EP0131195B1 - Verfahren zur Aktivierung von Substraten für die stromlose Metallisierung - Google Patents

Verfahren zur Aktivierung von Substraten für die stromlose Metallisierung Download PDF

Info

Publication number
EP0131195B1
EP0131195B1 EP84107302A EP84107302A EP0131195B1 EP 0131195 B1 EP0131195 B1 EP 0131195B1 EP 84107302 A EP84107302 A EP 84107302A EP 84107302 A EP84107302 A EP 84107302A EP 0131195 B1 EP0131195 B1 EP 0131195B1
Authority
EP
European Patent Office
Prior art keywords
activation
complex
process according
alkyl
baths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84107302A
Other languages
English (en)
French (fr)
Other versions
EP0131195A2 (de
EP0131195A3 (en
Inventor
Kirkor Dr. Sirinyan
Rudolf Dr. Merten
Henning Dr. Giesecke
Gerhard Dieter Dr. Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0131195A2 publication Critical patent/EP0131195A2/de
Publication of EP0131195A3 publication Critical patent/EP0131195A3/de
Application granted granted Critical
Publication of EP0131195B1 publication Critical patent/EP0131195B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating

Definitions

  • the invention relates to a gentle method for activating non-conductive or semiconductive substrate surfaces for chemogalvanic metal deposition by means of solutions or dispersions of complex compounds of elements of the 1st and 8th subgroups of the periodic table.
  • complex compounds include those of amines, amides, carboxylic acids, ketones, olefins and others. to use.
  • the palladium-O complexes mentioned have the disadvantage that they only partially very toxic aromatics and not sufficiently soluble in the other common solvents such as 1,1-dichloroethane, trichlorethylene, ethanol and cyclohexane.
  • the activation baths need constant, careful monitoring. They have to be supplemented with solvents and / or concentrate in order to ensure a constant production process.
  • the object of the present invention was therefore to develop activators which are stable in storage and whose continuous monitoring is possible with simple physical and / or chemical methods.
  • the complexes of the compounds of the formula are notable for good solubility in all organic solvents customary in the industry. They can be used in concentration ranges from 0.001 g / I up to the respective solubility limit. It is preferable to work with 0.1-3.0 g / l of these substances.
  • the sorption properties of the complex compounds to be used according to the invention can be increased further by introducing special substituents (in particular NO 2 and CN) into the radicals R i and R 4 .
  • the complexes of the compounds of the formula are partly known or obtainable by methods known per se (cf. Parshal and Wilkinson, "Inorganic Chemistry” 1, (1962), p. 896) by, for. B. a suitable aqueous solution of the noble metal salt to an excess compound of formula I and at temperatures of 20-150 ° C preferably 60-120 ° C, the complex formation leads to the end.
  • the complex separates out in solid form. It is washed, dried, optionally recrystallized and dissolved in a suitable solvent.
  • Suitable metals for the preparation of the complexes are e.g. B. Pd, Pt, Ag and Au, of which the palladium in the oxidation states 1 and 2 is particularly preferred.
  • Suitable compounds of the formula are, above all, those in which "alkyl” stands for C, -C 2o-alkyl radicals, "cycloalkyl” for cyclohexyl and "aryl” for benzene radicals, the alkyl radicals being represented by Cl, CN, N0 2 , C l -C 4 alkoxy or C 1 -C 4 alkoxy-C 1 -C 4 alkoxy, the cycloalkyl radicals by CH 3 and the aryl radicals by Cl, N0 2 , C l -C 4 - Alkyl or C, -C 4 alkoxy may be substituted.
  • R 1 and R 4 are C 1 -C 20 alkyl, preferably C 1 -C 6 alkyl, R 2 and R 3 are hydrogen or C, -C 4 alkyl, preferably methyl.
  • Examples include: mesityl oxide, n-buten-3-one-2, n-hepten-3-one-2, n-hexen-3-one-2, n-decen-4-one-3,5-chloro penten-3-one-2, ethyl vinyl ketone, 3-methyl-octen-5-one-4, 3-methyl-penten-3-one-2, 7-methoxy-hepten-3-one-2 and cyclohexen-2- on.
  • the new activation process is generally carried out by wetting the substrate surfaces to be metallized with a dispersion or - preferably - a solution of the metal complex in a suitable organic solvent, removing the solvent and, if appropriate, sensitizing it with a suitable reducing agent.
  • the substrate pretreated in this way can then be metallized in a conventional metallization bath.
  • Suitable reducing agents for the sensitization are aminoboranes, alkali hypophosphites and alkali borohydrides.
  • the substrates can be wetted by spraying, printing, impregnation or impregnation.
  • those solvents or solvent mixtures which lead to dissolution or swelling of the plastic surface to be metallized are particularly preferably used to carry out the method according to the invention.
  • the solvents are removed from the wetted substrates simply by evaporation or, in the case of higher-boiling compounds, by extraction.
  • the activation baths are monitored with a photometer as a detector.
  • the wavelength of the filter should correspond to the absorption maxima of the solution.
