hylsa S.A. De C.V. Method and apparatus for gasification of organic materials
DE69412559T2 (de) * 1993-10-19 1999-03-25 Mitsubishi Heavy Ind Ltd Verfahren zur Vergasung von organischen Materien
US5922090A (en) * 1994-03-10 1999-07-13 Ebara Corporation Method and apparatus for treating wastes by gasification
DE4412004A1 (de) * 1994-04-07 1995-10-12 Metallgesellschaft Ag Verfahren zum Vergasen von Abfallstoffen in der zirkulierenden Wirbelschicht
EP0776962B1 (de) * 1995-11-28 2002-10-02 Ebara Corporation Verfahren und Vorrichtung zur Behandlung von Abfällen mittels Vergasung
DE69613811D1 (de) * 1996-04-09 2001-08-16 Ansaldo Ricerche S R L Methode und System zur Erzeugung und Verwendung von Brenngasen, insbesondere Gasen hergestellt aus Biomassen und Abfall
US6902711B1 (en) 1996-04-23 2005-06-07 Ebara Corporation Apparatus for treating wastes by gasification
US5900224A (en) * 1996-04-23 1999-05-04 Ebara Corporation Method for treating wastes by gasification
US5980858A (en) 1996-04-23 1999-11-09 Ebara Corporation Method for treating wastes by gasification
WO1998047985A1 (en) * 1997-04-22 1998-10-29 Ebara Corporation Method and apparatus for treating wastes by gasification
WO2003018467A2 (en) * 2001-08-22 2003-03-06 Sasol Technology (Proprietary) Limited Production of synthesis gas and synthesis gas derived products
FR2871554A1 (fr) 2004-06-11 2005-12-16 Alstom Technology Ltd Procede de conversion energetique de combustibles solides minimisant la consommation d'oxygene
BRPI0711330A2 (pt) 2006-05-05 2013-01-08 Plascoenergy Group Inc sistema de reformulaÇço de gÁs usando aquecimento por tocha de plasma
EP2015859A4 (de) 2006-05-05 2010-09-29 Plascoenergy Ip Holdings Slb Gasklimatisierungssystem
WO2007131236A2 (en) 2006-05-05 2007-11-15 Plasco Energy Group Inc. A gas homogenization system
EA201001377A1 (ru) 2007-02-27 2011-04-29 Плэскоуэнерджи Ип Холдингс, С.Л., Бильбао, Шаффхаузен Бранч Многокамерная система и способ преобразования углеродсодержащего сырья в синтез-газ и шлак
FR2921384B1 (fr) * 2007-09-21 2012-04-06 Europlasma Procede et dispositif de traitement d'un gaz de synthese
US9321640B2 (en) 2010-10-29 2016-04-26 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation
JP6652694B2 (ja) 2011-08-04 2020-02-26 カニンガム,スティーブン,エル. プラズマアーク炉および応用
CA2947606A1 (en) 2014-05-09 2015-11-12 Stephen L. Cunningham Arc furnace smeltering system & method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE130031C (de) *
GB189789A (en) * 1921-12-03 1923-09-20 Frans Georg Liljenroth Improved method of producing gas
CH162458A (de) * 1932-06-18 1933-06-30 S I R I Soc It Ricerche Ind Verfahren zur Herstellung einer sauerstofffreien Mischung von Kohlenoxyd und Wasserstoff.
DD114395A1 (de) * 1974-07-08 1975-08-05
EP0057029A1 (de) * 1981-01-21 1982-08-04 ATELIERS DE CONSTRUCTIONS ELECTRIQUES DE CHARLEROI (ACEC) Société Anonyme Verfahren und Vorrichtung zur Behandlung pulverförmiger Stoffe bei hohen Temperaturen
DE3130031A1 (de) * 1981-07-30 1982-04-08 Davy McKee AG, 6000 Frankfurt Verfahren zur vergasung von kohle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8306665B2 (en) 2006-05-05 2012-11-06 Plasco Energy Group Inc. Control system for the conversion of carbonaceous feedstock into gas
US8435315B2 (en) 2006-05-05 2013-05-07 Plasco Energy Group Inc. Horizontally-oriented gasifier with lateral transfer system
US9109172B2 (en) 2006-05-05 2015-08-18 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier
US8852693B2 (en) 2011-05-19 2014-10-07 Liquipel Ip Llc Coated electronic devices and associated methods
DE102016214242A1 (de) 2016-08-02 2018-02-08 Thyssenkrupp Ag Anlage und Verfahren zur Umwandlung kohlenstoffhaltiger Brennstoffe in Synthesegas
WO2018024404A1 (de) 2016-08-02 2018-02-08 Thyssenkrupp Industrial Solutions Ag Anlage und verfahren zur umwandlung kohlenstoffhaltiger brennstoffe in synthesegas
DE102016214242B4 (de) 2016-08-02 2023-03-02 Gidara Energy B.V. Anlage und Verfahren zur Umwandlung kohlenstoffhaltiger Brennstoffe in Synthesegas

Also Published As

Publication number Publication date
PT79952B (fr) 1987-06-03
ES540309A0 (es) 1985-12-01
ES8602916A1 (es) 1985-12-01
AU3893285A (en) 1985-08-22
AU578660B2 (en) 1988-11-03
DE3567672D1 (en) 1989-02-23
BR8500707A (pt) 1985-10-08
FR2559776B1 (fr) 1987-07-17
FR2559776A1 (fr) 1985-08-23
EP0153235A1 (de) 1985-08-28
PT79952A (fr) 1985-03-01

Similar Documents

Publication Publication Date Title
EP0153235B1 (de) Verfahren zur Produktion von Synthesegas
CA2706664C (fr) Procede et chaine de traitement pour la conversion thermochimique par gazeification d'une charge humide de materiau biologique
EP2788453B1 (de) Verfahren zur thermochemischen umwandlung eines rohstoffs auf kohlenstoffbasis in ein synthesegas mit vor allem h2 und co
CA2859480A1 (fr) Procede et equipement de gazeification en lit fixe
FR2501711A1 (fr) Procede et appareil pour la production d'un gaz contenant sensiblement du monoxyde de carbone et de l'ydrogene a partir d'une matiere premiere contenant du carbone et/ou un hydrocarbure
FR2794128A1 (fr) Procede de gazeification autothermique de combustibles solides, installation pour la mise en oeuvre du procede et utilisation de l'installation
FR2587717A1 (fr) Procede de production d'un gaz epure contenant de l'oxyde de carbone et de l'hydrogene
FR2575488A1 (fr) Procede et dispositif de la production d'un gaz compose principalement de co et h2, a partir d'une matiere de depart carbonee
EP1146010B1 (de) Verfahren zur Herstellung eines Wasserstoff und Kohlenmonoxid enthaltenden Gemisches
FR2565993A1 (fr) Gazeification de matiere carbonee
FR2578263A1 (fr) Procede et dispositif pour la gazeification de combustibles fossiles et le reformage d'un combustible gazeux.
EP1048710A1 (de) Verfahren zur Wasserstoffherstellung aus einem in einer Abfallaufbereitunganlage hergestellten Gas
EP1474500A1 (de) Vergasung von abfällen durch plasma
EP1831336A1 (de) Verfahren zur vergasung von kohlenstoffhaltigen materialien und vorrichtung zur realisierung des verfahrens
FR2844804A1 (fr) Procede et installation de valorisation de sous-produits a base de matieres organiques
FR2491490A1 (fr) Procede de transformation thermique des combustibles solides
KR101066251B1 (ko) 하향류식 바이오매스 가스화 장치
BE1001620A3 (fr) Methode de production de gaz pour la fourniture d'energie.
FR2556001A1 (fr) Procede et installation pour reduire une matiere oxydee
FR2792926A1 (fr) Procede pour la production d'un gaz de synthese a debit regule dans une unite de traitement de dechets
EP3828465B1 (de) Solarstrahlreaktor für die thermochemische umwandlung eines kohlenstoffhaltigen ausgangsmaterials mit verbesserter entaschung, entsprechendes funktionsverfahren und anwendung für die vergasung oder reformierung von biomasse
EP3031884B1 (de) Vergasungsverfahren einer ladung von kohlenstoffhaltigem material mit optimierter materialeffizienz und optimierten produktionskosten
FR2811976A1 (fr) Procede et dispositif de production d'un melange gazeux contenant de l'hydrogene et du co par oxydation etagee d'un hydrocarbure
WO2018055095A1 (fr) Procede de gazeification de charge de matiere carbonee dans un reacteur a flux entraîne, a rendement ameliore
EP0307382A1 (de) Kontinuierliches Verfahren zur Herstellung von Kohlenmonoxid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR IT SE

17P Request for examination filed

Effective date: 19850812

17Q First examination report despatched

Effective date: 19861031

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3567672

Country of ref document: DE

Date of ref document: 19890223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910118

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910131

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910227

Year of fee payment: 7

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85400229.2

Effective date: 19920904