EP0062706A2 - Heizvorrichtung - Google Patents

Heizvorrichtung Download PDF

Info

Publication number
EP0062706A2
EP0062706A2 EP81110398A EP81110398A EP0062706A2 EP 0062706 A2 EP0062706 A2 EP 0062706A2 EP 81110398 A EP81110398 A EP 81110398A EP 81110398 A EP81110398 A EP 81110398A EP 0062706 A2 EP0062706 A2 EP 0062706A2
Authority
EP
European Patent Office
Prior art keywords
generator
heating
heating device
heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81110398A
Other languages
English (en)
French (fr)
Other versions
EP0062706A3 (en
EP0062706B1 (de
Inventor
Peter Dipl.-Ing. Ahner
Manfred Dipl.-Ing. Frister
Helmut Dr.-Ing. Härer
Istvan Dipl.-Ing. Ragaly
Stefan Dipl.-Ing. Renner
Siegfried E. Dr.-Ing. Schustek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19813128081 external-priority patent/DE3128081A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0062706A2 publication Critical patent/EP0062706A2/de
Publication of EP0062706A3 publication Critical patent/EP0062706A3/de
Application granted granted Critical
Publication of EP0062706B1 publication Critical patent/EP0062706B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V99/00Subject matter not provided for in other main groups of this subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/18Heater
    • F01P2060/185Heater for alternators or generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a heating device according to the preamble of the main claim.
  • Heating devices for motor vehicles in a variety of configurations are already known, in which a heat medium circuit is provided with which it is possible to supply or remove heat from the drive motor and / or to heat the passenger compartment.
  • the heating medium is generally water or air, which are circulated by a cooling water pump or a fan in the heating medium circuit.
  • additional heaters for the drive motor and / or passenger compartment, which are based on the combustion of fuel, on a change in the physical state of a heating medium or on electrical heating mediums.
  • additional generators i.e. in addition to the usual generators of the motor vehicle, there are additional generators which supply electrical energy for operating the additional heater.
  • the heating device according to the invention with the characterizing features of the main claim has the advantage that additional power loss in the form of waste heat is used for the heating medium circuit, so that an even more perfect utilization of the primary energy used is possible.
  • the waste heat from at least one conventional motor vehicle generator is removed via a cooling jacket which is part of a heat medium circuit (water or air) of the motor vehicle for heating the drive motor and / or the passenger compartment.
  • a heating generator also advantageously allows a heating generator to be provided on the same drive shaft in addition to the conventional generator in a manner known per se, the power loss of the heating generator also being able to be dissipated in the form of waste heat via the cooling jacket of a common housing of generator and heating generator.
  • the existing heat dissipation from the generator and the heating generator is used to the effect that the heating generator is not used to generate electrical energy, but rather directly to generate thermal energy, for example by short-circuiting the stator winding or by designing it as an eddy current brake.
  • an internal, closed air cooling circuit is also provided, which is generated by the fan wheel which is usually provided for generators. It is thus advantageously possible to remove the waste heat from the parts of the generator or generators that are not in direct heat-conducting contact with the cooling jacket.
  • a particularly good efficiency is achieved according to the invention in that the electrical energy generated by the heating generator is converted into heat in heating resistors, these heating resistors being thermally in close contact with the heating generator or with the usual generator, with this compact arrangement additionally saving wiring.
  • a system with a heating device with air cooling can be represented in a particularly simple manner and with only slight deviations from conventional air heating devices, with which a heating with and without a heating generator is possible with the greatest possible utilization of the waste heat. It is also possible to effect a separate generator cooling by forcibly dissipating the heat loss, this waste heat can be dissipated directly to the outside in summer operation, so that overheating of the generator can be avoided and the generator can be used for higher outputs with the same structural size.
  • FIG. 1 shows a schematic illustration of a water / heat medium circuit of a motor vehicle according to the invention
  • Figure 2a to e is a schematic representation of an air-heat medium circuit of a motor vehicle according to the invention
  • 3a to c show a sectional view through a conventional motor vehicle generator with means for dissipating the power loss
  • 4a to c show a seal for a generator according to FIG. 3
  • FIG. 5 shows a sectional view through a tandem arrangement of conventional generator and heating generator with means for dissipating the power loss
  • FIG. 6 shows a sectional view through a tandem arrangement of a conventional generator and heating generator in the form of an eddy current brake with means for dissipating the power loss
  • Figure 7 is an illustration of heating resistors included in the generator.
  • a heat medium pump for example a cooling water pump of a motor vehicle
  • the heat medium pump 1 is connected via a line 2 to a cooling water jacket 3 of the drive motor, and this is connected via line 4 to a housing 5 in which a conventional generator 6 and a heating generator 7 are located.
  • the housing 5 is in turn connected via a line 9 to a heat exchanger 10 which has an inflow opening 11 and an outflow opening 12.
  • the heat exchanger 10 is in turn connected to the heat medium pump 1 via a line 13, which results in an overall closed heat medium circuit.
  • the usual generator 6 serves to supply the usual consumers of the motor vehicle, as indicated by a battery 14, ignition system 15 and lighting 16, while the heating generator 7 - as will be described below for some exemplary embodiments - for generating electrical energy for an additional heater 17 or is used to generate thermal energy.
  • FIG. 2a to d schematically show a further embodiment of a heat medium circuit according to the invention for a heating device, air being used as the heat medium.
  • the circuit has two fresh air inlets 50, 51 which lead to a cross distributor 52 in which a first pipe slide is rotatably mounted.
  • the first tube slide 53 consists of a rotatable tube, by means of which an air flow in the direction of the tube axis is possible and is blocked perpendicular to the tube axis.
  • the first pipe slide 53 is in the position shown in FIG set below 45 0 , so that an air throughput on both sides of the first slide valve 53 is possible, as indicated by the arrows.
  • a blower 54 is arranged between a fresh air insert 51 and the cross distributor 52.
  • a line 55 leads from the cross distributor 52 to the housing 5, in which the usual generator 6 and the heating generator 7 are arranged.
  • the generators 6, 7 are in a good heat-conducting connection with cooling channels 65 through which the air flows from the line 55 and dissipates the heat loss from the generators 6, 7.
  • a line 59 leads from the housing 5 to a heat exchanger 61, to which a line 60 leads from a triangular distributor 57, in which a second pipe slide 58 is rotatably arranged and which in turn is connected to the cross distributor 52 via a line 56.
  • the second pipe slide 58 has the same function as the first pipe slide 53.
  • a line 62 also leads from the triangular distributor 57 to the outflow line 63 of the heat exchanger 61 and from there to an air outlet 64.
  • a further triangular distributor 70 is arranged with a third pipe slide 71, the branch of which leads to an air outlet 72, the third pipe slide 71 being operatively connected to a blower 73 which is arranged in the fresh air inlet 50.
  • FIGS. 2d and e show two operating positions of the triangular distributor 57.
  • the cross distributor 52 is in the position shown in FIG. 2b ("heating generator off"), which corresponds to the position in accordance with FIG. 2a
  • the fresh air inlet 51 is connected via the blower 54 to the line 56 leading to the delta distributor 57 Connection; the fresh air inlet 50 is connected to the line 55 leading to the housing 5.
  • the triangular distributor 57 (“cold”) shown in FIGS. 2a and 2e, fresh air is accordingly conveyed from the fresh air inlet 51, possibly with the blower 54 switched on, via the lines 56, 62, 63 to the air outlet 64 of the passenger compartment.
  • the triangular distributor 57 is switched to the position ("warm") shown in FIG. 2d, the line 56 is connected to the line 60 and thus to the heat exchanger 61, so that it flows from the fresh air inlet 51 via the blower 54 into the line 56 injected fresh air is fed via line 60 to heat exchanger 61, is heated there and is fed as warm air via line 63 to air outlet 64 of the passenger compartment.
  • a cold or warm ventilation of the passenger compartment is thus possible.
  • the third pipe slide 71 actuated together with the blower 73, so that forced cooling of the generator 6 is possible and the warm exhaust air can be conducted directly outside.
  • the blower 73 is controlled by a temperature meter 74, which is arranged in the vicinity of the heat-sensitive parts of the generator 6, 7.
  • the cross distributor 52 In order to use the waste heat generated by the usual generator 6 and possibly by the heating generator 7 to heat the motor vehicle at cold outside temperatures, the cross distributor 52 is brought into the position shown in FIG. 2c ("heating generator on").