  • the measurement signal is recorded by a compensation recorder and called up by a clock generator at intervals of 0.1 seconds to several minutes. With the help of a computer, the missing components (solvent, activator) can be added.
  • a very particularly preferred embodiment of the method according to the invention consists in that the reduction in the metallization bath is carried out immediately with the reducing agent of the electroless metallization.
  • This embodiment is particularly suitable for nickel baths containing amine borane or copper baths or silver baths containing formalin.
  • Metallization baths which can be used in the processes according to the invention are preferably baths with Ni, Co, Cu, Au, Ag salts or their mixtures with one another or with iron salts. Such baths are known in the art of electroless metallization of plastics.
  • Suitable substrates for the process according to the invention are: steels, titanium, glass, aluminum, textiles and flat structures based on natural and / or synthetic polymers, ceramics, carbon, paper, thermoplastics such as polyamide types, ABS (acrylonitrile butadiene styrene) polymers, polycarbonates, Polypropylene, polyester, polyethylene, polyhydantoin and thermosets such as epoxy resins, melamine resins, and their mixtures or copolymers.
  • thermoplastics such as polyamide types, ABS (acrylonitrile butadiene styrene) polymers, polycarbonates, Polypropylene, polyester, polyethylene, polyhydantoin and thermosets such as epoxy resins, melamine resins, and their mixtures or copolymers.
  • a 20 x 20 cm square of a 0.2 mm thick polyester film (100% polyethylene terephthalate) is at room temperature for 30 seconds in an activation bath, which is made from 0.6 g according to Parshal and Wilkinson (see page 2), mesityl oxide-palladium chloride complex and 1 technical trichlorethylene is prepared, activated, dried at room temperature and then for 15 minutes in an aqueous alkaline nickel plating bath, which in 1 l 30 g NiS0 4 . 6H 2 0 11.5 g of citric acid, 18 ml of 2N DMAB (dimethylamine borane) solution, 2 g of boric acid and adjusted to pH 8.5 with 25% ammonia solution, electroless nickel-plated. After about 45 seconds the polymer surface begins to turn gray and after about 12 minutes the specimen is covered with a shiny - 0.15 ⁇ m thick nickel layer.
  • an activation bath which is made from 0.6 g according to Parshal and Wilkinson (see page 2), mesityl
  • a 140 x 250 mm injection-molded ABS plate (acrylonitrile-butadiene-styrene graft copolymer from Bayer AG) is activated in a solution of 500 ml of technical methanol, 50 ml of technical trichloroethene and 0.4 g of mesityl oxide-palladium complex for 5 minutes at room temperature , dried at RT, sensitized for 3 minutes in a reduction bath of 500 ml of ethanol and 50 ml of 2N DMAB solution and then nickel-plated at 33 ° C. in a conventional metallization bath from Blasberg GmbH and KG, 5650 Solingen. The test specimen is covered with a very fine nickel coating after only 4 minutes.
  • the chemical nickel layer has an average thickness of approximately 0.20 ⁇ m.
  • the test specimen is removed from the chemical metallization bath and rinsed with distilled water, it is switched as the cathode in a conventional acidic galvanic copper plating bath and is amplified to a thickness of approx. 40 1 1m at 1.1 A / dm 2 .
  • a 150x200 mm injection molded polyethylene terephthalate plate is activated at room temperature for 30 seconds in an activation bath which is made up of 0.4 g mesityl oxide platinum complex and 650 ml tetrachlorethylene, dried at RT and then nickel-plated according to Example 1. You get a shiny metallic polymer plate with a - 0.15 1 1m thick electrically conductive nickel coating.
  • a 150 ⁇ 300 mm rectangle of a cotton fabric is immersed for 30 seconds in a solution of 0.5 g of mesityl oxide palladium chloride in 600 ml of methylene chloride, dried at room temperature and then nickel-plated in a reductive nickel bath according to Example 1 for 22 minutes.
  • a 120x120 mm square of a conventional polyester-cotton blend is activated for 20 seconds in accordance with Example 1, sensitized in a reduction bath in accordance with Example 2, rinsed with distilled water and then coppered in a chemical copper bath from Schering AG, Berlin (West) for 20 minutes .
  • a well-adhering, electrically conductive copper layer was deposited after only 5 minutes.
  • ABS plate is activated at RT for 5 min in a bath which is prepared from 500 ml of ethanol, 25 ml of 2,4-pentanedione and 0.4 g of n-3-hepten-2-one-palladium chloride, at 35 ° C. Dried for 5 minutes and then nickel-plated according to Example 1 over a period of 20 minutes. After galvanic reinforcement, the pull-off force of the metal layer is higher than the tensile strength of the metal layer.
  • a polyamide 6,6 plate is activated according to example 6 in an activation bath which is adjusted to pH 2.5 with concentrated hydrochloric acid, washed with distilled water and then sensitized according to example 2 and then metallized for 20 minutes. A shiny metallic sample with an adherent metal coating is obtained.
  • a 100x200 mm rectangle of a 2 mm thick with through holes, glass fiber reinforced epoxy resin plate laminated on both sides, is immersed in 1 I CH 2 C1 2 in air in an activation bath of 0.5 g n-3-hepten-2-one-palladium chloride dried, sensitized according to Example 2 and then copper-coated according to Example 5 for 25 minutes. You get a plate through-plated with an electrically conductive Cu layer, which can be used for the production of electrical circuit boards.
  • the heptenone complex is made as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • Gegenstand der Erfindung ist ein schonendes Verfahren zur Aktivierung von nichtleitenden oder halbleitenden Substratoberflächen für die chemogalvanische Metallabscheidung mittels Lösungen oder Dispersionen von Komplexverbindungen von Elementen der 1. und 8. Nebengruppe des Periodensystems.
  • Derartige Methoden sind in der Literatur vielfach beschrieben worden.
  • So wird beispielsweise in AT-B 286 058 vorgeschlagen, als Komplexverbindungen solche von Aminen, Amiden, Carbonsäuren, Ketonen, Olefinen u.a.m. zu verwenden.
  • Aus DE-A 3 025 307 ist weiterhin bekannt, die Aktivierung mittels Komplexen von Nitrilen, Diketonen und Dienen vorzunehmen.
  • Gemäß DE-A 2 116 389 werden für diesen Zweck Komplexe von N-haltigen Verbindungen, z. B. Pyridinderivaten, empfohlen.
  • Obwohl mit diesen Verfahren zum Teil ausgezeichnete Aktivierungseffekte auch auf unebenen und säure- bzw. alkaliempfindlichen Substraten erzielt werden, weisen sie durchweg den schwerwiegenden Nachteil auf, daß die eingesetzten Metallkomplexlösungen nicht ausreichend lagerstabil sind.
  • Das gilt auch für das Verfahren gemäß DE-A 2 451 217, bei dem zur Aktivierung Lösungen eines Palladium-O-Komplexes von zweifach ungesättigten Ketonen verwendet werden, die zur Stabilisierung des Systems zusätzlich Phosphite als n-Donatoren sowie olefinisch oder acetylenisch ungesättigte Verbindungen als n-Akzeptoren enthalten. Durch die Zugabe dieser zusätzlichen Komplexbildner wird jedoch die katalytische Wirkung der Metallkomplexe erniedrigt, sodaß man die zu aktivierenden Substrate einer aufwendigen thermischen Nachbehandlung unterwerfen muß. Darüber hinaus zeigen die genannten Palladium-O-Komplexe den Nachteil, daß sie nur in z.T. sehr toxischen Aromaten und nicht in den anderen branchenüblichen Lösungsmitteln, wie 1,1-Dichlorethan, Trichlorethylen, Ethanol und Cyclohexan, ausreichend löslich sind.
  • Schließlich ist allen schonenden Aktivierungsverfahren gemeinsam, daß sie mit den vorstehend genannten leichtflüchtigen Lösungsmitteln arbeiten, was eine stetige Konzentrationsänderung der Aktivierungsbäder zur Folge hat.
  • So ist es verständlich, daß die Aktivierungsbäder der ständigen, sorgfältigen Überwachung bedürfen. Sie müssen mit Lösungsmitteln und/oder Konzentrat ergänzt werden, um einen gleichbleibenden Produktionsverlauf zu gewährleisten.
  • Aufgabe der vorliegenden Erfindung war es daher, lagerungstabile aktivatoren zu entwickeln, deren kontinuierliche Überwachung mit einfachen physikalischen und/oder chemischen Methoden möglich ist.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß man Komplexverbindungen der Elemente der 1. und 8. Nebengruppe des Periodensystems in den Oxidationsstufen 1-4 mit ungesättigten Ketonen der Formel
    Figure imgb0001
    verwendet, worin unabhängig voneinander R, und R4 einen gegebenenfalls substituierten Alkyl-, Cycloalkyl-oder Arylrest und R2 und R3 Wasserstoff oder Alkyl bedeuten.
  • Die Komplexe der Verbindungen der Formel zeichnen sich durch eine gute Löslichkeit in allen branchenüblichen organischen Lösungsmitteln. Sie können in Konzentrationsbereichen von 0,001 g/I bis hin zur jeweiligen Löslichkeitsgrenze eingesetzt werden. Vorzugsweise arbeitet man mit 0,1-3,0 g/I dieser Substanzen.
  • Dank ihrer hohen Lagerungsstabilität (keine Eintrübung der Lösungen - z.T. nach wochenlanger Lagerung) und ihrer starken Sorption im ultravioletten und/oder sichtbaren Spektralbereich eignen sie sich hervorragend für die kontinuierliche Konzentrationsüberwachung ihrer Lösungen mit einem Fotometer.
  • Im übrigen können die Sorptionseigenschaften der erfindungsgemäß zu verwendenden Komplexverbindungen durch Einführung spezieller Substituenten (insbesondere N02 und CN) in die Reste Ri und R4 noch erhöht werden.
  • Der Einfluß von elektronenanziehenden bzw. elektronenschiebenden Substituenten auf die Lichtabsorptionseigenschaften von Kohlenstoffmolekeln ist bekannt und kann beispielsweise aus D.H. Williams und J. Flemming, "Spektroskopische Methoden in der organischen Chemie", Georg Thieme Verlag Stuttgart (1971) entnommen werden.
  • Die Komplexe der Verbindungen der Formel sind z.T. bekannt bzw. nach an sich bekannten Methoden erhältlich (vgl. Parshal und Wilkinson, "Inorganic Chemistry" 1, (1962), S. 896), indem man z. B. eine geeignete wäßrige Lösung des Edelmetallsalzes zu einer im Überschuß vorgelegten Verbindung der Formel I zugibt und bei Temperaturen von 20-150°C vorzugsweise 60-120°C, die Komplexbildung zu Ende führt.
  • Nach dem Abkühlen scheidet sich der Komplex in fester Form ab. Er wird gewaschen, getrocknet, gegebenenfalls umkristallisiert und in einem geeigneten Lösungsmittel gelöst.
  • Geeignete Metalle zur Herstellung der Komplexe sind z. B. Pd, Pt, Ag und Au, wovon das Palladium in der Oxidationsstufe 1 und 2 besonders bevorzugt ist.
  • Geeignete Verbindungen der Formel sind vor allem solche, bei denen "Alkyl" für C,-C2o-Alkylreste, "Cycloalkyl" für Cyclohexyl- und "Aryl" für Benzolreste steht, wobei die Alkylreste durch Cl, CN, N02, Cl-C4-Alkoxy oder C1-C4-Alkoxy-C1-C4-Alkoxy, die Cycloalkylreste durch CH3 und die Arylreste durch Cl, N02, Cl-C4-Alkyl oder C,-C4-Alkoxy substituiert sein können.
  • Besonders bevorzugt zu verwendende Komplexe leiten sich von Verbindungen der Formel ab, worin
  • R1 und R4 C1-C20-Alkyl, vorzugsweise C1-C6-Alkyl, R2 und R3 Wasserstoff oder C,-C4-Alkyl, vorzugsweise Methyl bedeuten.
  • Beispielhaft seien genannt: Mesityloxid, n-Buten-3-on-2, n-Hepten-3-on-2, n-Hexen-3-on-2, n-Decen-4-on-3, 5-Chlor-penten-3-on-2, Ethylvinylketon, 3-Methyl-octen-5-on-4, 3-Methyl-penten-3-on-2, 7-Methoxy-hepten-3- on-2 und Cyclohexen-2-on.
  • Bei der praktischen Durchführung des neuen Aktivierungsverfahrens geht man im allgemeinen so vor, daß man die zu metallisierenden Substratoberflächen mit einer Dispersion oder - vorzugsweise - einer Lösung des Metallkomplexes in einem geeigneten organischen Lösungsmittel benetzt, das Lösungsmittel entfernt und gegebenenfalls mit einem geeigneten Reduktionsmittel sensibilisiert. Danach kann das so vorbehandelte Substrat in einem üblichen Metallisierungsbad metallisiert werden.
  • Geeignete Lösungsmittel sind außer den oben genannten Perchlorethylen, Aceton, Methanol, Butanol und Dimethylformamid.
  • Als Reduktionsmittel für die Sensibilisierung eignen sich Aminoborane, Alkalihypophosphite und Alkaliborhydride.
  • Das Benetzen der Substrate kann durch Besprühen, Bedrucken, Tränken oder Imprägnieren erfolgen.
  • Um die Haftung der Metallauflage an der Trägeroberfläche zu erhöhen, werden solche Lösungsmittel oder Lösungsmittelgemische, die zu einer Anlösung oder Anquellung der zu metallisierenden Kunststoffoberfläche führen, zur Durchführung des erfindungsgemäßen Verfahrens besonders bevorzugt eingesetzt.
  • Die Entfernung der Lösungsmittel von den benetzten Substraten erfolgt einfach durch Verdampfen oder bei höher siedenden Verbindungen durch Extraktion.
  • Nach einer bevorzugten Verfahrensvariante werden die Aktivierungsbäder mit einem Fotometer als Detektor überwacht. Dabei soll die Wellenlänge des Filters dem etwaigen Absorptionsmaxima der Lösung entsprechen. Das Meßsignal wird bei einer Kompensationsschreiber aufgezeichnet, im Takt von 0,1 Sek. bis zu mehreren Minuten von einem Taktgeber abgerufen. So können mit Hilfe eines Computers die fehlenden Komponenten (Lösungsmittel, Aktivator) zudosiert werden.
  • Eine ganz besonders bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, daß die Reduktion im Metallisierungsbad gleich mit dem Reduktionsmittel der stromlosen Metallisierung durchgeführt wird. Diese Ausführungsform ist ganz besonders für aminboranhaltige Nickelbäder oder formalinhaltige Kupferbäder bzw. Silberbäder geeignet.
  • Als in den erfindungsgemäßen Verfahren einsetzbare Metallisierungsbäder kommen bevorzugt Bäder mit Ni-, Co-, Cu-, Au-, Ag-Salzen oder deren Gemische untereinander oder mit Eisensalzen in Betracht. Derartige Bäder sind in der Technik der stromlosen Metallisierung von Kunststoffen bekannt.
  • Als Substrate für das erfindungsgemäße Verfahren eignen sich: Stähle, Titan, Glas, Aluminium, Textile und Flächengebilde auf der Basis von natürlichen und/oder synthetischen Polymere, Keramik, Kohlenstoff, Papier, Thermoplaste wie Polyamidtypen, ABS-(Acrylnitrilbutadienstyrol) Polymerisate, Polycarbonate, Polypropylen, Polyester, Polyethylen, Polyhydantoin und Duroplaste wie Epoxidharze, Melaminharze, sowie deren Mischungen oder Mischpolymerisate.
  • Ohne den Umfang des erfindungsgemäßen Verfahrens einzuschränken, empfiehlt es sich, bei der Durchführung des Verfahrens folgende Parameter zu beachten:
    • - Die eingesetzten Verbindungen zur Aktivierung von Substratoberflächen dürfen nicht zu einer irreversiblen Zerstörung des Metallisierungsbades führen.
    • - Die lichtabsorptionsfähigen Substituenten dürfen nicht eine Fixierung der Aktivatoren an die Substratoberfläche verhindern.
    • - Die lichtabsorptionsfähigen Substituenten dürfen nicht eine Komplexierung des Trägermolekuls mit den Elementen der 1. und 8. Nebengruppe verhindern.
    • - Die besagten Elemente dürften mit a,ß-ungesättigten Verbindungen keine so starke Wechselwirkung eingehen, daß sie eine Katalyse zur chemischen Metallabscheidung verhindern.
    • - Die verwendeten Lösungsmittel dürfen nicht im Absorptionsbereich des Aktivators Eigenabsorption aufweisen, müssen leicht entfernbar sein und dürfen nicht zu einem chemischen Abbau der metallorganischen Verbindung sowie zum völligen Auflösen der Substrate führen.
    • - Um eine ausreichende Aktivierung zu erzielen, soll die Aktivierungszeit von einigen Sekunden bis zu einigen Minuten betragen.
    Beispiel 1
  • Ein 20 x 20 cm großes Quadrat einer 0,2 mm starken Polyesterfolie (100 % Polyethylenterephthalat) wird bei Raumtemperatur 30 Sekunden in einem Aktivierungsbad, welches aus 0,6 g nach den Angaben von Parshal und Wilkinson, (siehe Seite 2) hergestellten Mesityloxidpalladiumchloridkomplex und 1 technischen Trichlorethen angesetzt wird, aktiviert, bei Raumtemperatur getrocknet und dann 15 Minuten in einem wäßrigen alkalischen Vernickelungsbad, das in 1 I 30 g NiS04 . 6H20 11,5 g Citronensäure, 18 ml 2 n DMAB-(Dimethylaminboran)lösung, 2 g Borsäure enthält und mit 25 %iger Ammoniaklösung auf pH 8,5 eingestellt ist, stromlos vernickelt. Nach etwa 45 Sekunden beginnt sich die Polymeroberfläche grau zu färben und nach etwa 12 Minuten ist der Probekörper mit einer glänzenden - 0,15 µm starken Nickelschicht bedeckt.
  • Beispiel 2
  • Eine 140 x 250 mm große spritzgegossene ABS-Platte (Acrylnitril-Butadien-Styrol-Pfropfcopolymerisat der Fa. Bayer AG) wird in einer Lösung aus 500 ml technischem Methanol, 50 ml technischen Trichlorethen und 0,4 g Mesityloxidpalladiumkomplex, 5 Minuten bei Raumtemperatur aktiviert, bei RT getrocknet, in einem Reduktionsbad aus 500 ml Ethanol und 50 ml 2n-DMAB-Lösung 3 Minuten sensibilisiert und dann in einem herkömmlichen Metallisierungsbad der Fa. Blasberg GmbH und KG, 5650 Solingen bei 33°C vernickelt. Bereits nach 4 Minuten ist der Probekörper mit einer sehr feinen Nickelauflage bedeckt. Nach ca. 17 Minuten hat die chemische Nickelschicht eine mittlere Stärke von ca. 0,20 µm. Nachdem der Probekörper dem chemischen Metallisierungsbad entnommen, mit destilliertem Wasser gespült wird, wird er als Kathode in einem herkömmlichen sauren galvanischen Verkupferungsbad geschaltet und bei 1,1 A/dm2 auf eine Stärke von ca. 40 11m verstärkt.
  • Beispiel 3
  • Ein 150x200 mm große spritzgegossene Polyethylenterephthalatplatte wird bei Raumtemperatur 30 Sekunden in einem Aktivierungsbad, welches aus 0,4 g Mesityloxidplatinkomplex und 650 ml Tetrachlorethen angesetzt wird, aktiviert, bei RT getrocknet und dann nach Beispiel 1 vernickelt. Man bekommt eine metallisch glänzende Polymerplatte mit einer - 0,15 11m starken elektrisch leitenden Nickelauflage.
  • Beispiel 4
  • Ein 150x300 mm großes Rechteck eines Baumwollgewebes wird 30 Sekunden in eine Lösung von 0,5 g Mesityloxidpalladiumchlorid in 600 ml Methylenchlorid getaucht, bei Raumtemperatur getrocknet und dann 22 Minuten in einem reduktiven Nickelbad gemäß Beispiel 1 vernickelt.
  • Nach etwa 30 Sekunden beginnt sich die Oberfläche dunkel zu färben und nach 5 Minuten ist eine metallisch glänzende Metallschicht abgeschieden worden.
  • Beispiel 5
  • Ein 120x120 mm großes Quadrat eines herkömmlichen Polyester-Baumwoll-Mischgewebes wird 20 Sekunden gemäß Beispiel 1 aktiviert in einem Reduktionsbad gemäß Beispiel 2 sensibilisiert, mit destilliertem Wasser gespült und dann in einem chemischen Kupferbad der Fa. Schering AG, Berlin (West) 20 Minuten verkupfert. Bereits nach 5 Minuten ist eine gut haftende, elektrisch leitende Kupferschicht abgeschieden worden.
  • Beispiel 6
  • Eine ABS-Platte wird bei RT 5 Min in einem Bad, welches aus 500 ml Ethanol, 25 ml 2,4-Pentandion und 0,4 g n-3-Hepten-2-on-palladiumchlorid angesetzt wird aktiviert, bei 35°C 5 Minuten getrocknet und dann gemäß Beispiel 1 im Verlaufe von 20 Minuten vernickelt. Nach galvanischer Verstärkung ist die Abzugskraft der Metallauflage höher als die Zereißfestigkeit der Metallschicht.
  • Beispiel 7
  • Eine Polyamid 6,6-Platte wird gemäß Beispiel 6 in einem Aktivierungsbad, welches mit konzentrierter Salzsäure auf pH.2,5 eingstellt ist, aktiviert, mit destilliertem Wasser gewaschen und dann gemäß Beispiel 2 sensibilisiert und dann 20 Minuten metallisiert. Man erhält eine metallisch glänzende Probe mit einer haftfesten Metallauflage.
  • Beispiel 8
  • Ein 100x200 mm großes Rechteck einer 2 mm starken mit durchgehenden Löchern versehen, beidseitig Cukaschierten glasfaserverstärkten Epoxidharzplatte wird in einer Aktivierungsbad von 0,5 g n-3-Hepten-2-on- palladiumchlorid in 1 I CH2C12 getaucht, an der Luft getrocknet, gemäß Beispiel 2 sensibilisiert und dann gemäß Beispiel 5 25 Minuten verkupfert. Man bekommt eine mit einem elektrisch leitenden Cu-Auflage durchkontaktierte Platte, die zur Herstellung von elektrischen Leiterplatten verwendet werden kann.
  • Der Heptenon-Komplex wird wie folgt hergestellt.
  • 6 g wäßrige Na2PdC14-Lösung, welche 15 Gew.-% Pd enthält, werden bei 110°C in 15 Minuten 20 g frisch destilliertes n-3-Hepten-2-on zugetropft, 25 Minuten bei der o.a. Temperatur gerührt, dann auf 0°C abgekühlt. Nach zwei Stunden wird der gelbe Niederschlag abgesaugt, 3 x je mit 75 ml destilliertem Wasser und dann 2 x mit je 50 ml nachgereinigtem kaltem Ethanol gewaschen, getrocknet, aus Toluol/Trichlorethylen (1:1) umkristallisiert, im Trockenschrank unter Vakuum über Nacht getrocknet. Man erhält mit 92 %iger Ausbeute einen pink-gelben kristallinen Feststoff vom Zersetzungspunkt 188°C.
  • C:CI:Pd:O = 39,9:14,1:42,5:6,6 (ermittelt) C:CI:Pd:O = 33,1:14,0:41,9:6,3 (theoretisch)

Claims (10)

1. Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung mittels Lösungen oder Dispersionen von Komplexverbindungen von Elementen der 1. und 8. Nebengruppe des Periodensystems, dadurch gekennzeichnet, daß man Komplexverbindungen dieser Elemente in den Oxidationsstufen 1-4 mit ungesättigten Ketonen der Formel
Figure imgb0002
verwendet, worin unabhängig voneinander
R, und R4 einen gegebenenfalls substituierten Alkyl-, Cycloalkyl- oder Arylrest und
R2 und R3 Wasserstoff oder Alkyl bedeuten.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man Komplexverbindungen von Pd, Pt, Ag oder Au verwendet.
3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man Komplexverbindungen auf der Basis von Ketonen der in Anspruch 1 angegebenen Formel verwendet, worin
R, und R4 Cl-C6-Alkyl und
R2 und R3 H oder Cl-C4-Alkyl bedeuten.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Lösungen bzw. Dispersionen ohne zusätzliche Komplexbildner aus der Reihe der Donatoren und n-Akzeptoren verwendet.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Komplexverbindungen in Konzentrationen von 0,1 -3,0 g / I Lösungsmittel einsetzt.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die aktivierten Substrate in naßchemische Metallisierungsbäder, insbesondere Cu-, Ni-, Co-, Ag- und Au-Bäder, einbringt.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Konzentration der Komplexlösungen in den Aktivierungsbädern kontinuierlich mit einem Fotometer überwacht.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man den Palladium-Komplex von n-Buten-3-on-2 verwendet.
9. Palladium-Komplex von n-Hepten-3-on-2.
10. Verwendung der Komplexverbindung gemäß Anspruch 9 zur Aktivierung von zu metallisierenden Substraten.
EP84107302A 1983-07-08 1984-06-26 Verfahren zur Aktivierung von Substraten für die stromlose Metallisierung Expired EP0131195B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3324767 1983-07-08
DE19833324767 DE3324767A1 (de) 1983-07-08 1983-07-08 Verfahren zur aktivierung von substraten fuer die stromlose metallisierung

Publications (3)

Publication Number Publication Date
EP0131195A2 EP0131195A2 (de) 1985-01-16
EP0131195A3 EP0131195A3 (en) 1985-10-23
EP0131195B1 true EP0131195B1 (de) 1987-08-12

Family

ID=6203550

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84107302A Expired EP0131195B1 (de) 1983-07-08 1984-06-26 Verfahren zur Aktivierung von Substraten für die stromlose Metallisierung

Country Status (5)

Country Link
US (1) US4575467A (de)
EP (1) EP0131195B1 (de)
JP (1) JPS6039166A (de)
CA (1) CA1234134A (de)
DE (2) DE3324767A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3423457A1 (de) * 1984-06-26 1986-01-02 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von leiterplatten
DE3424065A1 (de) * 1984-06-29 1986-01-09 Bayer Ag, 5090 Leverkusen Verfahren zur aktivierung von substratoberflaechen fuer die stromlose metallisierung
EP0214097B1 (de) * 1985-08-23 1989-12-27 Ciba-Geigy Ag Mischung aus Olefin und Dibenzalaceton-Palladiumkomplex und deren Verwendung
JPH0613808B2 (ja) * 1986-02-14 1994-02-23 株式会社大井製作所 自動車用窓ガラス開閉装置
DE3612822A1 (de) * 1986-04-14 1987-10-15 Schering Ag Verfahren zur haftfesten metallisierung von polyetherimid
DE3625587A1 (de) * 1986-07-29 1988-02-04 Bayer Ag Verfahren zur verbesserung der haftfestigkeit von stromlos abgeschiedenen metallschichten auf kunststoffoberflaechen
US5182135A (en) * 1986-08-12 1993-01-26 Bayer Aktiengesellschaft Process for improving the adherency of metallic coatings deposited without current on plastic surfaces
DE3627256A1 (de) * 1986-08-12 1988-02-18 Bayer Ag Verfahren zur verbesserung der haftfestigkeit von stromlos abgeschiedenen metallschichten auf kunststoffoberflaechen
DE3901029A1 (de) * 1989-01-14 1990-07-19 Bayer Ag Verfahren zum metallisieren von formkoerpern aus polyarylensulfiden
US5200272A (en) * 1988-04-29 1993-04-06 Miles Inc. Process for metallizing substrate surfaces
US5238702A (en) * 1988-10-27 1993-08-24 Henning Giesecke Electrically conductive patterns
JPH0334186U (de) * 1989-08-08 1991-04-03
FR2656493A1 (fr) * 1989-12-21 1991-06-28 Bull Sa Procede d'interconnexion de couches metalliques du reseau multicouche d'une carte electronique, et carte en resultant.
DE4209708A1 (de) * 1992-03-25 1993-09-30 Bayer Ag Verfahren zur Verbesserung der Haftfestigkeit von stromlos abgeschiedenen Metallschichten
US5419954A (en) * 1993-02-04 1995-05-30 The Alpha Corporation Composition including a catalytic metal-polymer complex and a method of manufacturing a laminate preform or a laminate which is catalytically effective for subsequent electroless metallization thereof
US5705463A (en) * 1993-02-24 1998-01-06 Tech Spray, Inc. Composition and process for removal of ionic salt deposits
US5604191A (en) * 1993-02-24 1997-02-18 Tech Spray, Inc. Composition for removal of ionic salt deposits
DE19624071A1 (de) * 1996-06-17 1997-12-18 Bayer Ag Verfahren zur Herstellung von bahnförmigen metallbeschichteten Folien
US7011738B2 (en) * 2000-07-06 2006-03-14 Akzo Nobel N.V. Activation of a cathode
JP2017138164A (ja) * 2016-02-02 2017-08-10 大日本印刷株式会社 電極構造の製造方法、センサ電極の製造方法、電極構造およびセンサ電極

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1471135A (fr) * 1965-03-17 1967-02-24 Shell Int Research Procédé de production de complexes de pi-allyle
NL6503362A (de) * 1965-03-17 1966-09-19
DE2451217C2 (de) * 1974-10-29 1982-12-23 Basf Ag, 6700 Ludwigshafen Aktivierung von Substraten für die stromlose Metallisierung
DE3025307A1 (de) * 1980-07-04 1982-01-28 Bayer Ag, 5090 Leverkusen Verfahren zur aktivierung von oberflaechen fuer die stromlose metallisierung
DE3202484A1 (de) * 1982-01-27 1983-08-04 Bayer Ag, 5090 Leverkusen Metallisierte halbleiter und verfahren zu ihrer herstellung

Also Published As

Publication number Publication date
JPH0416548B2 (de) 1992-03-24
JPS6039166A (ja) 1985-02-28
DE3324767A1 (de) 1985-01-17
EP0131195A2 (de) 1985-01-16
DE3465344D1 (en) 1987-09-17
US4575467A (en) 1986-03-11
CA1234134A (en) 1988-03-15
EP0131195A3 (en) 1985-10-23

Similar Documents

Publication Publication Date Title
EP0131195B1 (de) Verfahren zur Aktivierung von Substraten für die stromlose Metallisierung
EP0081129B1 (de) Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung
EP0082438B1 (de) Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung
DE2451217C2 (de) Aktivierung von Substraten für die stromlose Metallisierung
EP0166360B1 (de) Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung
EP0043485B1 (de) Verfahren zur Aktivierung von Oberflächen für die stromlose Metallisierung
EP0256395B1 (de) Verfahren zur Verbesserung der Haftfestigkeit von stromlos abgeschiedenen Metallschichten auf Kunststoffoberflächen
EP0255012B1 (de) Verfahren zur Verbesserung der Haftfestigkeit von stromlos abgeschiedenen Metallschichten auf Kunststoffoberflächen
EP0503351B1 (de) Hydroprimer zum Metallisieren von Substratoberflächen
WO1996029452A1 (de) Verfahren zum selektiven oder partiellen elektrolytischen metallisieren von oberflächen von substraten aus nichtleitenden materialien
DE2412709C3 (de) Verfahren zur Vorbehandlung der Oberfläche eines Formkörpers
EP0132677A1 (de) Verfahren zum Aktivieren von Substratoberflächen für die direkte partielle Metallisierung von Trägermaterialien
DE3248778A1 (de) Verfahren zur herstellung metallisierter poroeser festkoerper
EP0109529B1 (de) Schwarz-metallisierte Substratoberflächen
DE2627941A1 (de) Aktivierungsloesung auf silberbasis fuer ein verfahren zum stromlosen verkupfern
EP0508265B1 (de) Formulierung zum Aktivieren von Substratoberflächen für deren stromlose Metallisierung
EP0177862A2 (de) Halbzeuge zur Herstellung von Leiterplatten
DE1696108C3 (de) Verfahren zur Herstellung eines mit Kupfer, Nickel und/oder Silber plattierten nichtmetallischen Schichtträgers
DE3938710C2 (de)
DE2022109A1 (de) Verfahren zur Metallisierung,insbesondere Oberflaechenmetallisierung von Kunststoff-Formkoerpern,so erhaltene metallisierte Kunststoff-Formkoerper und deren Verwendung
EP0650537A1 (de) Metallisierung von kunststoffen
DE202023103135U1 (de) Oberfläche aus nichtleitendem Kunststoff
DE1620768C3 (de) Verfahren zum Erzeugen von fest haftenden Metallschichten auf Kunststoffflächen
DE1620768B2 (de) Verfahren zum Erzeugen von fest haftenden Metallschichten auf Kunststoffflächen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840627

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19861009

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3465344

Country of ref document: DE

Date of ref document: 19870917

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930513

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930526

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930615

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930616

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930629

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930630

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940630

Ref country code: CH

Effective date: 19940630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950101

EUG Se: european patent has lapsed

Ref document number: 84107302.6

Effective date: 19950110

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301

EUG Se: european patent has lapsed

Ref document number: 84107302.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST