EP0069398B1 - Procédé pour tester des convertisseurs A/N et/ou des convertisseurs N/A ou des réseaux de transmission de données munis de tels convertisseurs ou montés en série avec eux, particulièrement pour le test des codecs pour des appareils MIC, et dispositif pour l'application dudit procédé - Google Patents

Procédé pour tester des convertisseurs A/N et/ou des convertisseurs N/A ou des réseaux de transmission de données munis de tels convertisseurs ou montés en série avec eux, particulièrement pour le test des codecs pour des appareils MIC, et dispositif pour l'application dudit procédé Download PDF

Info

Publication number
EP0069398B1
EP0069398B1 EP82106087A EP82106087A EP0069398B1 EP 0069398 B1 EP0069398 B1 EP 0069398B1 EP 82106087 A EP82106087 A EP 82106087A EP 82106087 A EP82106087 A EP 82106087A EP 0069398 B1 EP0069398 B1 EP 0069398B1
Authority
EP
European Patent Office
Prior art keywords
digital
analogue
item
tested
measurement signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82106087A
Other languages
German (de)
English (en)
Other versions
EP0069398A1 (fr
Inventor
Helmuth Ing.Grad. Hahn
Werner Ing.Grad. Cordt
Winfried Ing.Grad. Borm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT82106087T priority Critical patent/ATE18947T1/de
Publication of EP0069398A1 publication Critical patent/EP0069398A1/fr
Application granted granted Critical
Publication of EP0069398B1 publication Critical patent/EP0069398B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1071Measuring or testing

Definitions

  • the invention relates to a method of the type described in the preamble of claim 1 and an apparatus for performing the method.
  • analog-digital and / or digital-analog converters which are generally implemented as microelectronic circuits, or of the components containing these converters is of particular importance.
  • the test should not only provide precise information about the qualification of the specimen tested, but also allow conclusions to be drawn about systematic manufacturing defects.
  • the testing of digital converter modules with the help of conventional transmission measuring stations requires a comparatively long measuring and testing time, which depends, among other things, on the transient response of the existing filters, so that in particular the measurement of the quantization distortion is relatively complex.
  • Test devices are known (“Fairchild Telecom Test Adapter”, brochure 11/80 10 M 129000) in which the signal samples obtained by the discrete-time sampling are subjected to a fast Fourier transformation and are thus shifted from the time domain to the frequency domain, so that the further investigation the spectral components are available.
  • the analysis of the signal samples is carried out using a suitable mathematical method using a computer.
  • a method with the features of the generic term of claim 1 is known from the essay "Testing the dynamic behavior of fast A / D converters", ELECTRONIC 1978, No. 4, pages 97-101.
  • a triangular test voltage of variable frequency is used as the measurement signal.
  • the evaluation made use of the fact that all possible levels occur with the same probability in such a triangular signal. If the examinee shows ideal behavior, the individual code words also occur with the same probability, i.e. in equal numbers. If this is not the case, appropriate conclusions can be drawn about the behavior of the test object. Increasing the frequency of the triangular measurement signal increases the rise and fall speed of the signal, known as the “slow rate”.
  • the method according to the invention is characterized by the method steps described in claim 1.
  • the application of the measurement signal to the test object provides signal samples during the test period provided, which all correspond to different argument values of the measurement signal. These can be put together into an image by suitable sorting, which corresponds to a kind of “stroboscopic” representation of the response of the test object to the measurement signal.
  • suitable sorting which corresponds to a kind of “stroboscopic” representation of the response of the test object to the measurement signal.
  • the method enables resolution of any size in the modulation areas of interest, e.g. near the zero crossing.
  • the method according to the invention not only enables a general description of the converter characteristic curve but also its exact reconstruction. Since all measured values are obtained in the settled state of the test object, no settling times of any frequency-dependent components that may be present need to be waited for.
  • the method according to the invention enables an arbitrarily precise reconstruction of the actual transmission characteristic of the respective test object.
  • the individual quantization levels of this transmission characteristic can be determined by simple regression calculation from the determined value pairs (analog value and associated digital value).
  • the determined value pairs analog value and associated digital value.
  • all parameters of interest of the test object e.g. determine the level-dependent attenuation distortion and the level-dependent quantization distortion.
  • the level-dependent attenuation distortion and the level-dependent quantization distortion for sinusoidal signals will be determined, since the fine structure of the curves in question enables a particularly precise analysis of the quality of the test object and its weaknesses.
  • the method according to the invention enables testing not only of the actual transducers but also of the transmission elements or sections connected to them. These can either be the filters connected to the actual converter or not separately accessible or also entire line sections or the like.
  • the transducers can either be tested in combination with such transmission sections, so that the behavior of the overall arrangement consisting of the converter and, for example, the line section can be determined, or the properties of transmission sections or generally four-pole can be determined for themselves if these are with a converter are combined, the properties of which have previously been determined separately by the method according to the invention (standard converter).
  • the periodic measuring voltage the frequency of which is selected in comparison with the sampling rate of the digital system so that the samples - based on the periodicity interval of the measuring voltage - all belong to different argument values, so that, in their entirety, they represent the response of the converter, can in principle be any temporal Have a course if it is only ensured that all of the relevant deflection values (amplitudes) appear in it. For example, a triangular signal which is monotonous up to e.g. the peak value corresponding to the modulation limit of the test object increases.
  • a sinusoidal signal can be implemented very precisely over the required number of periods, and secondly a sinusoidal signal can be used to combine the frequency-dependent components combined with the converter, e.g. Filters pass if it lies within the frequency band to be processed by the converter.
  • the measuring arrangement shown in FIG. 1 includes a generator 1 controlled by a quartz Q for generating a signal of a predetermined frequency, from which the actual measuring signal is derived in the signal generator 2.
  • the output of the signal generator 2 is connected to the analog input of the test item designated 3.
  • the digital output of the device under test 3 is connected to a memory 5 via a series-parallel converter 4.
  • the latter is connected to an interface 6, via which a computer 7 can be reached.
  • the generator 1 controls a further generator 8 for generating the system scanning pulses as well as the control device designated 9 for timed control of the series-parallel converter 4 and the interface 6. This ensures the synchronization of the measurement signal, device under test and memory.
  • the frequency of the signal generator 2, derived from the quartz frequency, on the one hand, and the clock frequency generated in the signal generator 8, on the other hand, are selected such that all sampling times that lie within a test period that extends over a plurality of periods of the measurement signal have different time positions relative to the periodicity interval of the measurement signal hold, ie that each sampling time corresponds to a different (precisely defined) argument value within the periodicity interval of the measurement signal. In this way, any number of signal samples can be obtained, all of which describe the behavior of the test object.
  • the digital words corresponding to these signal samples are stored in the memory 5. They are thus available for further processing by the computer 7.
  • the signal samples can, for example, be sorted according to their relative temporal position in the periodicity interval of the measurement signal and combined to form an «envelope» of the measurement signal, since the associated argument values (i.e. the time position in the periodicity interval) are exactly known.
  • the measurement signal has a frequency of around 814 Hz. This means that after a little more than a second, there are around 1000 oscillations, each with around 10 Sampling periods are recorded. All signal samples have different relative time slots in the periodicity interval of the measurement signal.
  • the digital words corresponding to the samples are - as mentioned - put into the memory 5 via the series-parallel converter 4.
  • the fixed and known assignment of frequency and phase position of the scanning and measuring signal enables an exact indication of the storage location in which the PCM words corresponding to the individual values of the response signal are located.
  • FIG. 6 shows a diagram corresponding to FIG. 6, created with the aid of a plotter, which shows the response of a real codec to the sinusoidal measurement signal.
  • FIGS. 7 and 8 show the transmission characteristics of the codec, likewise created with the aid of a plotter, which were determined from the assignment of the digital response signals to the samples of the measurement signal generated in the manner described above.
  • the analog input signal of the test object is plotted on the abscissa axis, while the digital response signal is indicated on the ordinate axis.
  • FIG. 7 shows the transmission characteristic over the entire modulation range of the codec, while FIG. 8 shows a section enlarged by a factor of 20.
  • the different step size of the individual quantization intervals corresponds to the logarithmic companding characteristic of the analog-digital converter (approximated by individual segments).
  • the computational treatment of the measurement values generated by the test object 3 and stored in the memory 5 is very simple. This allows system and example-related deviations between the known measurement signal and the response of the test object, i.e. Quickly check the coding behavior of the test specimen under operational conditions in the steady state without - as with known methods - a problematic comparison of comparators or similar. is required.
  • the fixed assignment of the measured values to the original signals results in simpler calculation rules, a lower number of calculation steps, more precise results and significantly shorter calculation times than in known test methods.
  • FIG. 10 shows the level-dependent attenuation distortion of a codec in a standardized representation in analog-digital direction for sinusoidal signals.
  • the drawing was created again using a plotter.
  • the step-like curves drawn in solid lines illustrate the tolerance limits. It can be seen that the attenuation distortion of the measured test object in the level range of approximately - 30 dbmO lies outside the permissible tolerance range.
  • the “decision thresholds” in the method according to the invention can be assessed separately in both the positive and the negative half-wave.
  • the curve shown corresponds, for example, to the positive half-waves of the measurement signal. If you also have the values corresponding to the negative half-waves plotted, you also get a curve that corresponds to a reflection of the curve shown on the ordinate axis, if the test object works completely «symmetrically».
  • FIG. 11 shows the level-dependent quantization distortion of the same codec in turn in the analog-digital direction.
  • the codec in turn has a sinusoidal input signal applied to it.
  • the arrangement shown in FIG. 2 is used to measure a digital-to-analog converter or a codec in the digital-to-analog direction.
  • a digital word generator 10 is provided which delivers a word sequence which corresponds, for example, to the sample values of a sinusoidal measurement signal, the frequency of which again has the same relation to the system sampling frequency as in the preceding description.
  • the word sequence generated by the generator 10 is fed to the digital input of the test item denoted by 11. Its analog output is connected to the analog input of a standard encoder labeled 12.
  • the digital output of the standard encoder 12 is - analogous to the arrangement according to FIG. 1 - connected to a series-parallel converter 4, to which the same modules or devices are connected as in the arrangement according to FIG. 1.
  • Fig. 4 shows a corresponding arrangement.
  • the generator designated there in its entirety by 13 is shown in detail in FIG. 3. It consists of a digital word generator 10, which in turn is designated 10 and whose output leads to a digital-to-analog converter 14, which in turn controls a sine generator, which is designated as 2 in FIG. 1.
  • the circuit arrangement shown in FIG. 3 ensures exact synchronization between the measurement signal and the scanning signal.
  • the (analog) output signal of the generator 10 can be supplied either to the analog input of the test object 3 or to the analog input of the standard encoder 12 using appropriate switches. In this way, the latter can be checked and subjected to error monitoring.
  • a line labeled 15 is used to enter values of the digital word generator for the purpose of error correction. To eliminate errors, the values can be related to a calculated ideal curve.
  • the arrangement corresponds in its mode of operation to that of FIG. 2.
  • the low-pass filter and sin x / x equalizer, which are provided between the test object and the standard encoder, are not shown for the sake of clarity .
  • the parameters of the test object listed at the beginning and exemplarily shown in FIGS. 7 to 13 can be determined in a very short time and without great computation effort.
  • the analysis of the digital words can be carried out, for example, in the following way:
  • the computer 7 determines in the memory 5 the first occurrence of the digital word describing the highest amplitude value. This value is considered the vertex of the (sinusoidal) signal. Then, on the basis of the given fixed relationship between the sampling and measurement frequencies, the digital word describing the smallest amplitude value is searched for.
  • the device under test is not overdriven and assuming that its offset error is zero, this must be the smallest amplitude value writing digital word appear with an argument value that is ⁇ / 2 out of phase with the argument value for the highest amplitude value.
  • the actual position of the zero crossing is determined on the basis of this argument value.
  • the offset error can be determined from this and from the position of the digital word describing the maximum amplitude value with a negative sign, so that the characteristic points for the curve shown in FIGS. 6 and 9 are fixed.
  • the measurement time is short; for the values of sampling and measuring frequency given above, it is typically about 1 to a maximum of 2 s. With a suitable design of the measurement arrangement, one measurement process can be processed in each case while the next samples are obtained.
  • the signal response of the test object arises to a certain extent «stroboscopically».
  • any number of measuring points of a defined time position in the area of interest can be determined and any desired resolution can be achieved.
  • a resolution of, for example 0.0125 0/0 is at most necessary in the vicinity of the zero crossing, while in the area of the highest amplitude, ie in the vicinity of the modulation limit, the number of samples to be examined for the computational treatment can be drastically reduced.
  • the method according to the invention is suitable not only for testing analog-digital and / or digital-analog converters, but also for testing overall arrangements which, in addition to the converters, contain further active and / or passive transmission elements or link sections. It is also possible to test such elements or sections of the route separately if the behavior of the transducers is known or has previously been determined separately.
  • the method according to the invention produces the graphs “level-dependent attenuation distortion” and “quantization distortion” as a quasi-closed curve, which consists of 127 points joined together instead of e.g. 10 or 12 measuring points that are connected to each other by straight lines, but without showing the actual attenuation curve in between. Nevertheless, the time required to obtain the graphs is approximately 1/100 compared to the previously practiced methods.
  • the required synchronization can also be carried out arithmetically if the measurement signal and clock source are monitored by a frequency meter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Claims (15)

1. Procédé pour tester des convertisseurs analogique-numérique et/ou des convertisseurs numérique-analogique, ou des sections de transmission de la technique des communications d'informations contenant de tels convertisseurs ou connectées en série avec eux, en particulier pour tester des codecs pour appareils PCM,
- selon lequel des échantillons d'un signal de mesure produits ou influencés par le dispositif testé sont stockés dans une mémoire et les paramètres d'intérêt sont déterminés à l'aide de calculateurs par des procédés mathématiques, par exemple par détermination des différentes marches de quantification de la caractéristique de transfert par calcul par régression à partir des valeurs analogiques et numériques correspondantes,
- selon lequel un générateur de signal produit un signal de mesure périodique appliqué en tant que signal analogique à l'entrée analogique du dispositif testé et
- selon lequel, pour la mise en oeuvre des procédés mathématiques mentionnés, au moins une partie des mots numériques stockés dans la mémoire sont mis en relation avec les valeurs d'amplitude effectives correspondant dans le temps aux valeurs échantillonnées respectives du signal de mesure original,
caractérisé par les pas de procédé suivants
- comme signal de mesure on produit un signal, de préférence sinusoïdal, dont la durée de période est choisie de telle manière, comparativement à la cadence d'échantillonnage sur laquelle est basée la numérisation, que tous les instants d'échantillonnage compris dans un laps de temps d'essai prédéterminé, s'étendant sur un grand nombre de périodes du signal de mesure, présentent différentes positions relatives dans le temps à l'intérieur de l'intervalle de périodicité du signal de mesure et
- on stocke dans ladite mémoire et on soumet audit procédé mathématique la totalité ou une sélection des mots numériques apparaissant directement à la sortie du dispositif testé (sens analogique-numérique), ou des mots numériques correspondant aux informations analogiques à la sortie du dispositif testé et obtenus au moyen d'un codeur normalisé (sens numérique-analogique).
2. Procédé selon la revendication 1, caractérisé en ce que la production du signal de mesure, l'échantillonnage du dispositif testé et le stockage des mots numériques dans la mémoire sont synchronisés à partir d'une source de signaux d'horloge commune.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les mots codes stockés dans ladite mémoire sont triés selon leur position dans le temps à l'intérieur de l'intervalle de périodicité du signal de mesure, en vue de la description de l'allure dans le temps du signal de mesure original, et les valeurs d'amplitude correspondant à eux sont assemblées en une courbe représentant la réponse du dispositif testé au signal de mesure.
4. Procédé selon une des revendications précédentes, caractérisé en ce que la caractéristique de transfert effective (Fig. 7 et 8) du dispositif testé est déterminée à partir des valeurs d'entrée et de sortie (analogique respectivement numérique) correspondant par paire l'une à l'autre.
5. Procédé selon la revendication 4, caractérisé en ce que la distorsion d'affaiblissement fonction du niveau (Fig. 10 et 12) du dispositif testé est déterminée à partir de la caractéristique de transfert (Fig. 7 et 8).
6. Procédé selon la revendication 4, caractérisé en ce que la distorsion de quantification fonction du niveau (Fig. 11 et 13) du dispositif testé est déterminée à partir de sa caractéristique de transfert (Fig. 7 et 8).
7. Procédé selon la revendication 5 ou 6, caractérisé en ce que les distorsions d'affaiblissement et de quantification fonction du niveau sont déterminées pour des signaux sinusoïdaux (Fig. 10 et 11).
8. Procédé selon la revendication 5 ou 6, caractérisé en ce que les distorsions d'affaiblissement et de quantification fonction du niveau sont déterminées pour des signaux du type signaux de bruit (Fig. 12 et 13).
9. Procédé selon une des revendications précédentes, caractérisé en ce que le dispositif testé comprend un convertisseur analogique-numérique et/ou un convertisseur numérique-analogique ainsi qu'un quadripôle (par exemple une section de ligne) qui lui est connecté.
10. Procédé selon une des revendications 1 à 8, caractérisé en ce que le dispositif testé est un quadripôle (par exemple une section de ligne) qui est connecté en série avec un convertisseur numérique-analogique de propriétés connues.
11. Dispositif pour la mise en oeuvre du procédé selon une des revendications précédentes, comprenant un générateur (2) pour produire un signal de mesure analogique, périodique, dont la sortie est connectée à l'entrée analogique du dispositif testé (3), caractérisé par
- une mémoire (5), combinée avec un convertisseur série-parallèle (4), qui est connectée à la sortie numérique du dispositif testé (3),
- une source de signaux d'horloge (1) pour la synchronisation du générateur (2), du dispositif testé (3) et de la mémoire (4/5),
- ainsi qu'un dispositif de commande (9) pour l'attaque, conformément à la fréquence d'horloge, dudit convertisseur série-parallèle (4) et d'une interface (6) intercalée dans la liaison entre la mémoire (5) et le calculateur (7) prévu pour l'exploitation.
12. Dispositif pour la mise en oeuvre du procédé selon une des revendications 1 à 10, caractérisé par
- un générateur de mots numériques (10) destiné à produire une suite de mots numériques décrivant ledit signal de mesure, dont la sortie est connectée à l'entrée numérique du dispositif testé (11),
- un codeur normalisé (12) dont l'entrée analogique est connectée à la sortie analogique du dispositif testé (11),
- une mémoire (5) combinée avec un convertisseur série-parallèle (4), qui est connectée à la sortie numérique du codeur normalisé (12),
- ainsi qu'un dispositif de commande (9) pour la synchronisation commune du générateur (10), du dispositif testé (11), du codeur normalisé (12) et de la mémoire (4/5).
13. Dispositif selon la revendication 11, caractérisé en ce que le générateur (2) peut être commandé par la sortie analogique d'un convertisseur numérique-analogique (14), à l'entrée numérique duquel peut être appliquée la suite de mots numériques, décrivant le signal de mesure, d'un générateur (10) de mots numériques (Fig. 3).
14. Dispositif selon la revendication 12 ou 13, caractérisé en ce que l'entrée analogique du codeur normalisé (12) peut être reliée sélectivement, à travers un dispositif de commutation, à la sortie analogique du dispositif testé (11) ou à la sortie analogique du générateur (13) et que ce dernier peut être relié sélectivement à l'entrée analogique du dispositif testé (11).
15. Dispositif selon une des revendications 11 à 14, caractérisé en ce qu'un fréquencemètre est prévu pour surveiller la synchronisation.
EP82106087A 1981-07-08 1982-07-07 Procédé pour tester des convertisseurs A/N et/ou des convertisseurs N/A ou des réseaux de transmission de données munis de tels convertisseurs ou montés en série avec eux, particulièrement pour le test des codecs pour des appareils MIC, et dispositif pour l'application dudit procédé Expired EP0069398B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82106087T ATE18947T1 (de) 1981-07-08 1982-07-07 Verfahren zur pruefung von analog-digital-wandlern und/oder von digital-analog-wandlern oder von nachrichtentechnischen uebertragungsabschnitten, die solche wandler enthalten oder mit ihnen in reihe geschaltet sind, insbesondere zur pruefung von codecs fuer pcm-geraete, sowie vorrichtung zur durchfuehrung des verfahrens.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3126939 1981-07-08
DE3126939 1981-07-08
DE3218066 1982-05-13
DE19823218066 DE3218066A1 (de) 1981-07-08 1982-05-13 Verfahren zur pruefung von analog-digital-wandlern und/oder von digital-analog-wandlern oder von nachrichtentechnischen uebertragungsabschnitten, die solche wandler enthalten oder mit ihnen in reihe geschaltet sind, insbsondere zur pruefung von codecs fuer pcm-geraete, sowie vorrichtung zur durchfuehrung des verfahrens

Publications (2)

Publication Number Publication Date
EP0069398A1 EP0069398A1 (fr) 1983-01-12
EP0069398B1 true EP0069398B1 (fr) 1986-04-02

Family

ID=25794428

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82106087A Expired EP0069398B1 (fr) 1981-07-08 1982-07-07 Procédé pour tester des convertisseurs A/N et/ou des convertisseurs N/A ou des réseaux de transmission de données munis de tels convertisseurs ou montés en série avec eux, particulièrement pour le test des codecs pour des appareils MIC, et dispositif pour l'application dudit procédé

Country Status (5)

Country Link
US (1) US4539683A (fr)
EP (1) EP0069398B1 (fr)
JP (1) JPS58500784A (fr)
DE (2) DE3218066A1 (fr)
WO (1) WO1983000231A1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BG35315A1 (en) * 1982-06-24 1984-03-15 Evtimov Method and device for remote control of regenerators in a series of unserveable multichannel digital pack systems
GB8309768D0 (en) * 1983-04-11 1983-05-18 Indep Broadcasting Authority Error protection of linearly coded digital signals
US4758781A (en) * 1985-12-06 1988-07-19 Hitachi, Ltd. DA converter testing system
US4679028A (en) * 1986-03-31 1987-07-07 Motorola Inc. Fault detection algorithm for successive-approximation A/D converters
DE69124709T2 (de) * 1990-03-15 1997-05-28 At & T Corp Eingebaute Selbstprüfung für Analog-Digitalumsetzer
US5063383A (en) * 1990-06-04 1991-11-05 National Semiconductor Corporation System and method for testing analog to digital converter embedded in microcontroller
US5483237A (en) * 1994-01-31 1996-01-09 At&T Corp. Method and apparatus for testing a CODEC
US5583501A (en) * 1994-08-24 1996-12-10 Crystal Semiconductor Corporation Digital-to-analog converter with digital linearity correction
US5594439A (en) * 1994-08-24 1997-01-14 Crystal Semiconductor Corporation Diagnosing problems in an electrical system by monitoring changes in nonlinear characteristics
US5594612A (en) * 1994-08-24 1997-01-14 Crystal Semiconductor Corporation Analog-to-digital converter with digital linearity correction
WO1998052286A2 (fr) * 1997-05-15 1998-11-19 Koninklijke Philips Electronics N.V. Essai d'un dispositif, avec balayage en frequence
JP2007102219A (ja) * 1997-11-26 2007-04-19 Seiko Epson Corp 画像処理装置のための集積化回路
JP3899525B2 (ja) * 1997-11-26 2007-03-28 セイコーエプソン株式会社 画像処理装置
US6467062B1 (en) 1997-12-10 2002-10-15 Mordecai Barkan Digital data (multi-bit) storage with discrete analog memory cells
US6397364B1 (en) * 1998-04-20 2002-05-28 Mordecai Barkan Digital data representation for multi-bit data storage and transmission
EP1135860B1 (fr) * 1998-12-03 2003-04-02 Continental Teves AG & Co. oHG Procédé PERMETTANT DE TESTER UN circuit avec CONVERTISSEUR A/N DESTINE A DES APPLICATIONS CRITIQUES EN TERMES DE SECURITE
US6703952B2 (en) * 2002-06-10 2004-03-09 Adc Dsl Systems, Inc. Testing analog-to-digital and digital-to-analog converters
TWI233495B (en) * 2004-02-11 2005-06-01 Ind Tech Res Inst IC with built-in self-test function and design method thereof
US7729098B2 (en) * 2006-03-24 2010-06-01 Ics Triplex Technology Limited Overload protection method
US7476891B2 (en) * 2006-03-24 2009-01-13 Ics Triplex Technology, Ltd. Fault detection method and apparatus
US7747405B2 (en) * 2006-03-24 2010-06-29 Ics Triplex Technology Ltd. Line frequency synchronization
US7504975B2 (en) * 2006-03-24 2009-03-17 Ics Triplex Technology Limited Method and apparatus for output current control
US7613974B2 (en) * 2006-03-24 2009-11-03 Ics Triplex Technology Limited Fault detection method and apparatus
US8166362B2 (en) * 2006-03-24 2012-04-24 Rockwell Automation Limited Fault detection method and apparatus for analog to digital converter circuits
EP1837971B1 (fr) * 2006-03-24 2010-03-31 ICS Triplex Technology Limited Procédé de protection contre la surcharge
US7688560B2 (en) * 2006-03-24 2010-03-30 Ics Triplex Technology Limited Overload protection method
US10033400B1 (en) 2017-10-18 2018-07-24 Schweitzer Engineering Laboratories, Inc. Analog-to-digital converter verification using quantization noise properties
US9985646B1 (en) 2017-10-18 2018-05-29 Schweitzer Engineering Laboratories, Inc. Analog-to-digital converter verification using quantization noise properties

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3931506A (en) * 1974-12-30 1976-01-06 Zehntel, Inc. Programmable tester
DE2503974C3 (de) * 1975-01-31 1978-06-08 Vierling, Oskar, Prof. Dr.Phil.Habil., 8553 Ebermannstadt Verfahren zum Messen von Linearitätsfehlern bei PCM-Systemen
JPS5447410A (en) * 1977-09-21 1979-04-14 Oki Electric Ind Co Ltd Monitor system for pcm communication system
DE2804951A1 (de) * 1978-02-06 1979-08-09 Siemens Ag Verfahren zur UEberpruefung der Codier- und Decodierkennlinie einer Codier-Decodier-Anordnung
US4266292A (en) * 1978-11-20 1981-05-05 Wescom Switching, Inc. Method and apparatus for testing analog-to-digital and digital-to-analog code converters
JPS5631226A (en) * 1979-08-22 1981-03-30 Fujitsu Ltd Characteristic measuring system of digital communication system
US4352160A (en) * 1980-01-21 1982-09-28 The United States Of America As Represented By The Secretary Of The Air Force Statistical method of measuring the differential linearity of an analog/digital converter using a pseudo-random triangle wave stimulus
US4335373A (en) * 1980-11-07 1982-06-15 Fairchild Camera & Instrument Corp. Method for analyzing a digital-to-analog converter with a nonideal analog-to-digital converter
US4419656A (en) * 1980-11-07 1983-12-06 Fairchild Camera & Instrument Corp. Method and apparatus for digital converter testing
US4354177A (en) * 1980-11-07 1982-10-12 Fairchild Camera & Instr. Corp. Method and apparatus for calibrating an analog-to-digital converter for a digital-to-analog converter test system
US4465995A (en) * 1980-11-07 1984-08-14 Fairchild Camera And Instrument Corp. Method and apparatus for analyzing an analog-to-digital converter with a nonideal digital-to-analog converter

Also Published As

Publication number Publication date
DE3218066A1 (de) 1983-01-27
JPS58500784A (ja) 1983-05-12
DE3270247D1 (en) 1986-05-07
US4539683A (en) 1985-09-03
WO1983000231A1 (fr) 1983-01-20
EP0069398A1 (fr) 1983-01-12

Similar Documents

Publication Publication Date Title
EP0069398B1 (fr) Procédé pour tester des convertisseurs A/N et/ou des convertisseurs N/A ou des réseaux de transmission de données munis de tels convertisseurs ou montés en série avec eux, particulièrement pour le test des codecs pour des appareils MIC, et dispositif pour l'application dudit procédé
DE2849119C2 (fr)
EP0296588B1 (fr) Procédé et dispositif pour la reconnaissance automatique d'une succession de signaux
DE2061483C2 (de) Verfahren zur Durchführung des Verfahrens zum Prüfen elektronischer Einrichtungen und Vorrichtung
DE2644885C2 (fr)
DE2553121A1 (de) Verfahren und vorrichtung zur verringerung von fehlern in uebertragungssystemen fuer digitale information
DE3100154A1 (de) "offset digital zitter generator"
DE3332979A1 (de) Verfahren und einrichtung zur erzeugung eines spektrums zufaelliger vibrationen
DE2706928A1 (de) Analog-digital-umwandlungsverfahren und -system
DE2607922A1 (de) Vorrichtung zur erzeugung einer genau gesteuerten komplexen elektrischen analogkurvenform
DE2622423A1 (de) Vocodersystem
DE2852747C2 (fr)
DE2827422C3 (de) Verfahren und Schaltungsanordnung zum Messen von Kennwerten eines Vierpols, insbesondere einer Datenübertragungsstrecke
EP0136591B1 (fr) Procédé pour mesurer les courbes des signaux à basses fréquences à l'intérieur des circuits intégrés avec une sonde à électrons
DE3101837C2 (de) Schaltungsanordnung zur Untersuchung komplexer Signalformen
DE2852791C2 (fr)
DE2849174A1 (de) Verfahren und schaltungsanordnung zur daempfungsmessung, insbesondere zur ermittlung der daempfungs- und/oder gruppenlaufzeitverzerrung eines messobjektes
DE2051589A1 (de) Anordnung zur Synthese eines Signals
DE2852802C2 (fr)
EP0149095B1 (fr) Méthode d'essai des propriétés d'appareils de transmission fonction du niveau de signal, spécialement en ce qui concerne la dépendance de la distorsion d'atténuation en fonction du niveau de signal des CODEC pour circuit PCM et dispositif pour l'application de ladite méthode
DE2806695C2 (de) Verfahren zum Messen der Form von sich schnell ändernden periodischen elektrischen Signalen und Einrichtung zur Durchführung des Verfahrens
DE3010783A1 (de) Schaltungsanordnung fuer ein fernmeldesystem zum messen des maximalen pegels eines codierten signals
DE1160660B (de) Verfahren zur Umwandlung gesprochener Worte in eine optische Darstellung
DE3338193A1 (de) Schaltungsanordnung zum messen der uebertragungsqualitaet eines digitalen pruefobjektes
DE2849182A1 (de) Verfahren und schaltungsanordnung zur daempfungsmessung, insbesondere zur ermittlung der daempfungs- und/oder gruppenlaufzeitverzerrung eines messobjektes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19830210

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 18947

Country of ref document: AT

Date of ref document: 19860415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3270247

Country of ref document: DE

Date of ref document: 19860507

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860625

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890707

Ref country code: AT

Effective date: 19890707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900403

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82106087.8

Effective date: 19900418