  • the heat medium circuit now leads from the fresh air inlet 51 via the blower 54, the cross distributor 52, the line 55, the cooling channels 65, the line 59, the heat exchanger 61 and the line 63 to the air outlet 64 of the passenger compartment. If only a conventional generator 6 of the motor vehicle is provided, this circuit causes the fresh air from the fresh air inlet 51 in the cooling channels 65 of the housing 5 to be preheated, so that the waste heat from the generator 6 is used in addition for heating purposes. This also applies to the waste heat from the heating generator 7, if one is provided and switched on.
  • the heating generator 7 has the effect that faster heating of the drive motor and / or passenger compartment is possible when the cold vehicle is put into operation.
  • the heating generator 7 is namely switched on after starting by switching on its field of excitation to the electrical system of the motor vehicle, the electrical energy of the heating generator 7 in heating resistors 16a and 0 16b, which in the heat exchanger 61 or the line 63 for direct heating of the Air are arranged, is converted into heat.
  • the air enters from the air outlet 64 the passenger compartment, for heating the passenger compartment, but also for defrosting the windscreen in winter operation, so that even at low engine speeds, at which the drive motor itself generates little heat loss, additional heating power from the waste heat of the generators 6, 7 or heating power of the generator 7 is available, which is quickly and easily brought by the blower 54 to the location that is to be heated quickly.
  • If the cooling water of the motor vehicle and thus the heat exchanger 61 has heated up sufficiently, additional power can be generated by the heating generator 7 to be dispensed with; the heating generator 7 is then switched off.
  • the heating generator 7 - as will be described further below - is not designed as an electrical generator but rather as a heat generator that generates heat directly, so that this additional heat flows directly into the heat medium circuit according to FIG. 1 or FIG. 2.
  • the heat medium circuits described above in accordance with FIGS. 1 and 2 not only have the advantage of enabling faster heating of the drive motor and / or passenger compartment when the motor vehicle is cold started, the additional mechanical load on the drive motor by the heating generator 7 also results in an increased base load , which is desirable when the drive motor is idling in view of its specific consumption.
  • the heat medium circuits are also in no way limited to the heating of the drive motor and / or passenger compartment, the heat removed via the heat exchanger 10 or 61 or generated on the additional heating elements 16, 16a, 16b can also be used for other heating purposes on board motor vehicles of all kinds will.
  • FIG. 3 shows a sectional view of a conventional generator for a motor vehicle which additionally has means for dissipating the waste heat.
  • 21 denotes a stator of the generator and 22 denotes a cooling jacket into which the stator 21 is pressed.
  • the cooling jacket 22 has, on the one hand, open cooling channels 23 - for heat transfer via air, preferably in an internal circuit, as described further below - and, on the other hand, closed cooling channels 24 for heat transfer via a heating medium to be supplied and removed, preferably water or air.
  • These cooling channels 23, 24 are shown in cross section in FIGS. 3b and c for clarification.
  • the generator also has end shields 25a, 25b, in which collecting ducts 26a, 26b are arranged, these collecting ducts 26a, 26b being connected to the closed cooling ducts 24 and the required sealing between the end shields 25a, 25b and the cooling jacket 22 by means of seals 40 is accomplished.
  • the heat channel 26b is connected, for example, to the line 9 and the collecting channel 26a to the line 4 in accordance with the heat medium circuit from FIG. 1.
  • the closed cooling duct 24 in FIG. 3 as cooling duct 65 according to FIG. 2 when using air as the heating medium, the collecting ducts 26a, 26b being connected in a corresponding manner to the lines 55, 59.
  • the open cooling channels 23 ', 24' shown in FIG. 3c are designed as slots in the manner of a heat sink, while the closed cooling channels 24' are at least approximately cylindrical.
  • sealing elements 40 are used according to the invention, as shown in detail in FIGS. 4a to c.
  • the sealing elements 40 shown in FIGS. 4a to c can not only be used in a heating device according to the present invention, but can also be used wherever electrical machines or generators are provided with a heat medium cooling.
  • 40 denotes a seal, the profile of which essentially corresponds to that of the cooling jacket 22, as shown in FIG. 3c.
  • the seal 40 consists of a circumferential web 43 into which dimensionally stable sleeves 41 are inserted, which ensure that the closed cooling channels 24 'of the cooling jacket 22 or end shields 25a, 25b are connected.
  • O-rings 42, 42 ' are shorn over the dimensionally stable sleeves 41, which bear against the web 43 on both sides. by accordingly of the cooling jacket 22 or the end shields 25a, 25b is when together Construction of these elements ensures that a sufficient sealing effect is achieved.
  • stator windings 28 are arranged on the stator 21, the excitation winding 29 is located on a claw-pole rotor, the claw poles of which are designated by 30 in FIG. There is an air gap 31 between the claw-pole rotor and the stator 21.
  • a fan wheel 32 is also provided on the drive shaft on the side of the end shield 25 and on the end shield 25b there is a rectifier unit 33, which is fastened to the end shield 25b via a heat-insulating layer 34 is.
  • the waste heat generated by the stator windings 28 is partially emitted to the cooling jacket 22 via the stator 21 and dissipated there via the heating medium circulating in the closed cooling channels 24.
  • an internal air cooling circuit is also provided according to the invention, which is maintained by the fan wheel 32. This air cooling circuit passes from the fan wheel 32 in the end shield 25a the open cooling channels 23 to the end shield 25b and from there back via the air gap 31 to the fan wheel 32.
  • the closed air cooling circuit ensures better distribution of the waste heat and thus better dissipation via the cooling jacket 22.
  • the insulating layer 34 is designed to be highly heat-conductive, so that the waste heat from the rectifier unit 33 is emitted via the insulating layer 34 to the bearing plate 25b through which coolant flows.
  • the generator arrangement shown in Figure 5 corresponds to that shown in Figure 3, so that a detailed description of the individual elements can be dispensed with. However, it is in addition to the usual.
  • Generator 6 in the arrangement shown in Figure 5 a heating generator 7 is provided, which is arranged on a common shaft 35 for both generators 6, 7, as was already symbolically shown in Figures 1 and 2.
  • the structure of the heating generator 7 corresponds in this case to that of the conventional generator 6 and the electrical energy generated by the heating generator 7 is used to operate additional electrical heaters. Due to the identical structure of generator 6 and heating generator 7, the end shields 25a, 25b already shown in FIG. 3 can be used, it is only necessary to design the cooling jacket 22 with the cooling channels 23, 24 contained therein correspondingly wider.
  • the embodiment shown in FIG. 5 additionally opens up the possibility of using the heating generator not directly as a power generator, but directly as a heat generator. For this purpose, it is only necessary to short-circuit the stator winding 28 of the heating generator 7, so that considerable waste heat is generated in the latter, which is dissipated into the heating medium circuit via the cooling jacket 22.
  • FIG. 6 Another possibility of designing the heating generator 7 as a heat generator is shown in FIG. 6.
  • a solid iron stand 36 is arranged in the heating generator 7 instead of the stator 21 with stator winding 28, so that the heating generator 7 acts as an eddy current brake in this case.
  • a considerable amount of heat is also generated in the eddy current brake, which is dissipated via the cooling jacket 22.
  • FIG. 7 also shows a device in which, in the case of an electric heating generator 7, the electrical energy generated in it is converted directly into thermal energy at the heating generator 7.
  • heating resistors 45 are provided which, according to the embodiment in accordance with FIG. 7a, are designed as immersion heating rods and are arranged in the collecting duct 26a or, as shown in FIG. 7b, are integrated directly into a shaped piece 46 of the end shield 25a. In both cases, the heating resistors 45 extend over approximately 2/3 of the circumference of the end shield 25a or the collecting duct 26a, the remaining third of the circumference being used to bring the electrical connections or the connecting pieces together.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Es wird eine Heizvorrichtung für Kraftfahrzeuge vorgeschlagen, die über einen Wärmemittelkreislauf (Wasser oder Luft) verfügt, mit dem eine Wärmezu- bzw. Abfuhr vom Antriebsmotor sowie eine Beheizung des Fahrgastraumes möglich ist. Dabei ist wenigstens ein vom Antriebsmotor angetriebener Generator (6, 7) vorgesehen, der über Mittel zum Abführen seiner Abwärme verfügt, wobei diese Mittel Teil des Wärmemittelkreislaufes sind. Hierdurch ist es möglich, die Verlustleistung eines Kraftfahrzeuggenerators zum Heizen zu verwenden, insbesondere nach Inbetriebnahme eines kalten Fahrzeuges oder bei niedriger Drehzahl. Weiterhin ist vorgesehen, neben dem üblichen Generator (6) einen sogenannten Heizgenerator (7) vorzusehen, der auf derselben Welle wie der übliche Generator (6) angeordnet ist und dazu dient, elektrische Energie oder Wärmeenerge für Zusatzheizzwecke zu erzeugen. Schließlich kann durch den Wärmemittelkreislauf eine verstärkte Abfuhr der Verlustwärme des üblichen Generators (6) bewirkt werden, so daß dieser Generator (6) bei sonst gleichen Abmessungen für höhere Leistungen verwendet werden kann.

Description

    Stand der Technik
  • Die Erfindung geht aus von einer Heizvorrichtung nach der Gattung des Hauptanspruches.
  • Es sind bereits Heizvorrichtungen für Kraftfahrzeuge in vielfältiger Ausgestaltung bekannt, bei denen ein Wärmemittelkreislauf vorgesehen ist, mit dem eine Wärmezu- oder Abfuhr vom Antriebsmotor und/oder eine Heizung des Fahrgastraumes möglich ist. Das Wärmemittel ist dabei im allgemeinen Wasser oder Luft, die von einer Kühlwasserpumpe bzw. einem Gebläse im Wärmemittelkreislauf umgewälzt werden.
  • Um den besonderen Betriebsbedingungen beim Kaltstart mit kaltem Antriebsmotor gerecht zu werden, ist es weiterhin bekannt, sogenannte Zusatzheizungen zu verwenden, die bis zum Warmlauf eine zusätzliche Erwärmung des Antriebsmotors und/oder das Fahrgastraumes bewirken. Bei üblichen Heizvorrichtungen können nämlich dann Probleme auftreten, wenn das Kraftfahrzeug bei niedrigen Außentemperaturen in Betrieb genommen werden soll, da bei derartigen üblichen Heizvorrichtungen die Betriebswärme ausschließlich vom Antriebsmotor selbst geliefert wird. einerseits ist eine niedrige Betriebstemperatur für den Antriebsmotor unerwünscht, andererseits ist man aber auch bestrebt, bei niedrigen Außentemperaturen eine wirksame Heizung des Fahrgastraumes möglichst frühzeitig zu ermöglichen. Diese letzte Bestrebung entspringt dabei nicht nur der Forderung nach einer Erhöhung des Komforts für die Fahrgäste, sondern auch der Forderung, bei niedrigen Außentemperaturen eine möglichst schnelle Enteisung der Frontscheiben des Fahrzeuges ohne Einsatz mechanischer Mittel zu ermöglichen.
  • Als Zusatzheizungen für Antriebsmotor und/oder Fahrgastraum ist daher bereits eine Vielzahl von Vorrichtungen vorgeschlagen worden, die auf der Verbrennung von Kraftstoff, auf einer Änderung des Aggregatzustandes eines Heizmittels oder auf elektrischen Heizmitteln beruhen. Bei diesen elektrischen Zusatzheizungen ist es bekannt, sogenannte Heizgeneratoren einzusetzen, d.h. neben den üblichen Generatoren des Kraftfahrzeuges vorhandene Zusatzgeneratoren, die elektrische Energie für das Betreiben der Zusatzheizung liefern.
  • Es ist dabei beispielsweise aus der US-PS 3 668 419 auch bekannt, den üblichen Generator und den Heizgenerator auf einer gemeinsamen Welle in sogenannter Tandem-anordnung anzubringen.
  • Die bekannten Anordnungen haben jedoch den Nachteil, daß die erzeugte Nutz- und Verlustwärme nur unvollständig ausgenutzt wird.
  • Vorteile der Erfindung
  • Die erfindungsgemäße Heizvorrichtung mit den kennzeichnenden Merkmalen des Hauptanspruches hat demgegenüber den Vorteil, daß zusätzliche Verlustleistung in Form von Abwärme für den Wärmemittelkreislauf genutzt wird, so daß eine noch vollkommenere Ausnutzung der eingesetzten Primärenergie möglich ist.
  • In bevorzugter Ausgestaltung der Erfindung wird dabei die Abwärme wenigstens eines üblichen Kraftfahrzeuggenerators über einen Kühlmantel abgeführt, der Teil eines Wärmemittelkreislaufes (Wasser oder Luft) des Kraftfahrzeuges zum Erwärmen des Antriebsmotors und/oder des Fahrgastraumes ist. Diese Ausgestaltung der Erfindung gestattet es weiterhin in vorteilhafter Weise, zusätzlich zum üblichen Generator in an sich bekannter Weise einen Heizgenerator auf derselben Antriebswelle vorzusehen, wobei die Verlustleistung des Heizgenerators ebenfalls in Form von Abwärme über den Kühlmantel eines gemeinsamen Gehäuses von Generator und Heizgenerator abführbar ist.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung wird die vorhandene Wärmeabführung von Generator und Heizgenerator dahingehend ausgenutzt, daß der Heizgenerator nicht zum Erzeugen elektrischer Energie, sondern direkt zum Erzeugen von Wärmeenergie eingesetzt wird, etwa durch Kurzschließen der Ständerwicklung oder durch sein.e Ausbildung als Wirbelstrombremse. Weiterhin wird eine besonders gute Abfuhr der Verlustleistung in.Form von Abwärme dadurch erzielt, daß neben dem kühlmitteldurchströmten Mantel des oder der Generatoren noch ein innerer, geschlossener Luftkühlkreislauf vorgesehen ist, der von dem üblicherweise bei Generatoren vorgesehenen Lüfterrad erzeugt wird. Damit ist es in vorteilhafter Weise möglich, die Abwärme auch von den Teilen des Generators oder der Generatoren abzuführen, die nicht in unmittelbar wärmeleitendem Kontakt mit dem Kühlmantel sind.
  • Ein besonders guter Wirkungsgrad wird erfindungsgemäß dadurch erzielt, daß die vom Heizgenerator erzeugte elektrische Energie in Heizwiderständen in Wärme umgesetzt wird, wobei diese Heizwiderstände thermisch in engem Kontakt zum Heizgenerator oder zum üblichen Generator stehen, wobei durch diese kompakte Anordnung zusätzlich Leitungsführung gespart wird.
  • Schließlich kann erfindunsgemäß mit einer Heizvorrichtung mit Luftkühlung in besonders einfacher Weise und mit nur geringen Abweichungen gegenüber üblichen Luftheizvorrichtungen ein System dargestellt werden, mit dem eine Heizung mit und ohne Heizgenerator unter weitestgehender Ausnutzung der Abwärme möglich ist. Dabei ist es zusätzlich möglich, eine getrennte Generatorkühlung durch Zwangsabfuhr der Verlustwärme zu bewirken, wobei diese Abwärme im Sommerbetrieb direkt nach außen abführbar ist, so daß Überhitzungen des Generators vermieden werden und der Generator bei gleichbleibender baulicher Größe für höhere Leistungen verwendet werden kann.
  • Zeichnung
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen: Figur 1 eine schematische Darstellung eines Wasser-Wärmemittelkreislaufes eines Kraftfahrzeuges nach der Erfindung; Figur 2a bis e eine schematische Darstellung eines Luft-Wärmemittelkreislaufes eines Kraftfahrzeuges nach der Erfindung; Figur 3a bis c ein Schnittbild durch einen üblichen Kraftfahrzeuggenerator mit Mitteln zum Abführen der Verlustleistung; Figur 4a bis c eine Darstellung einer Dichtung für einen Generator gemäß Figur 3; Figur 5 ein Schnittbild durch eine Tandem-Anordnung von üblichem Generator und Heizgenerator mit Mitteln zum Abführen der Verlustleistung; Figur 6 ein Schnittbild durch eine Tandem-Anordnung von üblichem Generator und Heizgenerator in Gestalt einer Wirbelstrombremse mit Mitteln zum Abführen der Verlustleistung; Figur 7 eine Darstellung von in den Generator einbezogenen Heizwiderständen.
  • Beschreibung der Ausführungsbeispiele
  • In Figur 1 ist mit 1 eine Wärmemittelpumpe, beispielsweise eine Kühlwasserpumpe eines Kraftfahrzeuges angedeutet. Die Wärmemittelpumpe 1 ist über eine Leitung 2 mit einem Kühlwassermantel 3 des Antriebsmotors verbunden und dieser über eine Leitung 4 mit einem Gehäuse 5, in dem sich ein üblicher Generator 6 sowie ein Heizgenerator 7 befinden. Das Gehäuse 5 ist wiederum über eine Leitung 9 mit einem Wärmetauscher 10 verbunden, der über eine Zuströmöffnung 11 und eine Abströmöffnung 12 verfügt. Der Wärmetauscher 10 ist wiederum über eine Leitung 13 mit der Wärmemittelpumpe 1 verbunden, wodurch sich insgesamt ein geschlossener Wärmemittelkreislauf ergibt. Der übliche Generator 6 dient dabei zur Versorgung der üblichen Verbraucher des Kraftfahrzeuges, wie dies mit einer Batterie 14, Zündanlage 15 und einer Beleuchtung 16 angedeutet ist, während der Heizgenerator 7 - wie dies unten noch für einige Ausführungsbeispiele beschrieben wird - zum Erzeugen -elektrischer Energie für eine Zusatzheizung 17 oder zum Erzeugen thermischer Energie dient.
  • Bei Inbetriebnahme eines Kraftfahrzeuges mit einem Wärmemittelkreislauf, wie er in Figur 1 dargestellt ist, entsteht einmal sofort Verlustleistung in den Generatoren 6, 7, die als Abwärme in den Wärmemittelkreislauf eingeht, so daß über den Kühlwassermantel 3 und/oder den Wärmetauscher 10 der Antriebsmotor und/oder der Fahrgastraum beheizt werden kann. Zusätzlich kann-der Antriebsmotor und/oder der Fahrgastraum über die elektrische Zusatzheizung 17 beheizt werden, die elektrische Energie vom Heizgenerator 7 erhält. Sind Antriebsmotor und/oder Fahrgastraum auf Betriebstemperatur, wird der Heizgenerator 7 abgeschaltet, kann jedoch - insbesondere bei längerer Fahrt mit niedriger Motordrehzahl - auch wieder bei Bedarf zugeschaltet werden.
  • In Figur 2a bis d ist schematisch eine weitere Ausführungsform eines erfindungsgemäßen Wärmemittelkreislaufes für eine Heizvorrichtung dargestellt, wobei als Wärmemittel Luft verwendet wird. Der Kreislauf verfügt über zwei Frischlufteinlässe 50, 51, die zu einem Kreuzverteiler 52 führen, in dem ein erster Rohrschieber drehbar gelagert ist. Der erste Rohrschieber 53 besteht aus einem drehbaren Rohr, durch das bewirkt wird, daß ein Luftdurchsatz in Richtung der Rohrachse möglich ist und senkrecht zur Rohrachse gesperrt wird. In der in Figur 2 dargestellten Stellung ist der erste Rohrschieber 53 unter 450 eingestellt, so daß ein Luftdurchsatz zu beiden Seiten des ersten Rohrschiebers 53 möglich ist, wie dies durch die Pfeile angedeutet ist. Zwischen einem Frischlufteinsatz 51 und dem Kreuzverteiler 52 ist ein Gebläse 54 angeordnet. Vom Kreuzverteiler 52 führt eine Leitung 55 zum Gehäuse 5, in dem der übliche Generator 6 und der Heizgenerator 7 angeordnet sind. Die Generatoren 6, 7 stehen in gut wärmeleitender Verbindung mit Kühlkanälen 65, durch die die Luft aus der Leitung 55 strömt und die Verlustwärme der Generatoren 6, 7 abführt. Vom Gehäuse 5 führt weiter eine Leitung 59 zu einem Wärmetauscher 61, zu dem weiter eine Leitung 60 von einem Dreieckverteiler 57 führt, in dem ein zweiter Rohrschieber 58 drehbar angeordnet ist und der seinerseits über eine Leitung 56 mit dem Kreuzverteiler 52 in Verbindung steht. Der zweite Rohrschieber 58 hat dabei dieselbe Funktion wie der erste Rohrschieber 53. Vom Dreieckverteiler 57 führt noch eine Leitung 62 zur Abströmleitung 63 des Wärmetauschers 61 und von dort mit dieser zu einem Luftaustritt 64. Schließlich ist in weiterer Ausgestaltung der Erfindung in der Leitung 59 noch ein weiterer Dreieckverteiler 70 mit einem dritten Rohrschieber 71 angeordnet, dessen Abzweig zu einem Luftaustritt 72 führt, wobei der dritte Rohrschieber 71 funktionell mit einem Gebläse 73 in Wirkverbindung steht, das im Frischlufteinlaß 50 angeordnet ist.
  • In Figur 2b und c sind zwei Betriebsstellungen des Kreuzverteilers 52, in Figur 2d und e zwei Betriebsstellungen des Dreieckverteilers 57 dargestellt. Bei der Stellung des Kreuzverteilers 52 entsprechend Figur 2b ("Heizgenerator aus"), die der Stellung entsprechend Figur 2a entspricht, steht der Frischlufteinlaß 51 über das Gebläse 54 mit der zum Dreieckverteiler 57 führenden Leitung 56 in Verbindung; der Frischlufteinlaß 50 ist an die zum Gehäuse 5 führende Leitung 55 angeschlossen. Bei der in Figur 2a und 2e dargestellten Stellung des Dreieckverteilers 57 ("kalt") wird demnach Frischluft vom Frischinfteinlaß 51, gegebenenfalls unter Einschaltung des Gebläses 54 über die-Leitungen 56, 62, 63 zum Luftaustritt 64 des Fahrgastraumes befördert. Wird dabei der Dreieckverteiler 57 jedoch in die in Figur 2d eingezeichnete Stellung ("warm") geschaltet, steht die Leitung 56 mit der Leitung 60 und damit dem Wärmetauscher 61 in Verbindung, so daß die vom Frischlufteinlaß 51 über das Gebläse 54 in die Leitung 56 eingeblasene Frischluft über die Leitung 60 dem Wärmetauscher 61 zugeführt, dort erwärmt wird und als Warmluft über die Leitung 63 dem Luftaustritt 64 des Fahrgastraumes zugeführt wird. Damit ist insgesamt je nach Stellung des Dreieckverteilers 57 eine kalte oder warme Belüftung des Fahrgastraumes möglich.
  • Gleichzeitig ist bei der in Figur 2a und b eingezeichneten Stellung des Kreuzverteilers 52 eine Kühlung des üblichen Generators 60 möglich. Hierzu steht der Frischlufteinlaß 50 - gegebenenfalls versehen mit dem Gebläse 73 - über die Leitung 55 mit dem Kühlkanal 65 des Gehäuses 5 des üblichen Generators 6 in Verbindung. Je nach Stellung des Dreieckverteilers 70 ist es nun möglich, die in den Kühlkanal 65 geblasene Luft dem Luftaustritt 64 des Fahrgastraumes zuzu leiten (Dreieckverteiler 70 in eingezeichneter Stellung) oder sie über den Luftaustritt 72 ins Freie zu blasen (Stellung des Dreieckverteilers 70 in nicht eingezeichneter Stellung, analog zu Figur 2e). Die letzte Stellung ist insbesondere dann erwünscht, wenn der Generator bei Sommerbetrieb gekühlt werden soll. Dann wird in bevorzugter Ausgestaltung der Erfindung der dritte Rohrschieber 71 zusammen mit dem Gebläse 73 betätigt, so daß eine Zwangskühlung des Generators 6 möglich ist und die warme Abluft unmittelbar ins Freie geleitet werden kann. Das Gebläse 73 wird dabei von einem Temperaturmesser 74, der in der Nähe der wärmeempfindlichen Teile des Generators 6, 7 angeordnetuist, gesteuert.
  • Um die vom üblichen Generator 6 und gegebenenfalls vom Heizgenerator 7 erzeugte Abwärme zum Heizen des Kraftfahrzeuges bei kalten Außentemperaturen zu verwenden, wird der Kreuzverteiler 52 in die in Figur 2c dargestellte Stellung ("Heizgenerator ein") gebracht. Nun führt der Wärmemittelkreislauf vom Frischlufteinlaß 51 über das Gebläse 54, den Kreuzverteiler 52, die Leitung 55, die Kühlkanäle 65, die Leitung 59, den Wärmetauscher 61 und die Leitung 63 zum Luftäustritt 64 des Fahrgastraumes. Ist nur ein üblicher Generator 6 des Kraftfahrzeuges vorgesehen, bewirkt dieser Kreislauf, daß die Frischluft vom Frischlufteinlaß 51 in den Kühlkanälen 65 des Gehäuses 5 vorgewärmt wird, so daß die Abwärme des Generators 6 zusätzlich zu Heizzwecken genutzt wird. Dies gilt auch für die Abwärme des Heizgenerators 7, wenn ein solcher vorgesehen und eingeschaltet ist. Darüber hinaus bewirkt der Heizgenerator 7, daß eine schnellere Erwärmung von Antriebsmotor und/oder Fahrgastraum dann möglich ist, wenn das kalte Fahrzeug in Betrieb genommen wird. In diesem Fall wird der Heizgenerator 7 nämlich nach dem Start durch Einschalten seines Erregerfeldes an die elektrische Anlage des Kraftfahrzeuges eingeschaltet, wobei die elektrische Energie des Heizgenerators 7 in Heizwiderständen 16a bzw. 0 16b, die im Wärmetauscher 61 oder der Leitung 63 zum direkten Erwärmen der Luft angeordnet sind, in Wärme umgesetzt wird. Vom Luftaustritt 64 gelangt die Luft in den Fahrgastraum und zwar einmal zum Beheizen des Fahrgastraumes, zum anderen jedoch auch zum Enteisen der Frontscheibe im Winterbetrieb, so daß auch bei niedrigen Motordrehzahlen, bei denen der Antriebsmotor selbst wenig Verlustwärme erzeugt, zusätzliche Heizleistung aus der Abwärme der Generatoren 6, 7 bzw. Heizleistung des Generators 7 zur Verfügung steht, die durch das Gebläse 54 rasch und problemlos an die Stelle gebracht wird, die rasch geheizt werden soll»·:Hat sich das Kühlwasser des Kraftfahrzeuges und damit des Wärmetauschers 61 genügend hoch erhitzt, kann auf zusätzliche Leistung vom Heizgenerator 7 verzichtet werden; der Heizgenerator 7 wird alsdann abgeschaltet.
  • In einigen Ausgestaltungen der Erfindung ist der Heizgenerator 7 - wie dies weiter unten noch beschrieben wird - nicht als elektrischer Generator sondern als Wärmegenerator ausgebildet, der direkt Wärme erzeugt, so daß diese zusätzliche Wärme unmittelbar in den Wärmemittelkreislauf gemäß Figur 1 oder Figur 2 einfließt.
  • Die vorstehend beschriebenen Wärmemittelkreisläufe gemäß Figur 1 und 2 haben jedoch nicht nur den Vorteil, eine schnellere Erwärmung von Antriebsmotor und/oder Fahrgastraum beim Kaltstart des Kraftfahrzeuges zu ermöglichen, die zusätzliche mechanische Belastung des Antriebsmotors durch den Heizgenerator 7 hat darüber hinaus eine erhöhte Grundlast zur Folge, die beim Leerlauf des Antriebsmotors im Hinblick auf dessen spezifischen Verbrauch erwünscht ist.
  • Es versteht sich von selbst, daß die in Figur 1 und 2 dargestellten Wärmemittelkreisläufe sowohl mit dem üblichen Generator 6 alleine, wie mit einem Heizgenerator 7 wie auch mit mehreren Heizgeneratoren betrieben werden können. Die Wärmemittelkreisläufe sind auch keinesfalls auf die Beheizung von Antriebsmotor und/oder Fahrgastraum beschränkt, die über den Wärmetauscher 10 bzw. 61 abgenommene bzw. an den Zusatzheizelementen 16, 16a, 16b erzeugte Wärme kann nämlich ebenfalls zu sonstigen Heizzwecken an Bord von Kraftfahrzeugen aller Art verwendet werden. Auch ist es möglich, den zusätzlichen Generator 7 zum Betreiben von'besonders verbrauchsintensiven Zusatzeinrichtungen, wie Klimaanlagen, Kühlvorrichtungen von Kühlfahrzeugen und dgl. zu verwenden.
  • In Figur 3 ist ein Schnittbild eines üblichen Generators für ein Kraftfahrzeug dargestellt, der zusätzlich über Mittel zum Abführen der Abwärme verfügt. Dabei ist mit 21 ein Stator des Generators und mit 22 ein Kühlmantel bezeichnet, in den der Stator 21 eingepreßt ist. Der Kühlmantel 22 weist einmal offene Kühlkanäle 23 - zur Wärmeübertragung über Luft, vorzugsweise in einem internen Kreislauf, wie weiter unten noch beschrieben - und zum anderen geschlossene Kühlkanäle 24 zur Wärmeübertragung über ein zu- und abzuführendes Wärmemittel, vorzugsweise Wasser oder Luft, auf. Diese Kühlkanäle 23, 24 sind in Figur 3b und c im Querschnitt zur Verdeutlichung dargestellt.
  • Der Generator weist weiterhin Lagerschilde '25a, 25b auf, in denen Sammelkanäle 26a, 26b angeordnet sind, wobei diese Sammelkanäle 26a, 26b mit den geschlossenen Kühlkanälen 24 in Verbindung stehen und die erforderliche Abdichtung zwischen den Lagerschilden 25a, 25b und dem Kühlmantel 22 durch Dichtungen 40 bewerkstelligt wird. Wie aus Figur 2 weiter ersichtlich, ist der Wärmekanal 26b beispielsweise an die Leitung 9 und der Sammelkanal 26a an die Leitung 4 gemäß dem Wärmemittelkreislauf aus Figur 1 angeschlossen. Andererseits ist es natürlich auch möglich, bei Verwendung von Luft als Wärmemittel den geschlossenen Kühlkanal 24 in Figur 3 als Kühl- kanal 65 gemäß Figur 2 zu verwenden, wobei die Sammelkanäle 26a, 26b in entsprechender Weise an die Leitungen 55, 59 anzuschließen sind.
  • Bei der in Figur 3c gezeigten Variante der Kühlkanäle 23', 24' sind die offenen Kühlkanäle 23' als Schlitze nach Art eines Kühlkörpers ausgebildet, während die geschlossenen Kühlkanäle 24' wenigstens näherungsweise zylindrisch ausgebildet sind. Bei einer Ausbildung der Kühlkanäle entsprechend Figur 3c werden erfindungsgemäß Dichtelemente 40 verwendet, wie sie in Figur 4a bis c im einzelnen dargestellt sind. Es versteht sich jedoch von selbst, daß die in Figur 4a bis c dargestellten Dichtelemente 40 nicht nur bei einer Heizvorrichtung entsprechend der vorliegenden Erfindung verwendet werden können, sie können vielmehr überall dort eingesetzt werden, wo elektrische Maschinen oder Generatoren mit einer Wärmemittelkühlung versehen sind.
  • In Figur 4 ist mit 40 eine Dichtung bezeichnet, deren Profil im wesentlichen dem des Kühlmantels 22 entspricht, wie er in Figur 3c dargestellt ist. Wie aus dem in Figur 4b dargestellten Schnitt ersichtlich, besteht die Dichtung 40 aus einem umlaufenden Steg 43, in den formstabile Hülsen 41 eingesetzt sind, die für eine Verbindung der geschlossenen Kühlkanäle 24' von Kühlmantel 22 bzw. Lagerschilden 25a, 25b sorgen. Über die formstabilen Hülsen 41 sind 0-Ringe 42, 42' geschoren, die auf beiden Seiten am Steg 43 anliegen. durch entsprechend
    Figure imgb0001
    des Kühlmantels 22 bzw. der Lagerschilde 25a, 25b ist beim Zusammenbau dieser Elemente sichergestellt, daß eine ausreichende Dichtwirkung erzielt wird. In weiterer Ausgestaltung der Erfindung ist es gemäß Figur 4c möglich, den Steg 43' in Dichtmasse auszubilden, wobei lediglich auf einer Seite des Steges 43' ein 0-Ring 42 vorgesehen ist. Gleichzeitig ist in der angrenzenden Stirnseite des Lagerschildes 25b eine umlaufende Nut 44 vorgesehen, in die die Dichtmasse des Steges 43' bei Zusammenfügen der Teile 25b, 43', 22 verdrängt wird. Durch die Nut 44 im Lagerschild 25b wird ein Auswandern des Steges 43' zwischen den Kühlkanälen 26b, 24 verhindert.
  • Bei der Anordnung gemäß Figur 3 sind am Stator 21 Ständerwicklungen 28 angeordnet, die Erregerwicklung 29 befindet sich auf einem Klauenpol-Läufer, dessen Klauenpole in Figur 3 mit 30 bezeichnet sind. Zwischen Klauenpolläufer und Stator 21 befindet sich ein Luftspalt 31. Schließlich ist auf der Antriebswelle auf der Seite des Lagerschildes 25 noch ein Lüfterrad 32 vorgesehen und auf dem Lagerschild 25b befindet sich eine Gleichrichtereinheit 33, die über eine gut wärmeleitende Isolierschicht 34 auf dem Lagerschild 25b befestigt ist.
  • Die von den Ständerwicklungen 28 erzeugte Abwärme wird teilweise über den Stator 21 an den Kühlmantel 22 abgegeben und dort über das in den geschlossenen Kühlkanälen 24 zirkulierende Wärmemittel abgeführt. Um die restliche Wärme des Stators abzuführen und um darüber hinaus auch eine möglichst gute Wärmeabfuhr der inneren Teile des Generators, insbesondere der Erregerwicklung 29 sicherzustellen, ist weiterhin erfindungsgemäß ein innerer Luftkühlkreislauf vorgesehen, der vom Lüfterrad 32 aufrechterhalten wird. Dieser Luftkühlkreislauf geht vom Lüfterrad 32 im Lagerschild 25a über die offenen Kühlkanäle 23 zum Lagerschild 25b und von dort zurück über den Luftspalt 31 zum Lüfterrad 32.
  • Es versteht sich von selbst, daß die angegebenen Richtungen für die Zirkulation der Kühlmittel Wasser und/oder Luft jeweils auch entgegengesetzt sein können.
  • Insgesamt sorgt der geschlossene Luftkühlkreislauf für eine bessere Verteilung der Abwärme und damit für eine bessere Abfuhr über den Kühlmantel 22.
  • Um weiterhin auch die Abwärme der Gleichrichtereinheit 33 für Erwärmungszwecke nutzen zu können, ist die Isolierschicht 34 gut wärmeleitend ausgebildet, so daß die Abwärme der Gleichrichtereinheit 33 über die Isolierschicht 34 an das kühlmitteldurchströmte Lagerschild 25b abgegeben wird.
  • Die in Figur 5 dargestellte Generatoranordnung entspricht der in Figur 3 dargestellten, so daß auf eine nähere Beschreibung der einzelnen Elemente verzichtet werden kann. Es ist jedoch zusätzlich zu dem üblichen. Generator 6 bei der in Figur 5 dargestellten Anordnung ein Heizgenerator 7 vorgesehen, der auf einer gemeinsamen Welle 35 für beide Generatoren 6, 7 angeordnet ist, wie dies bereits in den Figuren 1 und 2 symbolisch dargestellt war. Der Aufbau des Heizgenerators 7 entspricht in diesem Falle dem des üblichen Generators 6 und die vom Heizgenerator 7 erzeugte elektrische Energie wird zum Betreiben elektrischer Zusatzheizungen verwendet. Durch den identischen Aufbau von Generator 6 und Heizgenerator 7 können die bereits in Figur 3 dargestellten Lagerschilde 25a, 25b verwendet werden, es ist lediglich erforderlich, den Kühlmantel 22 mit den darin enthaltenen Kühlkanälen 23, 24 entsprechend breiter auszubilden.
  • Die in Figur 5 dargestellte Ausführungsform eröffnet zusätzlich die Möglichkeit, den Heizgenerator nicht als Stromerzeuger, sondern direkt als Wärmeerzeuger einzusetzen. Hierzu ist es lediglich erforderlich, die Ständerwicklung 28 des Heizgenerators 7 kurzzuschließen, so daß in dieser eine beträchtliche Abwärme entsteht, die über den Kühlmantel 22 in den Wärmemittelkreislauf abgeführt wird.
  • Eine weitere Möglichkeit, den Heizgenerator 7 als Wärmegenerator auszubilden, ist in Figur 6 dargestellt. Dabei ist im Heizgenerator 7 statt des Ständers 21 mit Ständerwicklung 28 ein Massiveisenständer 36 angeordnet, so daß der Heizgenerator 7 in diesem Fall als Wirbelstrombremse wirkt. In der Wirbelstrombremse entsteht dabei ebenfalls eine erhebliche Wärme, die über den Kühlmantel 22 abgeführt wird.
  • Schließlich ist in Figur 7 noch eine Vorrichtung dargestellt, bei der für den Fall eines elektrischen Heizgenerators 7 die in diesem erzeugte elektrische Energie direkt am Heizgenerator 7 in Wärmeenergie umgesetzt wird. Hierzu sind Heizwiderstände 45 vorgesehen, die gemäß der Ausführungsform entsprechend Figur 7a als Tauchheizstäbe ausgebildet und im Sammelkanal 26a angeordnet sind oder entsprechend Fig. 7b direkt in ein Formstück 46 des Lagerschildes 25a integriert sind. In beiden Fällen erstrecken sich die Heizwiderstände 45 über etwa 2/3 des Umfanges des Lagerschildes 25a bzw. des Sammelkanales 26a, wobei das verbleibende Umfangsdrittel zum Heranführen der elektrischen Anschlüsse bzw. der Anschlußstutzen dient.

Claims (19)

1. Heizvorrichtung für Kraftfahrzeuge mit einem Wärmemittelkreislauf zum Erwärmen des Antriebsmotors und/oder des Fahrgastraumes, dadurch gekennzeichnet, daß wenigstens ein vom Antriebsmotor angetriebener Generator (6, 7) vorgesehen ist, der über Mittel zum Abführen seiner Abwärme verfügt, wobei diese Mittel Teil des Wärmemittelkreislaufes sind.
2. Heizvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Wärmemittelkreislauf aus einer Wärmemittelpumpe (1), dem Kühlwassermantel (3) des .Antriebsmotors und/oder einem Wärmetauscher (10) zur Fahrgastraumbeheizung sowie einem Kühlkanäle (23, 24) aufweisenden Gehäuse (5) des wenigstens einen Generators (6, 7) besteht.
3. Heizvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Wärmemittelkreislauf aus einem Gebläse (54), einem Wärmetauscher (61), Luftleitungen (55, 56, 59, 60, 62, 63) mit Verteilern (52, 57, 70) sowie einem Kühlkanäle (23, 23', 65) aufweisenden Gehäuse (5) des wenigstens einen Generators (6, 7) besteht.
4. Heizvorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß ein Kreuzverteiler (52) vorgesehen ist, über den wenigstens ein Frischlufteinlaß (50, 51) einmal über die Kühlkanäle (60) des Generatorgehäuses (5) und den Wärmetauscher (61) mit einem zum Fahrgastraum führenden Luftaustritt (64) und zum anderen mit einer Leitung (56) verbindbar ist, die über einen Dreieckverteiler (57) einmal mit der Lufteintrittsseite des Wärmetauschers (61) und zum anderen direkt mit dem Luftaustritt (64) verbindbar ist.
5. Heizvorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß in wenigstens einem der Frischlufteinlässe (50, 51) ein Gebläse (54, 73) angeordnet ist.
6. Heizvorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß eines der Gebläse (73) von einem im Generator (6, 7) angeordneten Temperaturfühler (74) steuerbar wobei vorzugsweise der Luftaustritt des Ceneratorgehäuses mit der Außenluft verbindbar ist.
7. Heizvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß neben dem üblichen Generator (6) ein Heizgenerator (7) im Gehäuse (5) vorgesehen ist.
8. Heizvorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der Heizgenerator als Stromerzeuger zur Versorgung elektrischer Zusatzheizmittel und/oder sonstiger Verbraucher ausgebildet ist.
9. Heizvorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der Heizgenerator (7) als Wärmeerzeuger ausgebildet ist.
10. Heizvorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß der Wärmeerzeuger ein Generator mit kurzgeschlossener Ständerwicklung (37) ist.
11. Heizvorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß der Wärmeerzeuger eine Wirbelstrombremse ist, vorzugsweise ein Klauenpolläufer, dem ein Massiveisenständer (36) gegenübersteht.
12,Heizvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Stator (21) des wenigstens einen Generators (6, 7) in einen Kühlmantel (22) eingepreßt ist, der geschlossene Kühlkanäle (24) enthält, die vorzugsweise in in den Lagerschilden (25a, 25b) angeordnete Sammelkanäle (26a, 26b) münden.
13. Heizvorrichtung, insbesondere nach Anspruch 12, dadurch gekennzeichnet, daß zwischen den Kühlkanälen (24) des Kühlmantels (22) und den Sammelkanälen (26a, 26b) der Lagerschilde (25a, 25b) Dichtelemente (40) angeordnet sind, die aus einem umlaufenden Steg (43, 43') mit starren zylindrischen oder doppelt konischen Hülsen (41) bestehen, wobei auf wenigstens einer Seite des Steges (43, 243') ein 0-Ring (42, 42') angebracht ist.
14. Heizvorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß der umlaufende Steg (43') aus einer plastischen Dichtungsmasse besteht und daß im Lagerschild (25a, 25b) und/oder im Kühlmantel (22) eine umlaufende Nut (44) angeordnet ist.
15. Heizvorrichtung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß der Kühlmantel (22) ferner nach innen weisende offene Kühlkanäle (23) aufweist, die in einem geschlossenen Luft-Kühlkreislauf angeordnet sind, der über ein neben einem Lagerschild (25a) angeordnetes Lüfterrad (22) axial durch den Luftspalt (31) des wenigstens einen Generators (6, 7) zum anderen Lagerschild (25b) und von dort über die offenen Kühlkanäle (23) zurück zum Lüfterrad (32) oder insgesamt entgegengesetzt führt.
16. Heizvorrichtung nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, daß eine in dem wenigstens einen Generator (6, 7) angeordnete Gleichrichtereinheit (33) in gut wärmeleitender Verbindung zum Kühlmantel (22) angeordnet ist.
17. Heizvorrichtung nach einem der Ansprüche 8 bis 16, dadurch gekennzeichnet, daß die Zusatzheizmittel als Heizwiderstände (45) ausgebildet sind, die in wärmeleitendem Kontakt zu dem wenigstens einen Generator (6,7) stehen.
18. Heizvorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß die Heizwiderstände (45) in dem Sammelkanal (26a) eines Lagerschildes (25a) angeordnet sind.
19. Heizvorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß die Heizwiderstände (45) in den Lagerschild (25a) integriert sind.
EP81110398A 1981-04-10 1981-12-12 Heizvorrichtung Expired EP0062706B1 (de)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE3114588 1981-04-10
DE3114588 1981-04-10
DE3115238 1981-04-15
DE3115238 1981-04-15
DE3128081 1981-07-16
DE19813128081 DE3128081A1 (de) 1981-04-10 1981-07-16 Heizvorrichtung

Publications (3)

Publication Number Publication Date
EP0062706A2 true EP0062706A2 (de) 1982-10-20
EP0062706A3 EP0062706A3 (en) 1983-05-25
EP0062706B1 EP0062706B1 (de) 1986-10-15

Family

ID=27189264

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81110398A Expired EP0062706B1 (de) 1981-04-10 1981-12-12 Heizvorrichtung

Country Status (2)

Country Link
EP (1) EP0062706B1 (de)
DE (1) DE3175470D1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0071046B1 (de) * 1981-07-29 1986-04-16 Robert Bosch Gmbh Flüssigkeitsgekühlter Heizgenerator
DE3941474A1 (de) * 1989-12-15 1991-06-20 Bosch Gmbh Robert Fluessigkeitsgekuehlter elektrischer generator
WO1991019346A1 (de) * 1990-06-06 1991-12-12 Robert Bosch Gmbh Elektrische maschine, vorzugsweise drehstromgenerator für kraftfahrzeuge
WO1991019347A1 (de) * 1990-06-06 1991-12-12 Robert Bosch Gmbh Verfahren zur herstellung des ständers einer elektrischen maschine, vorzugsweise drehstromgenerator
WO1991020119A1 (de) * 1990-06-12 1991-12-26 Robert Bosch Gmbh Elektrische maschine, vorzugsweise drehstromgenerator für fahrzeuge
FR2711283A1 (fr) * 1993-10-13 1995-04-21 Valeo Equip Electr Moteur Alternateur de véhicule à refroidissement amélioré.
FR2742604A1 (fr) * 1995-12-18 1997-06-20 Renault Alternateur avec thermoplongeurs integres
FR2744398A1 (fr) * 1996-02-06 1997-08-08 Valeo Equip Electr Moteur Vehicule automobile muni d'un alternateur a refroidissement liquide
FR2749109A1 (fr) * 1996-05-23 1997-11-28 Valeo Equip Electr Moteur Alternateur perfectionne, du type refroidi par liquide
WO2003026103A1 (fr) * 2001-09-12 2003-03-27 Zexel Valeo Climate Control Corporation Generateur de puissance et climatiseur pour vehicule
EP1176038A3 (de) * 2000-07-25 2003-05-21 Robert Bosch Gmbh Verfahren zur Temperierung des Innenraums eines Kraftfahrzeugs
WO2018115521A1 (de) 2016-12-22 2018-06-28 Andreas Seiwald Rotations-induktionsheizung mit gleichstromerreger
DE102017126959A1 (de) * 2017-11-16 2019-05-16 B+S Entwicklungsgesellschaft mbH Heizmodul für einen fluiden Wärmeüberträger sowie Vorrichtung zur Energiespeicherung
WO2019193122A1 (de) 2018-04-06 2019-10-10 Andreas Seiwald Rotations-induktions-wärmeerzeuger mit gleichstromerregung, extrem kleinem elektrischen/kinetischen wirkungsgrad und extrem hohem thermischen cop

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB435892A (en) * 1933-11-20 1935-10-01 Electric Auto Lite Co Cooling systems for dynamo-electric machines
US2039547A (en) * 1934-03-31 1936-05-05 E H Munford Electric generator and heating and cooling means
US2097483A (en) * 1935-05-17 1937-11-02 Jarl M Weydell Electrical heating system
US2251370A (en) * 1941-05-02 1941-08-05 George E Motzer Heater for motor vehicles
US2588507A (en) * 1948-11-12 1952-03-11 Eaton Mfg Co Heater booster brake
DE873178C (de) * 1951-09-29 1953-04-13 Willy Dr-Ing Messerschmitt Anordnung elektrischer Maschinen, insbesondere der Lichtmaschine an einem luftgekuehlten Sternmotor
US2749049A (en) * 1952-06-28 1956-06-05 Chrysler Corp Automotive heater booster
GB939523A (en) * 1961-03-30 1963-10-16 Ass Elect Ind Improvements relating to cooling arrangements for dynamo-electric machines
GB970355A (en) * 1962-05-07 1964-09-23 Ford Motor Co Motor vehicle heating system
FR1530882A (fr) * 1966-07-09 1968-06-28 Bolkow Gmbh élément d'étanchéité pour l'assemblage de canalisations rigides équipant, en particulier, des radiateurs et d'autres appareils semblables
US3469073A (en) * 1964-06-22 1969-09-23 Gen Motors Corp Electrical system
FR2055550A5 (de) * 1969-07-24 1971-05-07 Motorola Inc
FR2111051A5 (de) * 1970-10-06 1972-06-02 Clay Cross Ltd
US3668419A (en) * 1970-12-30 1972-06-06 Motorola Inc Electrical power source and heat augmentation system for use in automotive vehicles
FR2265206A1 (de) * 1974-03-18 1975-10-17 Inoue Japax Res
DE2601396A1 (de) * 1976-01-15 1977-07-21 Siegmar R Neumann Heizkessel fuer zentralheizungen mit dieselmotor als energieerzeuger
FR2345589A1 (fr) * 1976-03-26 1977-10-21 Battelle Institut E V Groupe electrogene avec moteur a gaz chauds stirling
FR2369426A1 (fr) * 1976-10-26 1978-05-26 Fiat Spa Ensemble pour la production d'energie electrique et de chaleur
DE2728273A1 (de) * 1977-06-23 1979-01-04 Ruhrgas Ag Verbrennungsmotorisch betriebene waermepumpenanordnung
FR2430126A1 (fr) * 1978-06-29 1980-01-25 Bosch Gmbh Robert Machine electrique refroidie a l'huile
US4188527A (en) * 1977-12-21 1980-02-12 Ford Motor Company Automotive electric quick heat system
FR2441286A1 (fr) * 1978-11-08 1980-06-06 Bosch Gmbh Robert Capot pour machines electriques, notamment pour des alternateurs sur des voitures automobiles
DE2855071A1 (de) * 1978-12-20 1980-07-10 Siemens Ag Fluessigkeitsgekuehlter verbrennungsmotor mit einem oder mehreren fuer den betrieb erforderlichen zusatzaggregaten
DE2916870A1 (de) * 1979-04-26 1980-11-13 Kloeckner Humboldt Deutz Ag Heizung fuer ein land- und/oder wasserfahrzeug
DE2952682A1 (de) * 1979-12-29 1981-07-02 Hermann 4472 Haren Bergmann Verfahren zur waermegewinnung, insbesondere fuer heizungsanlagen von wohngebaeuden o.dgl.
EP0034699A1 (de) * 1980-02-23 1981-09-02 Pischinger, Franz, Prof. Dr. techn. Wärmepumpenanordnung
DE3044422A1 (de) * 1980-11-26 1982-06-03 Audi Nsu Auto Union Ag, 7107 Neckarsulm Kraftfahrzeug mit einer brennkraftmaschine
GB2095392A (en) * 1981-03-24 1982-09-29 Labavia Heat regulation circuits for vehicles equipped with an electric retarders

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB435892A (en) * 1933-11-20 1935-10-01 Electric Auto Lite Co Cooling systems for dynamo-electric machines
US2039547A (en) * 1934-03-31 1936-05-05 E H Munford Electric generator and heating and cooling means
US2097483A (en) * 1935-05-17 1937-11-02 Jarl M Weydell Electrical heating system
US2251370A (en) * 1941-05-02 1941-08-05 George E Motzer Heater for motor vehicles
US2588507A (en) * 1948-11-12 1952-03-11 Eaton Mfg Co Heater booster brake
DE873178C (de) * 1951-09-29 1953-04-13 Willy Dr-Ing Messerschmitt Anordnung elektrischer Maschinen, insbesondere der Lichtmaschine an einem luftgekuehlten Sternmotor
US2749049A (en) * 1952-06-28 1956-06-05 Chrysler Corp Automotive heater booster
GB939523A (en) * 1961-03-30 1963-10-16 Ass Elect Ind Improvements relating to cooling arrangements for dynamo-electric machines
GB970355A (en) * 1962-05-07 1964-09-23 Ford Motor Co Motor vehicle heating system
US3469073A (en) * 1964-06-22 1969-09-23 Gen Motors Corp Electrical system
FR1530882A (fr) * 1966-07-09 1968-06-28 Bolkow Gmbh élément d'étanchéité pour l'assemblage de canalisations rigides équipant, en particulier, des radiateurs et d'autres appareils semblables
FR2055550A5 (de) * 1969-07-24 1971-05-07 Motorola Inc
FR2111051A5 (de) * 1970-10-06 1972-06-02 Clay Cross Ltd
US3668419A (en) * 1970-12-30 1972-06-06 Motorola Inc Electrical power source and heat augmentation system for use in automotive vehicles
FR2265206A1 (de) * 1974-03-18 1975-10-17 Inoue Japax Res
DE2601396A1 (de) * 1976-01-15 1977-07-21 Siegmar R Neumann Heizkessel fuer zentralheizungen mit dieselmotor als energieerzeuger
FR2345589A1 (fr) * 1976-03-26 1977-10-21 Battelle Institut E V Groupe electrogene avec moteur a gaz chauds stirling
FR2369426A1 (fr) * 1976-10-26 1978-05-26 Fiat Spa Ensemble pour la production d'energie electrique et de chaleur
DE2728273A1 (de) * 1977-06-23 1979-01-04 Ruhrgas Ag Verbrennungsmotorisch betriebene waermepumpenanordnung
US4188527A (en) * 1977-12-21 1980-02-12 Ford Motor Company Automotive electric quick heat system
FR2430126A1 (fr) * 1978-06-29 1980-01-25 Bosch Gmbh Robert Machine electrique refroidie a l'huile
FR2441286A1 (fr) * 1978-11-08 1980-06-06 Bosch Gmbh Robert Capot pour machines electriques, notamment pour des alternateurs sur des voitures automobiles
DE2855071A1 (de) * 1978-12-20 1980-07-10 Siemens Ag Fluessigkeitsgekuehlter verbrennungsmotor mit einem oder mehreren fuer den betrieb erforderlichen zusatzaggregaten
DE2916870A1 (de) * 1979-04-26 1980-11-13 Kloeckner Humboldt Deutz Ag Heizung fuer ein land- und/oder wasserfahrzeug
DE2952682A1 (de) * 1979-12-29 1981-07-02 Hermann 4472 Haren Bergmann Verfahren zur waermegewinnung, insbesondere fuer heizungsanlagen von wohngebaeuden o.dgl.
EP0034699A1 (de) * 1980-02-23 1981-09-02 Pischinger, Franz, Prof. Dr. techn. Wärmepumpenanordnung
DE3044422A1 (de) * 1980-11-26 1982-06-03 Audi Nsu Auto Union Ag, 7107 Neckarsulm Kraftfahrzeug mit einer brennkraftmaschine
GB2095392A (en) * 1981-03-24 1982-09-29 Labavia Heat regulation circuits for vehicles equipped with an electric retarders

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0071046B1 (de) * 1981-07-29 1986-04-16 Robert Bosch Gmbh Flüssigkeitsgekühlter Heizgenerator
DE3941474A1 (de) * 1989-12-15 1991-06-20 Bosch Gmbh Robert Fluessigkeitsgekuehlter elektrischer generator
WO1991019346A1 (de) * 1990-06-06 1991-12-12 Robert Bosch Gmbh Elektrische maschine, vorzugsweise drehstromgenerator für kraftfahrzeuge
WO1991019347A1 (de) * 1990-06-06 1991-12-12 Robert Bosch Gmbh Verfahren zur herstellung des ständers einer elektrischen maschine, vorzugsweise drehstromgenerator
US5233249A (en) * 1990-06-06 1993-08-03 Robert Bosch Gmbh Electrical machine, especially alternator for motor cars
US5313698A (en) * 1990-06-06 1994-05-24 Robert Bosch Gmbh Process for the manufacture of the stator of an electrical machine
WO1991020119A1 (de) * 1990-06-12 1991-12-26 Robert Bosch Gmbh Elektrische maschine, vorzugsweise drehstromgenerator für fahrzeuge
US5296770A (en) * 1990-06-12 1994-03-22 Robert Bosch Gmbh Electric machine, preferably rotary current generator for vehicles
FR2711283A1 (fr) * 1993-10-13 1995-04-21 Valeo Equip Electr Moteur Alternateur de véhicule à refroidissement amélioré.
FR2742604A1 (fr) * 1995-12-18 1997-06-20 Renault Alternateur avec thermoplongeurs integres
WO1997022489A1 (fr) * 1995-12-18 1997-06-26 Renault Alternateur avec thermoplongeurs integres
FR2744398A1 (fr) * 1996-02-06 1997-08-08 Valeo Equip Electr Moteur Vehicule automobile muni d'un alternateur a refroidissement liquide
FR2749109A1 (fr) * 1996-05-23 1997-11-28 Valeo Equip Electr Moteur Alternateur perfectionne, du type refroidi par liquide
EP1176038A3 (de) * 2000-07-25 2003-05-21 Robert Bosch Gmbh Verfahren zur Temperierung des Innenraums eines Kraftfahrzeugs
WO2003026103A1 (fr) * 2001-09-12 2003-03-27 Zexel Valeo Climate Control Corporation Generateur de puissance et climatiseur pour vehicule
WO2018115521A1 (de) 2016-12-22 2018-06-28 Andreas Seiwald Rotations-induktionsheizung mit gleichstromerreger
DE102016125500A1 (de) * 2016-12-22 2018-06-28 Andreas Seiwald Rotations-Induktionsheizung mit Gleichstromerregung
EP4033860A1 (de) 2016-12-22 2022-07-27 Andreas Seiwald Rotations-induktionsheizung mit gleichstromerregung
US11785679B2 (en) 2016-12-22 2023-10-10 NT-Design Forschung & Entwicklung Rotary induction heater having a direct-current exciter
DE102017126959A1 (de) * 2017-11-16 2019-05-16 B+S Entwicklungsgesellschaft mbH Heizmodul für einen fluiden Wärmeüberträger sowie Vorrichtung zur Energiespeicherung
WO2019096344A1 (de) * 2017-11-16 2019-05-23 B + S Entwicklungsgesellschaft Mbh Heizmodul für einen fluiden wärmeüberträger sowie vorrichtung zur energiespeicherung
WO2019193122A1 (de) 2018-04-06 2019-10-10 Andreas Seiwald Rotations-induktions-wärmeerzeuger mit gleichstromerregung, extrem kleinem elektrischen/kinetischen wirkungsgrad und extrem hohem thermischen cop
DE102018108179A1 (de) 2018-04-06 2019-10-10 Andreas Seiwald Rotations-Induktions-Wärmeerzeuger mit Gleichstromerregung, extrem kleinem elektrischen/kinetischen Wirkungsgrad und extrem hohem thermischen COP
EP4033859A1 (de) 2018-04-06 2022-07-27 Andreas Seiwald Rotations-induktions-wärmeerzeuger mit gleichstromerregung, extrem kleinem elektrischen/kinetischen wirkungsgrad und extrem hohem thermischen cop
US11844169B2 (en) 2018-04-06 2023-12-12 Andreas Seiwald Rotary-induction heat generator with direct current excitation, extremely small electrical/kinetic efficiency, and extremely high thermal COP

Also Published As

Publication number Publication date
EP0062706A3 (en) 1983-05-25
DE3175470D1 (en) 1986-11-20
EP0062706B1 (de) 1986-10-15

Similar Documents

Publication Publication Date Title
DE19930148B4 (de) Temperatursteuerung in Elektrofahrzeug
EP0504653B1 (de) Verfahren zur Kühlung von Antriebskomponenten und Heizung eines Fahrgastraumes eines Kraftfahrzeugs, insbesondere eines Elektromobils, und Einrichtung zur Durchführung des Verfahrens
DE60102185T2 (de) Kraftfahrzeugklimaanlage
EP0062706B1 (de) Heizvorrichtung
DE102005044327B4 (de) Elektrische Maschine mit Permanentmagneten
DE102012019005B4 (de) Thermisches Konditionieren eines einen Elektroantrieb aufweisenden Kraftfahrzeugs
DE102012009909B4 (de) Klimatisierungsvorrichtung für ein Kraftfahrzeug, Verfahren zu deren Betrieb und Kraftfahrzeug
DE19960960C1 (de) Wärmeaustauschsystem für die Heizung eines Fahrzeugs mit Hybridantrieb
DE4003155A1 (de) Elektrische maschine mit fremdbelueftung
DE4444956A1 (de) Wechselstromgenerator und damit ausgestattetes Motorfahrzeug
EP0791497B1 (de) Einrichtung zur Beheizung eines Fahrzeuges
DE3208199A1 (de) Fluessigkeitsstromkreis zur temperaturregelung eines kraftfahrzeuges
DE60122992T2 (de) System und Verfahren zur Kühlung eines Hybridfahrzeugs
DE102018212188A1 (de) Thermomanagementsystem für ein Fahrzeug
DE102012019459A1 (de) Temperiervorrichtung eines Fahrzeugs und Verfahren zu deren Betrieb
DE102009023175B4 (de) Verfahren zum Betreiben eines Kraftfahrzeugs mit Abwärmeheizung
DE2053370A1 (de) Einrichtung zum Heizen und Kühlen von Kraftfahrzeug-Innenräumen
DE10015905B4 (de) Vorrichtung zur Beheizung von Innenräumen von Kraftfahrzeugen
DE60216049T2 (de) Vorrichtung, system und verfahren zum kühlen eines kühlmittels
DE3128081A1 (de) Heizvorrichtung
EP0589187B1 (de) Oberflächengekühlte, geschlossene elektrische Maschine
DE102011005733A1 (de) Elektronische Steuereinrichtung und Kühleinrichtung hierfür
DE102014202006A1 (de) Vorrichtung zur Klimatisierung von Fahrzeugen und/oder Fahrzeugteilen
DE102019132816A1 (de) Wärmemanagementsystem für ein Kraftfahrzeug und Kraftfahrzeug mit einem solchen
DE3501862C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811212

AK Designated contracting states

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3175470

Country of ref document: DE

Date of ref document: 19861120

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921202

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921229

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930301

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931212

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST