EP0153235B1 - Procédé de production de gaz de synthèse - Google Patents

Procédé de production de gaz de synthèse Download PDF

Info

Publication number
EP0153235B1
EP0153235B1 EP19850400229 EP85400229A EP0153235B1 EP 0153235 B1 EP0153235 B1 EP 0153235B1 EP 19850400229 EP19850400229 EP 19850400229 EP 85400229 A EP85400229 A EP 85400229A EP 0153235 B1 EP0153235 B1 EP 0153235B1
Authority
EP
European Patent Office
Prior art keywords
reactor
gas
temperature
production
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19850400229
Other languages
German (de)
English (en)
Other versions
EP0153235A1 (fr
Inventor
Gérard Chrysostome
Jean-Michel Lemasle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva NP SAS
Original Assignee
Framatome SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Framatome SA filed Critical Framatome SA
Publication of EP0153235A1 publication Critical patent/EP0153235A1/fr
Application granted granted Critical
Publication of EP0153235B1 publication Critical patent/EP0153235B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • C10J2300/1238Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma

Definitions

  • the subject of the invention is a process for the production, from a hydrocarbon material, of a synthesis gas based on CO and H 2 which can be used for the synthesis of a chemical substance such as for example methanol, or else as combustible.
  • synthesis gas consisting essentially of carbon monoxide and hydrogen and which can be used as raw material for the synthesis of bodies.
  • chemicals such as methanol or ammonia, or industrial fuel, or even allow reduction and hydrogenation reactions to be carried out.
  • the production of synthesis gas takes place in two successive stages.
  • the gasification proper of the hydrocarbon substance is first carried out, with the production of a gaseous mixture based on CO and H 2 also containing significant proportions of other so-called "fatal” species such as dioxide. carbon, water vapor, methane, unburnt carbon and, in particular in the case of gasification of a biomass product, CnHm hydrocarbons and grouds.
  • agglomerating ash processes the process is carried out at high temperature, which makes it possible to increase the gasification yield.
  • the agglomeration and the evacuation of the ash pose problems which are difficult to solve, in particular in the case of large reactors and this is why, in many cases, it is preferred to maintain in the fluidized bed a moderate temperature, of l '' order of 700 to 800 ° C which allows to remain below the melting or softening temperature of the ash, the latter being close to 1000 ° C in the case of wood.
  • This tempera- ture operating mode Moderate ture is simpler to implement but nevertheless leads, in the case of wood in particular, to the production of relatively large quantities of methane and of hydrocarbon.
  • the gas obtained can have, for example, the following composition, expressed in% by volume on the raw gas: + Traces of tar + unburnt carbon
  • a second reactor is used for this purpose in which a conversion is carried out where the main reactions can be as follows:
  • the partial combustion of the gas produces significant amounts of C0 2 at the expense of CO.
  • approximately 35% of the carbon originating from the raw material can be found in the form of C0 2 , which represents a potential carbon loss of approximately one third.
  • the subject of the invention is a new process which is simpler to implement and which makes it possible to carry out on the one hand the gasification reaction at moderate temperature and on the other hand the conversion reaction at higher temperature without partial combustion of the CO and by therefore without loss of carbon.
  • the method according to the invention makes it easier to adjust the relative proportions of the constituents of the gas produced.
  • a rise in the conversion temperature in the second reactor is obtained by blowing a stream of gas previously brought to a temperature between 3000 and 5000 ° C. by passing it through a plasma torch placed at the outlet of a gas blowing circuit in the conversion reactor, the blown gas flow is adjusted as a function of the temperature and of the proportions of carbon monoxide and hydrogen already existing in the mixture coming from the first reactor gasification.
  • the blown gas is hydrogen
  • the blown gas is nitrogen.
  • the invention also relates to an installation in which the conversion reactor is equipped on the one hand with a plasma torch placed at the outlet of a hydrogen insufflation lance carried by said plasma torch at a temperature comprised between 3000 and 5000 ° C and means for adjusting the flow rate of the blown hydrogen taking into account the flow rate and the temperature of the gases coming from the gasification reactor so that the average temperature of the gas mixture in the conversion reactor is raised to a level sufficient for the conversion of fatal species.
  • Figure 1 is a diagram of an improved installation according to the invention.
  • Figure 2 is a detail view schematically showing the gas blowing lance in the conversion reactor, provided with a plasma torch for heating the gas.
  • FIG 1 there is shown schematically a synthesis gas production installation comprising two reactors 1 and 2 respectively of gasification and conversion.
  • the reactor 1 operates, in a conventional manner, in a fluidized bed or in a circulating bed. It therefore consists of a vertical cylindrical enclosure provided at its base with means for fluidizing the hydrocarbon raw material introduced at 11, by ascending circulation of a gas introduced at 12.
  • the fluidizing gas is preferably a gas useful for reaction, for example water vapor.
  • Oxidizing gas, air or oxygen is injected at 13 to carry out the partial combustion of the hydrocarbon material in the fluidized bed. As indicated, the respective flow rates of hydrocarbon raw material and oxygen are adjusted so that the gasification reaction takes place at moderate temperature, the gases produced leaving at 14, at the top of reactor 1, at a temperature of 700 to 800 ° C.
  • the conversion reactor 2 which consists of a vertical enclosure furnished with refractories and at the end of which are introduced at 21, the gases coming from the gasification reactor 1.
  • the conversion reactor is provided with a lance 3 for blowing a gas brought to very high temperature.
  • the lance 3 is connected to a circuit 31 for injecting pressurized gas and is provided with means 4 for heating the gas to very high temperature before it enters the reactor 2.
  • the means 4 for heating the gas advantageously consists of a plasma torch.
  • a plasma torch which may be commercially available, does not need to be described in detail. It suffices to indicate that it may comprise electrodes 41, 42 offset in the direction of circulation of the gas, between which an electric arc blown by the gas is formed and which allows, at the outlet of the lance 3 in the reactor 2, to produce a zone 43 at very high temperature, of the order of 3000 to 5000 ° C.
  • the inlet 21 of the gases from the gasification reactor 1 takes place at substantially the same level as the inlet of the high temperature gases so that the very high temperature zone is limited around the injection orifice 32 which can be made of a material capable of withstanding such temperatures. It is also possible to use known means for mixing the two gas streams as soon as they enter the reactor, for example by injecting the gas at high temperature in the axis of a vortex formed by the gases introduced by the inlet. 21. The flow rates of the two gas streams are adjusted in suitable proportions so that the temperature inside the reactor 2 is homogeneous and maintained at an average level of between 1200 and 1500 ° C. which favors the conversion reactions (1) to (5) indicated above.
  • a gas is thus obtained very simply free of methane, higher hydrocarbons, and whose carbon dioxide content is lower than that obtained for example by a catalytic process of oxygen reforming.
  • carbon dioxide content is lower than that obtained for example by a catalytic process of oxygen reforming.
  • 10 to 20% of the carbon originating from the starting material is found in the form of CO 2 , the rest, ie 80 to 90% being in the CO form.
  • Another advantage is that the oxygen consumption is lower than in known methods.
  • the high temperature heating of the injected gas leads to an increase in energy consumption, in particular electrical energy for the supply of the plasma torch 4.
  • the association of a plasma torch with the conversion reactor will be advantageous in many cases, in particular whenever there is a large and inexpensive source of energy, for example example of hydroelectric origin.
  • the process makes it possible to save the biomass for the production of synthesis gas and this saving can be significant even in countries where there is a large amount of biomass because it is not possible to conceive the realization of gasification installation.
  • these should not be exploited from the gasification installation and this is why, even in a country very favored from the point of view of the renewal of the biomass, it is useful to draw the maximum potential energy, including CO and H2 of this substance.
  • the consumption, even important, of electric energy can thus be advantageous, and it is in particular the case when important installations of production of hydroelectric or nuclear power are placed in relatively isolated regions which can also be suitable for crops energetic.
  • the gas injected at high temperature, after passing through the plasma torch, can simply be synthetic gas recycled in suitable proportions.
  • the gas leaving at 22 from the conversion reactor 2 contains practically only CO + H 2 + C0 2 + H 2 0 but the H 2 / CO ratio must be adjusted to the appropriate value before the chemical synthesis carried out in a installation 5 provided for this purpose.
  • this ratio must be close to 2 whereas it is generally close to 1 at the outlet of the conversion reactor 2.
  • this gas can be converted subsequently by the known conversion reaction of CO:
  • the reaction therefore consumes part of the CO and also generates additional CO 2 .
  • the blown gas is hydrogen. Taking into account the flow rate and the temperature of the gases resulting from the gasification, and the temperature which makes it possible to obtain the plasma torch 4, it is possible to inject by the lance 3 a controlled flow of hydrogen, so as to control the H 2 / CO ratio in the gas produced. The CO conversion step is then saved and it suffices to eliminate the water vapor in a simple condensing device 51.
  • the installation can operate only with a source of hydrocarbon material and a source of electrical energy because the electrolysis of water makes it possible to generate at the same time, in sufficient quantity, the oxygen injected in 13 in the reactor 1 to supply the quantity of heat necessary for the gasification reaction. It will even be possible to produce a certain amount of excess oxygen, recovered at 15.
  • the use of an electrolysis device will therefore make it possible to avoid the production of oxygen by distillation of the air.
  • electrolysis lies in the fact that there are electrolysis devices supplying hydrogen under a pressure which can be up to 70 bars. The hydrogen can therefore be led directly, through the circuit 31 in the plasma torch 4 without prior compression.
  • gasification and conversion in reactors 1 and 2 can be carried out under pressure and therefore more economically thanks to the resulting reduction in the dimensions of the equipment and the savings made on gas compression. before the synthesis, this must, in all cases, be carried out under pressure.
  • the high temperature gas injected into the conversion reactor could, in general, be any gas useful for synthesis, for example nitrogen in the case of the production of ammonia.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

  • L'invention a pour objet un procédé de production, à partir d'une matière hydrocarbonée, d'un gaz de synthèse à base de CO et H2 utilisable pour la synthèse d'une substance chimique comme par exemple le méthanol, ou bien comme combustible.
  • Par gazéification d'une substance carbonée, par exemple un produit de biomasse ou du charbon, on peut obtenir un gaz dit "de synthèse" constitué essentiellement de monoxyde de carbone et d'hydrogène et qui peut servir de matière première pour la synthèse de corps chimiques tels que le méthanol ou l'ammoniac, ou bien de combustible industriel, ou bien encore permettre de réaliser des réactions de réduction et d'hydrogénation.
  • Normalement la production du gaz de synthèse se fait en deux étapes successives. Dans un premier réacteur, on réalise tout d'abord la gazéification proprement dite de la substance hydrocarbonée, avec production d'un mélange gazeux à base de CO et H2 contenant également des proportions notables d'autre espèces dites "fatales" comme du dioxyde de carbone, de la vapeur d'eau, du méthane, du carbone imbrûlé et, notamment dans le cas de gazéification d'un produit de biomasse, des hydrocarbures CnHm et des grou- drons.
  • Dans de nombreux procédés, on a jugé avantageux de réaliser la gazéification de la substance hydrocarbonée en lit fluidisé en présence d'oxygène. Dans le cas par exemple d'un produit de biomasse, l'utilisation du lit fluidisé permet d'utiliser des déchets de bois de granulométries variables et donc d'économiser sur le broyage de la matière première, mais aussi d'admettre des matériaux variés comme des bois de diverses origines, de l'écorce, de la paille, de la bagasse, ou différents déchets végétaux.
  • L'injection d'oxygène dans le réacteur permet de travailler en mode "autothermique", l'oxygène injecté apportant l'énergie nécessaire à la gazéification par combustion partielle du bois. Toutefois, le gaz produit dans ces conditions contient des proportions significatives de C02 et H20 produit par la combustion partielle.
  • Dans certains procédés dits en cendres agglo- mérantes, on travaille à haute température ce qui permet d'augmenter le rendement de gazéification. Cependant, l'agglomération et l'évacuation des cendres posent des problèmes difficiles à résoudre notamment dans le cas des réacteurs de grandes dimensions et c'est pourquoi, dans de nombreux cas, on préfère maintenir dans le lit fluidisé une température modérée, de l'ordre de 700 à 800°C qui permet de rester en-dessous de la température de fusion ou de ramollissement des cendres, celle-ci étant proche de 1000°C dans le cas du bois. Ce mode de fonctionnement à tempéra-. ture modérée est plus simple à mettre en oeuvre mais conduit cependant, dans le cas du bois notamment, à la production de quantités relativement importantes de méthane et d'hydrocarbure.
  • A titre d'exemple, à la sortie d'un réacteur de gazéification du bois à température modérée, comprise entre 700 et 800°C, le gaz obtenu peut avoir par exemple la composition suivante, exprimée en % volumique sur le gaz brut:
    Figure imgb0001
    +Traces de goudrons+carbone imbrûlé
  • Le gaz ainsi produit présente donc l'inconvénient d'être tout à fait impropre, en l'état, à une synthèse chimique. En revanche, ce procédé de gazéification à température modérée présente l'avantage d'être bien maitrisé, aisément contrôlable, et apte à traiter une variété étendue de matières hydrocarbonées, sans conditionnement préalable souvent très couteux.
  • Il faut alors, dans une seconde étape, ajuster la composition du gaz pour le rendre propre à une synthèse chimique avec un bon rendement, c'est-à-dire en maximisant la production de CO et H2.
  • On utilise à cet effect un second réacteur dans lequel on réalise une conversion où les principales réactions peuvent être les suivantes:
  • Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    Ces réactions, dont la vitesse augmente avec la température, sont toutes endothermiques et nécessitent donc un apport de chaleur qui, jusqu'à présent, était obtenu par injection d'oxygène dans le second réacteur de conversion, de façon à réaliser une combustion partielle du gaz brut provenant du premier réacteur, pour libérer la chaleur nécessaire à la réalisation des réactions (1) à (5).
  • Ces réactions de combustion partielles sont du type:
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    etc.
  • On peut ainsi obtenir à l'intérieur du réacteur de conversion une température de 1200 à 1500°C qui permet, en favorisant les réactions de conversion, de disposer d'un gaz ne contenant pratiquement plus de méthane, d'hydrocarbures supérieurs ou de carbone imbrûlé. En revanche, comme l'indiquent les réactions de combustion données ci- dessus, la combustion partielle du gaz produit des quantités significatives de C02 su détriment du CO. En pratique, 35% environ du carbone provenant de la matière première peut se retrouver sous forme de C02 ce qui représente une perte en carbone potentielle d'un tiers environ.
  • On peut aussi, dans un autre mode de conversion, faire passer les gaz sur un catalyseur dont la présence permet la réalisation des réactions de conversion à des températures plus modérées, de l'ordre de 950 à 1100°C, ce qui réduit la quantité d'oxygène à injecter dans le gaz et par conséquent la combustion partielle de ce dernier peut produire l'élévation de température nécessaire. On produit ainsi un gaz exempt de méthane et d'hydrocarbures supérieurs et contenant moins de C02 avec une consommation d'oxygène plus réduite. Cependant, ce procède catalytique nécessite la présence d'un dépoussiérage à haute température du gaz avant son entrée dans le réacteur de conversion pour protéger le cataly- seυr.·
  • L'invention a pour objet un nouveau procédé plus simple à mettre en oeuvre et permettant de réaliser d'une part la réaction de gazéification à température modérée et d'autre part la réaction de conversion à température plus élevée sans combustion partielle du CO et par conséquent sans perte de carbone. En outre, le procédé selon l'invention permet de régler plus facilement les proportions relatives des constituants du gaz produit.
  • Conformément à l'invention, une élévation à la température de conversion dans le second réacteur est obtenure par insufflation d'un courant de gaz préalablement porté à une température comprise entre 3000 et 5000°C par passage de ce dernier dans une torche à plasma placée au débouché d'un circuit d'insufflation du gaz dans le réacteur de conversion, le débit de gaz insufflé est réglé en fonction de la température et des proportions de monoxyde de carbone et d'hydrogène déjà existant dans le mélange issu du premier réacteur de gazéification.
  • Selon une autre caractéristique de l'invention, le gaz insufflé est de l'hydrogène.
  • Selon encore une autre caractéristique de l'invention, le gaz insufflé est de l'azote.
  • L'invention a également pour objet une installation dans laquelle le réacteur de conversion est équipé d'une part d'une torche à plasma placée au débouché d'une lance d'insufflation d'hydrogène porté par ladite torche à plasma à une température comprise entre 3000 et 5000°C et de moyens de réglage du débit-de l'hydrogène insufflé en tenant compte du débit et de la température des gaz issus du réacteur de gazéification de façon que la température moyenne du mélange gazeux dans le réacteur de conversion soit élevée à un niveau suffisant pour la conversion des espèces fatales.
  • Mais l'invention sera mieux comprise par la description détaillée d'un mode de réalisation donné à titre d'exemple en se référant aux dessins annexés.
  • La figure 1 est un schéma d'une installation perfectionnée selon l'invention.
  • La figure 2 est une vue de détail représentant schématiquement la lance d'insufflation de gaz dans le réacteur de conversion, munie d'une torche à plasma pour le chauffage du gaz.
  • Sur la figure 1, on a représenté schématiquement une installation de production de gaz de synthèse comportant deux réacteurs 1 et 2 respectivement de gazéification et de conversion.
  • Le réacteur 1 fonctionne, de façon classique, en lit fluidisé ou en lit circulant. Il est donc constitué d'une enceinte cylindrique verticale munie à sa base de moyens de fluidisation de la matière première hydrocarbonée introduite en 11, par circulation ascendante d'un gaz introduit en 12. Le gaz de fluidisation est de préférence un gaz utile à la réaction, par exemple de la vapeur d'eau. Un gaz comburant, de l'air ou de l'oxygène, est injecté en 13 pour réaliser la combustion partielle de la matière hydrocarbonée dans le lit fluidisé. Comme on l'a indiqué, les débits respectifs de matière première hydrocarbonée et d'oxygène sont réglés de telle sorte que la réaction de gazéification se produise à température modérée, les gaz produits sortant en 14, à la partie supérieure de réacteur 1, à une température de 700 à 800°C.
  • De tels réacteurs en lit fluidisé sont bien connus et ne nécessitent pas une description détaillée.
  • Il en est de même du réracteur de conversion 2 qui est constitué d'une enceinte verticale garnie de réfractaires et à l'extrémité de laquelle sont introduits en 21, les gaz issus du réacteur de gazéification 1.
  • Comme on l'a indiqué, le réacteur de conversion est muni d'une lance 3 d'insufflation d'un gaz porté à très haute température. A cet effet, la lance 3 est reliée à un circuit 31 d'injection de gaz sous pression et est munie de moyen 4 de chauffage du gaz à très haute température avant son entrée dans le réacteur 2.
  • Comme on l'a représenté schématiquement sur la figure 2, le moyen 4 de chauffage du gaz est constitué avantageusement par une torche à plasma. Un tel dispositif, qui peut se trouver dans le commerce, n'a pas besoin d'être décrit en détail. Il suffit d'indiquer qu'il peut comporter des électrodes 41, 42 décalées dans le sens de circulation du gaz en entre lesquelles se forme un arc électrique soufflé par le gaz et qui permet, au débouché de la lance 3 dans le réacteur 2, de réaliser une zone 43 à très haute température, de l'ordre de 3000 à 5000°C.
  • L'entrée 21 des gaz issus du réacteur de gazéification 1 se fait sensiblement au même niveau que l'entrée des gaz à haute température de façon que la zone à température très élevée soit limitée autour de l'orifice d'injection 32 qui peut être réalisée en une matière susceptible de résister à de telles températures. On peut d'ailleurs utiliser des moyens connus pour réaliser un mélange des deux courants gazeux dès leur entrée dans le réacteur, par exemple en injectant le gaz à haute température dans l'axe d'un tourbillon formé par les gaz introduits par l'entrée 21. Les débits des deux courants gazeux sont réglés en proportions convenables de façon que la température à l'intérieur du réacteur 2 soit homogène et maintenue à un niveau moyen compris entre 1200 et 1500°C qui favorise les réactions de conversion (1) à (5) indiquées plus haut.
  • On obtient ainsi de façon très simple un gaz exempt de méthane, d'hydrocarbures supérieurs, et dont la teneur en dioxyde de carbone est inférieure à celle obtenue par exemple par un procédé catalytique de réformage à l'oxygène. De la sorte, seulement 10 à 20% du carbone provenant du matériau de départ se retrouve sous forme de CO2, le reste, soit 80 à 90% étant sous la forme CO. Un autre avantage réside dans le fait que la consommation d'oxygène est moins élevée que dans les procédés connus.
  • Bien entendu, le chauffage à haute température du gaz injecté entraine un surcroît de consommation d'énergie, en particulier d'énergie électrique pour l'alimentation de la torche à plasma 4.
  • Cependant, compte tenu des avantages apportés, l'association d'une torche à plasma au réacteur de conversion sera intéressante dans de nombreux cas, en particulier chaque fois que l'on dispose d'une source importante et bon marché d'énergie, par exemple d'origine hydroélectrique. En effet, le procédé permet d'économiser la biomasse pour la production du gaz de synthèse et cette économie peut être importante même dans les pays où l'on dispose de grande quantité de biomasse car on ne peut concevoir la réalisation d'installation de gazéification importante qu'en les associant à des cultures énergétiques rapidement renouvelables réalisées à cet effet. Pour être exploitées dans de bonnes conditions, celles-ci ne devraient pas être exploitées de l'installation de gazéification et c'est pourquoi, même dans un pays très favorisé du point de vue du renouvellement de la biomasse, il est utile de tirer le maximum d'énergie potentielle, dont de CO et de H2 de cette substance. La consommation, même importante, d'énergie électrique, peut donc être avantageuse, et c'est en particulier le cas lorsque des installations imporantes de production d'énergie hydroélectrique ou électronucléaire sont placées dans des régions relativement isolées qui peuvent également convenir à des cultures énergétiques.
  • Le gaz injecté à haute température, après passage dans la torche à plasma, peut, être, simplement, du gaz du synthèse recyclé en proportions convenables. Dans ce cas, le gaz sortant en 22 du réacteur de conversion 2 ne contient pratiquement que CO+H2+C02+H20 mais le rapport H2/ CO doit être ajusté à la valeur adéquate avant la synthèse chimique réalisée dans une installation 5 prévue à cet effet. Pour la synthèse du méthanol, par exemple, ce rapport doit être voisin de 2 alors qu'il est généralement voisin de 1 à la sortie du réacteur de conversion 2. Pour cela, on peut convertir ultérieurement ce gaz par la réaction connue de conversion du CO:
    Figure imgb0010
  • Pour générer de l'hydrogène la réaction consomme donc une partie du CO et gènère en outre du C02 supplémentaire.
  • Pour éviter cet inconvénient, dans un mode de réalisation particulièrement avantageux, le gaz insuflé est de l'hydrogène. Compte tenu du débit et de la température des gaz issus de la gazéification, et de la température que permet d'obtenir la torche à plasma 4, on peut on effet injecter par la lance 3 un débit contrôlé d'hydrogène, de façon à maitriser le rapport H2/CO dans le gaz produit. On fait alors l'économie de l'étape de conversion du CO et il suffit d'éliminer le vapeur d'eau dans un simple dispositif de condensation 51.
  • Comme on peut difficilement disposer, en particulier dans un endroit isolé, d'une réserve d'hydrogène, il est particulièrement intéressant d'associer l'installation à un dispositif 6 d'électrolyse de l'eau. De la sorte, en effet, d'installation peut fonctionner uniquement avec une source de matière hydrocarbonée et une source d'énergie électrique car l'électrolyse de l'eau permet de générer en même temps, en quantité suffisante, l'oxygène injecté en 13 dans le réacteur 1 pour y apporter la quantité de chaleur nécessaire à la réaction de gazéification. On pourra même produire une certaine quantité d'oxygène en excès, récupéré en 15. L'utilisation d'un dispositif d'électrolyse permettra donc d'éviter la production d'oxygène par distillation de l'air.
  • En outre, un autre avantage de l'utilisation de l'électrolyse réside dans le fait qu'il existe des dispositifs d'électrolyse fournissant de l'hydrogène sous une pression qui peut aller jusqu'à 70 bars. L'hydrogène peut donc être conduit directement, par le circuit 31 dans la torche à plasma 4 sans compression préalable.
  • D'autre part, la gazéification et la conversion dans les réacteurs 1 et 2 pourront être réalisées sous pression et par conséquent de façon plus économique grâce à la réduction qui en résulte des dimensions des équipements et à l'économie faite sur la compression des gaz avant la synthèse, celle-ci devant, dans tous les cas, être réalisée sous pression.
  • Bien entendu, l'invention ne se limite pas aux modes de réalisation qui viennent d'être décrits à titre d'exemple, d'autres variantes pouvant être imaginées en restant dans le cadre de la protection revendiquée.
  • C'est ainsi que le gaz à haute température injecté dans le réacteur de conversion pourrait être, d'une façon générale, tout gaz utile à la synthèse, par exemple de l'azote dans le cas de la production d'ammoniac.

Claims (5)

1. Procédé de production de gaz de synthèse dans lequel on réalisé tout d'abord, dans un premier réacteur (1) une gazéification d'une substance hydrocarbonée d'origine végétale telle qu'un produit de biomasse à une température modérée inférieure à la température de fusion des cendres, avec production, en plus du monoxyde de carbone et de d'hydrogène utiles, d'espèces dites "fatales" telles que du carbone non converti, des hydrocarbures et des goudrons puis, dans un second réacteur (2), on réalise une conversion à haute température des espèces fatales en hydrogène et monoxyde de carbone, caractérisé en ce qu'une élévation à la température de conversion dans le second réacteur (2) est obtenue par insufflation d'un courant de gaz préalablement porté à une température comprise entre 3000 et 5000°C par passage de ce dernier dans une torche à plasma (4) placée au débouché d'un circuit (3) d'insufflation du gaz dans le réacteur de conversion (2), le débit de gaz insufflé est réglé en fonction de la température et des proportions de monoxyde de carbone et d'hydrogène déjà existant dans le mélange issu du premier réacteur (1) de gazéification.
2. Procédé de production de gaz de synthèse selon la revendication 1, caractérisé en ce que le gaz insufflé est de l'hydrogène.
3. Procédé de production de gaz de synthèse selon la revendication 1, caractérisé en ce que le gaz insufflé est de l'azote.
4. Procédé de production de gaz de synthèse selon la revendication 1, caractérisé en ce que le température de gazéification dans le premier réacteur (1) est comprise entre 700°C et 800°C.
5. Installation de production de gaz de synthèse comprenant un premier réacteur (1) de gazéification d'une substance hydrocarbonée d'origine végétale telle qu'un produit de biomasse et un second réacteur (2) de conversion des espèces dites "fatales" contenues dans le mélange gazeux issu du premier réacteur (1), caractérisée en ce que le réacteur de conversion (2) est équipé d'une part d'une torche à plasma (4) placée au débouché d'une lance (3) d'insufflation d'hydrogène porté par ladite torche à plasma à une température comprise entre 3000 et 5000°C et de moyens de réglage du débit de l'hydrogène insufflé en tenant compte du débit et de la température des gaz issus du réacteur de gazéification (1) de façon que la température moyenne du mélange gazeux dans le réacteur de conversion (2) soit élevée à un niveaux suffisant pour la conversion des espèces fatales.
EP19850400229 1984-02-16 1985-02-12 Procédé de production de gaz de synthèse Expired EP0153235B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8402331A FR2559776B1 (fr) 1984-02-16 1984-02-16 Procede de production de gaz de synthese
FR8402331 1984-02-16

Publications (2)

Publication Number Publication Date
EP0153235A1 EP0153235A1 (fr) 1985-08-28
EP0153235B1 true EP0153235B1 (fr) 1989-01-18

Family

ID=9301088

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850400229 Expired EP0153235B1 (fr) 1984-02-16 1985-02-12 Procédé de production de gaz de synthèse

Country Status (7)

Country Link
EP (1) EP0153235B1 (fr)
AU (1) AU578660B2 (fr)
BR (1) BR8500707A (fr)
DE (1) DE3567672D1 (fr)
ES (1) ES8602916A1 (fr)
FR (1) FR2559776B1 (fr)
PT (1) PT79952B (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8306665B2 (en) 2006-05-05 2012-11-06 Plasco Energy Group Inc. Control system for the conversion of carbonaceous feedstock into gas
US8435315B2 (en) 2006-05-05 2013-05-07 Plasco Energy Group Inc. Horizontally-oriented gasifier with lateral transfer system
US8852693B2 (en) 2011-05-19 2014-10-07 Liquipel Ip Llc Coated electronic devices and associated methods
US9109172B2 (en) 2006-05-05 2015-08-18 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier
DE102016214242A1 (de) 2016-08-02 2018-02-08 Thyssenkrupp Ag Anlage und Verfahren zur Umwandlung kohlenstoffhaltiger Brennstoffe in Synthesegas

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE457355B (sv) * 1985-09-25 1988-12-19 Skf Steel Eng Ab Saett att framstaella en ren, koloxid och vaetgas innehaallande gas
AU7975487A (en) * 1986-10-16 1988-04-21 Edward L. Bateman Pty. Ltd Plasma treatment of waste h/c gas to produce synthesis gas
US5656044A (en) * 1992-05-07 1997-08-12 Hylsa S.A. De C.V. Method and apparatus for gasification of organic materials
DE69412559T2 (de) * 1993-10-19 1999-03-25 Mitsubishi Heavy Ind Ltd Verfahren zur Vergasung von organischen Materien
US5922090A (en) * 1994-03-10 1999-07-13 Ebara Corporation Method and apparatus for treating wastes by gasification
DE4412004A1 (de) * 1994-04-07 1995-10-12 Metallgesellschaft Ag Verfahren zum Vergasen von Abfallstoffen in der zirkulierenden Wirbelschicht
EP0776962B1 (fr) * 1995-11-28 2002-10-02 Ebara Corporation Procédé et appareil pour le traitement de déchets par gazéification
DE69613811D1 (de) * 1996-04-09 2001-08-16 Ansaldo Ricerche S R L Methode und System zur Erzeugung und Verwendung von Brenngasen, insbesondere Gasen hergestellt aus Biomassen und Abfall
US6902711B1 (en) 1996-04-23 2005-06-07 Ebara Corporation Apparatus for treating wastes by gasification
US5900224A (en) * 1996-04-23 1999-05-04 Ebara Corporation Method for treating wastes by gasification
US5980858A (en) 1996-04-23 1999-11-09 Ebara Corporation Method for treating wastes by gasification
WO1998047985A1 (fr) * 1997-04-22 1998-10-29 Ebara Corporation Procede et dispositif servant a traiter des dechets par gazeification
WO2003018467A2 (fr) * 2001-08-22 2003-03-06 Sasol Technology (Proprietary) Limited Production de gaz de synthese et de produits derives de gaz de synthese
FR2871554A1 (fr) 2004-06-11 2005-12-16 Alstom Technology Ltd Procede de conversion energetique de combustibles solides minimisant la consommation d'oxygene
BRPI0711330A2 (pt) 2006-05-05 2013-01-08 Plascoenergy Group Inc sistema de reformulaÇço de gÁs usando aquecimento por tocha de plasma
EP2015859A4 (fr) 2006-05-05 2010-09-29 Plascoenergy Ip Holdings Slb Système de conditionnement de gaz
WO2007131236A2 (fr) 2006-05-05 2007-11-15 Plasco Energy Group Inc. Système d'homogénéisation de gaz
EA201001377A1 (ru) 2007-02-27 2011-04-29 Плэскоуэнерджи Ип Холдингс, С.Л., Бильбао, Шаффхаузен Бранч Многокамерная система и способ преобразования углеродсодержащего сырья в синтез-газ и шлак
FR2921384B1 (fr) * 2007-09-21 2012-04-06 Europlasma Procede et dispositif de traitement d'un gaz de synthese
US9321640B2 (en) 2010-10-29 2016-04-26 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation
JP6652694B2 (ja) 2011-08-04 2020-02-26 カニンガム,スティーブン,エル. プラズマアーク炉および応用
CA2947606A1 (fr) 2014-05-09 2015-11-12 Stephen L. Cunningham Procede et systeme de fusion de four a arc

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE130031C (fr) *
GB189789A (en) * 1921-12-03 1923-09-20 Frans Georg Liljenroth Improved method of producing gas
CH162458A (de) * 1932-06-18 1933-06-30 S I R I Soc It Ricerche Ind Verfahren zur Herstellung einer sauerstofffreien Mischung von Kohlenoxyd und Wasserstoff.
DD114395A1 (fr) * 1974-07-08 1975-08-05
EP0057029A1 (fr) * 1981-01-21 1982-08-04 ATELIERS DE CONSTRUCTIONS ELECTRIQUES DE CHARLEROI (ACEC) Société Anonyme Procédé de traitement de matières pulvérulentes a haute température et installation pour le réaliser
DE3130031A1 (de) * 1981-07-30 1982-04-08 Davy McKee AG, 6000 Frankfurt Verfahren zur vergasung von kohle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8306665B2 (en) 2006-05-05 2012-11-06 Plasco Energy Group Inc. Control system for the conversion of carbonaceous feedstock into gas
US8435315B2 (en) 2006-05-05 2013-05-07 Plasco Energy Group Inc. Horizontally-oriented gasifier with lateral transfer system
US9109172B2 (en) 2006-05-05 2015-08-18 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier
US8852693B2 (en) 2011-05-19 2014-10-07 Liquipel Ip Llc Coated electronic devices and associated methods
DE102016214242A1 (de) 2016-08-02 2018-02-08 Thyssenkrupp Ag Anlage und Verfahren zur Umwandlung kohlenstoffhaltiger Brennstoffe in Synthesegas
WO2018024404A1 (fr) 2016-08-02 2018-02-08 Thyssenkrupp Industrial Solutions Ag Installation et procédé de conversion de combustibles contenant du carbone en gaz de synthèse
DE102016214242B4 (de) 2016-08-02 2023-03-02 Gidara Energy B.V. Anlage und Verfahren zur Umwandlung kohlenstoffhaltiger Brennstoffe in Synthesegas

Also Published As

Publication number Publication date
PT79952B (fr) 1987-06-03
ES540309A0 (es) 1985-12-01
ES8602916A1 (es) 1985-12-01
AU3893285A (en) 1985-08-22
AU578660B2 (en) 1988-11-03
DE3567672D1 (en) 1989-02-23
BR8500707A (pt) 1985-10-08
FR2559776B1 (fr) 1987-07-17
FR2559776A1 (fr) 1985-08-23
EP0153235A1 (fr) 1985-08-28
PT79952A (fr) 1985-03-01

Similar Documents

Publication Publication Date Title
EP0153235B1 (fr) Procédé de production de gaz de synthèse
CA2706664C (fr) Procede et chaine de traitement pour la conversion thermochimique par gazeification d'une charge humide de materiau biologique
EP2788453B1 (fr) Procede de conversion thermochimique d'une charge carbonee en gaz de synthese contenant majoritairement h2 et co
CA2859480A1 (fr) Procede et equipement de gazeification en lit fixe
FR2501711A1 (fr) Procede et appareil pour la production d'un gaz contenant sensiblement du monoxyde de carbone et de l'ydrogene a partir d'une matiere premiere contenant du carbone et/ou un hydrocarbure
FR2794128A1 (fr) Procede de gazeification autothermique de combustibles solides, installation pour la mise en oeuvre du procede et utilisation de l'installation
FR2587717A1 (fr) Procede de production d'un gaz epure contenant de l'oxyde de carbone et de l'hydrogene
FR2575488A1 (fr) Procede et dispositif de la production d'un gaz compose principalement de co et h2, a partir d'une matiere de depart carbonee
EP1146010B1 (fr) Procédé de production d'un mélange comportant de l'hydrogène et du monoxyde de carbone
FR2565993A1 (fr) Gazeification de matiere carbonee
FR2578263A1 (fr) Procede et dispositif pour la gazeification de combustibles fossiles et le reformage d'un combustible gazeux.
EP1048710A1 (fr) Procédé pour la production d'hydrogène à partir d'un gaz issu d'une unité de traitement de déchets
EP1474500A1 (fr) Gazeification de dechets par plasma
EP1831336A1 (fr) Procede de gazeification de matieres carbonees et dispositif pour sa mise en oeuvre
FR2844804A1 (fr) Procede et installation de valorisation de sous-produits a base de matieres organiques
FR2491490A1 (fr) Procede de transformation thermique des combustibles solides
KR101066251B1 (ko) 하향류식 바이오매스 가스화 장치
BE1001620A3 (fr) Methode de production de gaz pour la fourniture d'energie.
FR2556001A1 (fr) Procede et installation pour reduire une matiere oxydee
FR2792926A1 (fr) Procede pour la production d'un gaz de synthese a debit regule dans une unite de traitement de dechets
EP3828465B1 (fr) Réacteur solaire à jet, destiné à la conversion thermochimique d'une charge carbonée, à évacuation des cendres améliorée, procédé de fonctionnement associé, application à la gazéification de biomasse ou au reformage
EP3031884B1 (fr) Procédé de gazéification de charge de matière carbonée à rendement matière et coût de production optimisés
FR2811976A1 (fr) Procede et dispositif de production d'un melange gazeux contenant de l'hydrogene et du co par oxydation etagee d'un hydrocarbure
WO2018055095A1 (fr) Procede de gazeification de charge de matiere carbonee dans un reacteur a flux entraîne, a rendement ameliore
EP0307382A1 (fr) Procédé continu de production de monoxyde de carbone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR IT SE

17P Request for examination filed

Effective date: 19850812

17Q First examination report despatched

Effective date: 19861031

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3567672

Country of ref document: DE

Date of ref document: 19890223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910118

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910131

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910227

Year of fee payment: 7

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85400229.2

Effective date: 19920904