EP0026253B1 - Verbindung von Faserverbänden, Verfahren zur Erzeugung der Verbindung und Vorrichtung zur Ausführung des Verfahrens - Google Patents

Verbindung von Faserverbänden, Verfahren zur Erzeugung der Verbindung und Vorrichtung zur Ausführung des Verfahrens Download PDF

Info

Publication number
EP0026253B1
EP0026253B1 EP80100580A EP80100580A EP0026253B1 EP 0026253 B1 EP0026253 B1 EP 0026253B1 EP 80100580 A EP80100580 A EP 80100580A EP 80100580 A EP80100580 A EP 80100580A EP 0026253 B1 EP0026253 B1 EP 0026253B1
Authority
EP
European Patent Office
Prior art keywords
accordance
fiber structures
connection
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80100580A
Other languages
English (en)
French (fr)
Other versions
EP0026253A1 (de
Inventor
August Baumgartner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zellweger Uster AG
Original Assignee
Zellweger Uster AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zellweger Uster AG filed Critical Zellweger Uster AG
Priority to AT80100580T priority Critical patent/ATE10925T1/de
Publication of EP0026253A1 publication Critical patent/EP0026253A1/de
Application granted granted Critical
Publication of EP0026253B1 publication Critical patent/EP0026253B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H69/00Methods of, or devices for, interconnecting successive lengths of material; Knot-tying devices ;Control of the correct working of the interconnecting device
    • B65H69/06Methods of, or devices for, interconnecting successive lengths of material; Knot-tying devices ;Control of the correct working of the interconnecting device by splicing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • B65H2701/311Slivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • B65H2701/312Fibreglass strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • B65H2701/313Synthetic polymer threads

Definitions

  • the invention relates to a connection of the end regions of fiber associations in which the fiber associations are non-positively wrapped by fibers over a region of the length of the connection.
  • a fiber dressing is generally understood to be a bundle of fibers, a thread or twine, a cord or a rope or a similar elongated structure of combined fibers or threads, which can be both plant, animal and synthetic base materials .
  • the main field of application of the invention is the field of the textile industry in the broadest sense, without however being restricted.
  • connection of fiber associations generated by a link also has the disadvantage for many applications that the node produced necessarily has a considerably larger cross section than a single fiber association.
  • this can have an adverse effect and form a cause of thread breaks or other operational disturbances.
  • Various proposals have therefore already been made to solve the connection of fiber material in other ways than by a link.
  • a method for forming a thread splicing with a knotting device comprising an air nozzle is known, the special feature of which is that the two webs or threads, one end of which in a thread insertion opening of the air nozzle of the knotting device from one side and the other end is inserted into the opening from the other side, are assigned to one another and then at least one of the threads is loosened slightly before or at the same time as the air is blown onto the threads.
  • the textile threads to be connected are inserted into the swirl chamber in such a way that they wrap around both mouth edges of the swirl chamber, the subsequent swirling of the textile threads with looseness without tension in the swirl chamber, but held by the thread clamping devices, and the loosening of the thread tension is only so great is made that the false twist imposed during the swirling of the textile threads and the resulting shortening of the thread length brings the textile threads into contact with the mouth edges of the swirl chamber.
  • DE-A-1 962 477 discloses a device for splicing yarns with a drum rotatably mounted on a housing element, a yarn channel running through the axis of the drum for receiving overlapping ends of yarns to be spliced parallel to one another, with devices for turning the drum around the overlapping ends of the yarn to be spliced and devices carried by the drum for receiving a winding thread source, characterized by a thread channel in this drum with a discharge opening adjacent, but radially offset against the axis of this drum, whereby a high torque occurs during operation the winding thread is exerted, which runs through the thread channel when it is twisted around the yarn.
  • connection point becomes relatively stiff in relation to a normal fiber structure and can therefore lead to processing difficulties.
  • subsequent removal of the wrapping yarn requires an additional operation on the products made with such types of yarn. Difficulties can also arise in the procurement of suitable wrapping yarns for all possible fiber associations to be processed.
  • the present invention is therefore based on the object of connecting fiber bundles To create the, which avoids the disadvantages mentioned and in particular can be generated very quickly, for example in a matter of seconds, has both a high speed, a connection diameter which does not differ significantly from the diameter of the fiber structure and a high tensile strength, the connection also not having any significant the further processing of the connected fiber dressings should have an impediment or aggravating property.
  • the fibers used for looping are formed from the connection area of at least one of the fiber associations itself, from which they are not separated.
  • connection is thus based on the deliberate displacement of components of the fiber bandages to be connected, which makes it possible to achieve a connection diameter that does not significantly deviate from the diameter of the fiber band and a high level of suppleness while still ensuring tear resistance.
  • the fiber assemblies to be connected to one another are placed in at least approximately parallel, closely adjacent positions to one another, the special feature of the method being that at least part of the circumference of each of the fiber assemblies to be connected and the All of the fiber bandages are exerted by physical contact of the same with at least two deformation members that compress the fiber bandages in the opposite direction transversely to the length of the connecting region, both shear forces and tensile and / or compressive forces, in order to change the original cross sections and / or structure of the fiber bandages to be connected and on the other hand, at least partially detach individual fibers from at least one of the fiber associations to be prevented from their association and relocate them in such a way that they finally contain the fiber associations to be connected in at least part of the Wrapping the area of action of the deformation elements in a force-fitting manner and then connecting them through the loop. which fiber associations are brought out of the area of influence of the deformation elements.
  • This process can also be carried out quickly and easily by assistants and is particularly suitable for use in automatic processing processes. Only very low energy consumption is required for the mechanical processing of the fiber assemblies at the connection point.
  • a particularly advantageous embodiment of a device for carrying out the method according to the invention is characterized in that the device has at least two deformation elements which are movably mounted on a carrier, the deformation elements moving in opposite directions in an area of influence on the fiber associations to be connected, and the Fiber associations to be connected can be fed to the area of action by means of a first guide device and the connected fiber groups can be guided away from this area of action by means of a second guide device.
  • Such a device can be produced very inexpensively and, in conjunction with the uncomplicated feeding and guiding away of the fiber bundles, enables a reliable and rapid operation.
  • connection 1 shows a schematic representation of a connection 1 of, for example, two fiber associations 2 and 3; essentially only the connection point itself is drawn and a short continuation of connected fiber associations 2 and 3 on each side.
  • the dead ends of the interconnected fiber associations 2 and 3 can be cut off at the ends of the connection length L after the connection has been made.
  • the fiber associations 2 and 3 are wrapped with fibers originating from at least one of the fiber associations 2 or 3.
  • connection 1 it is entirely possible for a further part of fibers to be removed and removed from at least one of fiber assemblies 2 and 3. It is also important that the wrapping 4 is non-positive, i.e.
  • the fibers forming the loop 4 are in good adhesive contact with themselves and preferably with looped fibers, and in this way the remaining fibers of the fiber associations 2 and 3 wrapped in the loop 4 are held together with at least the same pressure as in original condition of the individual fiber associations was the case. This achieves a tensile strength of the connection which is not significantly less than or equal to or greater than the tensile strength of an individual fiber assembly.
  • the material cross section in the area of the connection 1 can be reduced in a targeted manner in order to achieve both a smaller diameter D of the connection 1 and one to achieve higher smoothness of the connection 1.
  • a tear resistance of the connection 1 can be achieved which, despite the reduced material cross section, is not significantly inferior to the tear resistance of an individual fiber association or even at least equals it.
  • the remainder 5 of the fibers remaining within the loop 4 essentially corresponds to the sum of the fibers present at the connection point of the connected fiber associations 2 and 3 before the connection 1 was produced, less the fibers used for the loop 4 in the loop area 6.
  • FIG. 2 schematically shows a cross section through two fiber assemblies 2 and 3 lying against one another.
  • the first fiber assembly 2 has a diameter D and a cross section Q
  • the second fiber assembly 3 has a diameter D 2 and a cross section Q ′′ .
  • connection 3 schematically shows a cross section through a connection 1, from which it can be seen that the originally circular cross sections Q, and Q z have been formed into smaller areas F, and F 2 in the looping area 6, these shaped cross sections being approximately semicircular or have sector shape.
  • the fiber bundles deformed in this way lie approximately along a diameter line and result in a first structure of the connection.
  • FIG. 4 shows a second structure of the cross section of the connection 1, as can be achieved by a suitable choice of the deformation parameters.
  • the surfaces F and F 2 partially wrap around each other, so that there is closer contact between the two deformed cross-sections of the compressed fiber assemblies.
  • FIG. 5 shows a third structure of the cross section through the connection 1 as can be achieved with a suitable choice of deformation parameters.
  • This third structure is characterized in that a core zone 7 and a jacket zone 8 are formed within the loop 4, which is encompassed by looping fibers 4.
  • the core zone 7 consists essentially of fibers of one fiber structure and the core zone 8 essentially of fibers of the other fiber structure.
  • the core zone 7 can be symmetrical or asymmetrical within the jacket zone 8.
  • FIG. 6 shows a fourth structure of the cross section through the connection 1, which is characterized in that the fibers of the fiber structure 2 are represented by the action of the deformation elements, they are represented in FIG. 6 by a circle with a point in the middle, and the fibers of the fiber assembly 3, they are shown in Fig. 6 with a small circle with a cross, little have at least partially mixed and are encompassed by the wrapping 4 as a mixed bundle.
  • This structure is characterized by increased adhesion of the fibers belonging to the individual fiber associations to one another.
  • a further increase in the adhesion of fibers both of the connected fiber associations and of the fibers lying in the wrap 4 can be achieved in that at least some of these fibers in their structure and / or surface properties in the area of the connection 1 compared to their state before the connection and is specifically changed outside of the connection 1, for example by appropriate design of the structure of the deformation elements.
  • the change in the structure and / or surface quality is preferably carried out in the direction of increasing the adhesion, for example by roughening the surface of the fibers and / or impressing waviness or crimp on the individual fibers.
  • connection 1 it is hereby possible that the length of individual fibers within the connection 1 is shortened compared to the length of individual fibers outside the connection.
  • the two fiber structures 2 and 3 are fed essentially parallel to one another in the direction of arrow 17 to an area of action 14 between two deformation members 11 and 12.
  • the deformation elements 11 and 12 do not touch each other, but leave a width W of the area of action 14 at the narrowest point between the deformation elements 11 and 12.
  • the deformation members 11 and 12 rotate in the direction of arrows 15 and 16, respectively, so that their outermost contours move past one another in the opposite direction.
  • the two fiber associations 2 and 3 are deformed and pressed together.
  • at least individual fibers are at least partially pulled out of at least one of the two fiber associations 2 and 3 and are used as a loop 4 by the mutual rotary movement of the deformation members 11 and 12.
  • the deformed fiber associations leave the area of action 14 in the direction of arrow 18, they have a cross section 19 which is essentially circular, the cross-sectional area being smaller than the sum of the cross sections of the fiber associations 2 and 3 before they enter the area of action 14.
  • the structure of the cross section 19 can have any of the structures shown in FIGS. 3, 4, 5 and 6 or a mixed form thereof.
  • the number of individual fibers passing through at least one cross section through the connection 1 can be smaller than the original sum of the fibers of the connected fiber associations.
  • the diameter D of the connection 1 can be smaller than the diameter of a circle whose area is equal to the sum of the original cross sections of the connected fiber assemblies.
  • the method for producing compound 1 is characterized by the features mentioned in the claims and in the introduction to the description.
  • An advantageous embodiment of the method consists in making at least one working parameter for the generation of the connection changeable and / or adjustable in order to form preferred connection structures, such as, for example, with the aid of a certain choice of such individual parameters and / or certain combinations of such parameters 3 to 6 have been explained to favor. Mixed forms of the structures according to FIGS. 3 to 6 can also be achieved.
  • the setting of the longitudinal tension of the clamped fiber assemblies to be connected has an analogous effect.
  • the distance between the deformation members and thereby the width W of the deformation region 14 also have a diameter D 1 and O 2 of the fiber associations 2 and 3 dependent influence on the deformation forces and thereby on the preference of the different structures in the sense of the figures, FIGS. 3 to 6.
  • the spatial arrangement i.e. H.
  • the deformation members can also be directed with more or less pressure against the fiber associations to be connected, which also has an influence on the resulting structure of the connection produced.
  • the deformation members move in the opposite direction in the area of action 14.
  • the peripheral speeds of the deformation elements are preferably approximately in the range of 2 to 20 m / sec. chosen horizontally.
  • there are advantageous time intervals with pressure on the fiber associations of about 0.1 milliseconds and time intervals for the temporary release of the fiber associations of about 0.2 milliseconds when the fiber associations 2 and 3 during an advantageous time span of about 0.5 to 2 seconds through the area 14.
  • the resulting structure within the connection can also be influenced by the selection of a suitable throughput speed and / or throughput or dwell time of the fiber assemblies to be connected through or in the area of action 14 of the deformation members.
  • the structure of the deformation elements and / or the strength and / or frequency of the force effects on at least parts of the fiber associations to be connected result in changes in the distribution within the fiber associations compared to the original distribution before the effect of the Deformation organs. This improves the tear resistance of the connection.
  • the action of the deformation elements can also result in the mixing of fibers of a fiber structure with fibers of the same and / or another fiber structure. This mixing of fibers also increases the tensile strength of the connection.
  • the effect of the deformation elements on the individual fibers of the fiber associations to be connected allows their surface and / or structure to be increased in an adhesion-increasing manner and thereby the adhesion of fibers to one another in the area of the connection 1 to be produced to parts of the fiber associations that do not fall into the area 14 of the deformation elements 11, 12 guess, increase, which results in an improvement in the tear strength of the connection.
  • the non-positive wrap 4 in connection 1 leads to an increase in the compression of the individual fibers in the area of the wrap 4 within the remainder 5 of the fiber bundles 2 and 3 to be connected and thereby to an increased adhesion of the individual fibers to one another, and this also increases the tear resistance of the connection 1 increased.
  • Fine ribs can be achieved on the lateral surfaces of the deformation elements 11 and 12, that at least individual fibers of the fiber assemblies 2 and 3 change in their structure, for example they are corrugated, coiled or crimped, and as a result the tendency to interlock. If this clawing takes place within the rest 5 (FIG. 1), the tensile strength of the connection 1 is thereby increased. If this clawing takes place mainly in the area of the wrap 4, the frictional engagement thereof is thereby improved, which likewise benefits the quality of the connection 1.
  • a suitable structure e.g. Fine ribs can be achieved on the lateral surfaces of the deformation elements 11 and 12, that at least individual fibers of the fiber assemblies 2 and 3 change in their structure, for example they are corrugated, coiled or crimped, and as a result the tendency to interlock.
  • FIG. 7 shows a schematic illustration of the formation of the connection in a schematic illustration of the basic structure of a device for executing the described method.
  • the device 10 has at least two deformation members 11 and 12, which are movably mounted on a carrier 13, in the example of FIG. 7 rotatable.
  • the deformation elements 11 and 12 or their contours approach the fiber associations 2 and 3 to be connected in an area of action 14, but without touching one another.
  • the action zone 14 located between them has a width W.
  • the fiber associations 2 and 3 to be connected can be fed to the action area 14 approximately parallel to one another in the direction of arrow 17.
  • the width of the area of action 14 at its narrowest point is smaller than the sum of the diameters D or D z (see FIG. 2) of the ones to be connected Fiber dressings 2 and 3.
  • FIG. 8 shows a schematic representation of an apparatus for carrying out the method.
  • the various parts of the device 10 are constructed on a carrier 13.
  • Two deformation elements 11 and 12 are each rotatably mounted on an axis 20 and 21 and they are rotatable via a drive wheel 22.
  • the drive wheel 22 itself is coupled to a power drive 23 via a coupling member 24, for example a shaft.
  • a small electric motor, for example, is suitable as the power drive 23.
  • the deformation members 11 and 12 are rotating bodies and at least part of their surface, for example their lateral surfaces are structured. This structuring can be carried out in the form of a toothing which, for example, has the same profile as the drive wheel 22, both the toothing of the deformation element 11 and that of the deformation element 12 being in engagement with the toothing of the drive wheel 22.
  • An adjustable bearing device 25 is preferably also fastened on the carrier 13, in which a deformation element, in the example of FIG. 8 it is the deformation element 12, is rotatably mounted, the width W of the area of action 14 being adjustable by means of this adjustable bearing device 25.
  • the device 10 at least one movable member 26 for at least temporarily guiding and / or scanning the fiber associations 2 and 3 to be connected.
  • the fiber associations 2 and 3 to be connected are inserted, for example, one can be attached to the movable member 26 at a suitable point Groove the most advantageous position of the fiber associations 2 and 3 for the optimal introduction into the area of influence of the deformation members 11 and 12 can be ensured.
  • the movable member 26 is pivoted and, when it is connected to a switching member 27, can do so depending on the position of the fiber assemblies to be connected actuate and thereby temporarily switch the power drive 23 on or off.
  • At least part of the surface or the outer surface of the deformation elements 11 and 12 is serrated and the center distance of the deformation elements 11 and 12 is selected such that their teeth do not touch, but when they are compared at the narrowest point of the Area of action 14 (see FIG. 7) approach to a width W of less than the sum of the diameters D and D 2 of the fiber associations 2 and 3 to be connected.
  • FIGS. 9, 10 and 11 show the inserted fiber associations 2 and 3 are deformed under the action of the deformation elements.
  • FIG. 9 shows the conditions when two teeth are exactly opposite one another
  • FIG. 10 shows the conditions in an intermediate position
  • FIG. 11 shows the conditions with opposing tooth gaps. It can be seen that both the strength and the direction of the forces exerted by the deformation elements on the fiber associations 2 and 3 change continuously and that there are both time intervals of the force-related influence on the fiber associations 2 and 3 and time intervals for the temporary release of the fiber associations. Time intervals of the application of force are shown in FIGS. 9 and 10, a time interval of the release is shown in FIG. 11.
  • connection structures for example according to FIGS. 3 to 6 or mixed forms thereof, it has proven advantageous to use deformation bodies of different shapes.
  • FIG. 12 shows a deformation element 11, which is a rotating body with a structured outer surface 27, the outer surface 27 having a different width B along the circumference thereof.
  • FIG. 13 shows a deformation element as a rotating body with a structured outer surface 27, the outer surface having a constant width B and over a first region of its circumference another area of the circumference has a different width B 2 .
  • a deformation element 11 as a rotating body with a structured lateral surface 27, which is designed such that in the area of a recess 28 only part of the width B 1 of the lateral surface 27 comes into contact with the fiber associations to be connected.
  • a deformation element 11 which is designed as a rotating body with a structured lateral surface, a wedge-shaped recess 29 in the deformation element 11 and, in the region of a bevel 30, the remaining lateral surface 27 having a different effective width along its circumference.
  • FIG. 16 shows an embodiment variant of a deformation element 11 which is designed as a rotating body with a structured lateral surface, the deformation element 11 on a first part of the circumference having a recess 28 which is symmetrical to the central plane of the deformation element 11 and in another part of the circumference further opposing ones Recesses 31 and 32 have such that, in operation, points of the outer surface 27 with different widths and positions of the outer surface (33, 34, 35) alternately come into contact with the fiber associations 2 and 3 to be connected and become effective.
  • FIG. 18 shows an exemplary embodiment of a bearing device 25 in which at least one deformation element 12 is rotatably supported and the bearing device 25 can be displaced transversely in the direction of the double arrow 36 and can be adjusted by an adjusting device 37 and can be ascertained by a locking element 38.
  • a specific setting of the setting device 37 can be fixed by rotating the locking member 38.
  • the bearing device 25 has two webs 41 and 42 and a center piece 47 lying between them, the bearing device 25 being displaceable in grooves in the webs 41, 42.
  • the adjusting device 37 for example a threaded spindle, runs in the middle piece 40.
  • FIG. 19 shows a further schematic illustration for a device 10, in which the deformation elements 11 and 12 are rotational bodies with a lateral surface with teeth, which are each in engagement with the drive wheel 22.
  • the deformation members 11 and 12 and / or the drive wheel 22 can have the same or different number of teeth.
  • the fiber associations 2 and 3 to be connected to one another are introduced into the area of action 14 in the direction of the arrow 17 and the connection of the connected fiber associations can take place in the direction of the arrow 18 shown in broken lines.
  • the deformation elements 11 and 12 have a structured outer surface, the deformation elements 11 and 12 are driven indirectly, however, and their outer surfaces 27 themselves are not in engagement with further toothings .
  • the deformation members 11 and 12 are connected via their axes 20 and 21 to intermediate wheels 43 and 44 which can be driven by a movable toothed rail 45, the toothed rail 45 executing a movement in the direction of arrow 46, for example.
  • the intermediate wheels 43 and 44 could also be driven by the drive wheel 22.
  • 21 shows deformation elements with teeth 27a with a rectangular profile.
  • 25 shows deformation bodies 11 and 12 on the lateral surface 27e of which alternately have concave and convex parts.
  • FIG. 26 shows deformation elements 11 and 12 whose outer surface 27f is alternately provided with cylindrical and flat surfaces.
  • FIG. 28 shows deformation elements 11 and 12 whose lateral surface 27h has a structure similar to a grinding wheel, the roughness being adapted to the material character of the fiber associations to be connected.
  • deformation elements 29 shows an example of deformation elements which are designed as linearly movable bodies and face each other in pairs with structured surfaces, the fiber associations to be connected being able to be passed between the structured surfaces 27i.
  • Such linearly movable bodies as deformation elements can also be moved, for example, by an oscillating armature drive.
  • the 30 shows how guide devices 49 and 51 can be arranged on a device 10 on both sides of the area of action 14 of the deformation members 11 and 12.
  • the first The guide device 49 is arranged at a first distance 50 and the second guide device 51 at a second distance 52 on opposite sides of the area of action 14.
  • the action of the deformation elements in the area of the connection 1 to be produced and in adjacent zones can result in a change in the previously existing twist of the fiber associations.
  • This circumstance can be taken into account by a suitable choice of the first distance 50 or the second distance 52 and it can in particular be ensured that swirl changes do not have a detrimental effect or can even out in the neighboring area of the connection 1. Since the twist changes to the left and right of the area of action 14 can have different effects for a given twist direction of the fiber associations 2 and 3, this fact can be taken into account by unequal selection of the first distance 50 and the second distance 52.
  • 31 shows variants 49 * and 51 * for the guide devices, which are designed in such a way that the fiber associations to be connected are guided separately from one another.
  • FIG. 32 shows an embodiment variant 10a of a device for carrying out the method, which is characterized in that the deformation members 11 and 12 are rotatably mounted in the directions according to the arrows 15 and 16 on swivel arms 52a and 53 and via intermediate wheels 43 and 44 are driven by the drive wheel 22.
  • the width W of the area of action 14 changes. If the swivel members 52a and 53 are actuated, for example, by a lever mechanism 54, the device 10a with a large width W can be in the range of fixed fiber associations to be connected 2 and 3 are brought without the fiber assemblies 2 and 3 already coming into contact with the deformation elements 11 and 12.
  • the deformation members 11 and 12 can be brought together by actuating the lever mechanism 54, whereby the deformation of the fiber assemblies begins and a connection 1 is established.
  • an actuation area 14 can be opened by actuating the lever mechanism 54 again, and the device 10a can be pulled away, so that the interconnected fiber associations 2 and 3 with their connection 1 are freely accessible.
  • An embodiment of the device 10 according to variant 10a is particularly suitable for use in an automatic workflow.
  • connections 1 can be produced which fully meet all practical requirements. It should be noted here that such a connection is created in about one second and the entire work cycle, i.e. Insertion of the fiber associations, formation of the connection and routing of the connected fiber associations can be carried out within a few seconds. It has also been shown that connections produced by the described method, if the parameters are optimally selected, already have a sufficient tensile strength at a length L of the connection 1 from approximately the size of the diameter D, for example in the range of the tensile strength of an individual fiber structure or even lies above.
  • connection is their very high flexibility and the fact that the diameter D of the connection can be chosen approximately equal to the original diameter of one of the fiber associations to be connected. Another advantage of the connection described can be seen in the fact that no foreign materials are required for the wrapping 4, so that, for example, there are no differences in the subsequent coloring. Finally, it should also be pointed out that the device 10 required for executing the connection is constructed much more simply, for example, compared to automatic knotting devices, and can therefore also be produced at lower costs. Due to the low energy consumption, it is also very easily possible to produce a movable or portable device, for example with a battery-operated electric motor drive.
  • the device also has the advantage of having a self-cleaning effect in that contamination of the device is practically avoided by an air flow generated by it or its moving parts.

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Stringed Musical Instruments (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Prostheses (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Auxiliary Devices For And Details Of Packaging Control (AREA)
  • Stereophonic System (AREA)

Description

  • Die Erfindung betrifft eine Verbindung der Endbereiche von Faserverbänden, bei der über einen Bereich der Länge der Verbindung die Faserverbände kraftschlüssig durch Fasern umschlungen sind.
  • Unter einem Faserverband wird dabei generell ein Bündel von Fasern, ein Garn oder Zwirn, eine Schnur oder ein Seil oder ein ähnliches langgestrecktes Gebilde zusammengefasster Fasern oder Fäden verstanden, wobei es sich sowohl um pflanzliche, tierische als auch um auf synthetischem Wege hergestellte Grundmaterialien handeln kann. Hauptanwendungsbereich der Erfindung ist das Gebiet der Textilindustrie im weitesten Sinne, ohne jedoch beschränkt zu sein.
  • In der einschlägigen erzeugenden und verarbeitenden Industrie stellt sich häufig das Problem zwei oder mehr Faserverbände miteinander zu verbinden. Dieses Problem wurde lange Zeit ausschliesslich durch manuelles oder auch maschinelles Verknüpfen oder Verknoten von freien Enden der miteinander zu verbindenden Faserverbände gelöst. Für viele Zwecke erweist sich diese Lösung des Problems als durchaus zweckmässig und wirtschaftlich. Es ist aber nicht zu verkennen, dass Vorrichtungen für die maschinelle Ausführung von Knüpfverbindungen, sogenannte automatische Knoter oder Knüpfvorrichtungen verhältnismässig komplizierte mechanische Gebilde sind, welche demzufolge auch verhältnismässig kostspielig sind.
  • Eine durch Verknüpfung erzeugte Verbindung von Faserverbänden weist aber auch für viele Anwendungszwecke den Nachteil auf, dass notwendigerweise der erzeugte Knoten einen erheblich grösseren Querschnitt aufweist als ein einzelner Faserverband. In der weiteren Verarbeitung des verknüpften Faserverbandes, beispielsweise in der Weberei oder Wirkerei kann sich dies nachteilig auswirken und eine Ursache von Fadenbrüchen oder anderen Betriebsstörungen bilden. Es wurden daher schon verschiedentlich Vorschläge gemacht, die Verbindung von Fasermaterial auf anderem Wege als durch eine Verknüpfung zu lösen.
  • Aus der DE-A-2856514 ist ein Verfahren zur Bildung einer Fadenspleissung mit einer eine Luftdüse umfassenden Knüpfeinrichtung bekannt, dessen Besonderheit darin besteht, dass die beiden Gespinste bzw. Fäden, von denen eine Ende in eine Fadeneinführungsöffnung der Luftdüse der Knüpfeinrichtung von einer Seite und das andere Ende in die Öffnung von der anderen Seite eingeführt wird, einander zugeordnet werden und dass dann wenigstens einer der Fäden vor oder gleichzeitig mit dem Ausblasen der Luft auf die Fäden geringfügig gelockert wird.
  • Aus der DE-A-2 750 913 ist ein weiteres Verfahren zum Verbinden von Textilfäden bekannt, das das Verbinden von Textilfäden ermöglicht, und zwar mittels einer eine Wirbelkammer mit Längsschlitz zum Einlegen und Herausnehmen der zu verbindenden Fäden besitzenden Vorrichtung, in der die nebeneinander liegend eingelegten und durch ausserhalb der Wirbelkammer angeordnete Fadenklemmvorrichtungen gehaltenen Fäden durch Druckluftzufuhr miteinander verwirbelt und auf diese Weise miteinander verbunden werden. Dabei werden die zu verbindenden Textilfäden so an die Wirbelkammer eingelegt, dass sie beide Mündungsränder der Wirbelkammer umschlingen, wobei das anschliessende Verwirbeln der Textilfäden bei Locker ohne Zugspannung in der Wirbelkammer liegenden, von den Fadenklemmvorrichtungen jedoch festgehaltenen Textilfäden erfolgt und die Lockerung der Fadenspannung nur so gross gemacht wird, dass der während des Verwirbelns der Textilfäden aufgezwungene Falschdrall und die dadurch bedingte Verkürzung der Fadenlänge die Textilfäden gegen die Mündungsränder der Wirbelkammer zur Anlage bringt.
  • Schliesslich ist aus der DE-A-1 962 477 eine Vorrichtung bekannt zum Anspleissen von Garnen mit einer drehbar auf einem Gehäuseelement gelagerten Trommel, einem durch die Achse der Trommel verlaufenden Garnkanal zur Aufnahme sich überlappender Enden zu spleissender Garne parallel nebeneinander, mit Einrichtungen zum Drehen der Trommel um die sich überlappenden Enden des zu spleissenden Garnes und von der Trommel getragenen Einrichtungen zur Aufnahme einer Wickelfadenquelle, gekennzeichnet durch einen Fadenkanal in dieser Trommel mit einer Austragöffnung benachbart, jedoch radial versetzt gegen die Achse dieser Trommel, wodurch im Betrieb ein hohes Moment auf den Wickelfaden ausgeübt wird, der durch den Fadenkanal läuft, wenn dieser um das Garn gedreht wird.
  • Verfahren und Vorrichtungen bei welchen eine Wirbelkammer vorgesehen ist und bei welchen ein Fluid, beispielsweise Druckluft, in die Wirbelkammer eingeblasen werden muss, sind kompliziert und umständlich im Betrieb bzw. in der Anwendung, insbesondere auch wegen der Notwendigkeit der Zufuhr des Fluids. Sie bilden auch relativ lange Verbindungsstellen, welche schon wegen ihrer Länge aber auch wegen ihrer Struktur dazu neigen in der Verarbeitung der verbundenen Faserverbände Schwierigkeiten zu bereiten.
  • Durch die Massnahmen nach der DE-A-1 962477 ergeben sich zwar relativ feste Verbindungen und der Durchmesser der Verbindungsstelle kann ausreichend klein gehalten werden zur Erleichterung der weiteren Verarbeitung. Es liegt aber in der Natur dieser Lösung, dass die Verbindungsstelle im Verhältnis zu einem normalen Faserverband relativ steif wird und dadurch zu Verarbeitungsschwierigkeiten führen kann. Auch erfordert das nachträgliche Herauslösen des Umwicklungsgarnes einen zusätzlichen Arbeitsgang an den mit solcher Art verbundenen Garnen hergestellten Erzeugnissen. Es können auch Schwierigkeiten entstehen in der Beschaffung geeigneter Umwicklungsgarne für alle möglichen zu verarbeitenden Faserverbände.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde eine Verbindung von Faserverbänden zu schaffen, welche die genannten Nachteile vermeidet und insbesondere sehr schnell, beispielsweise in Sekundenschnelle erzeugbar ist, sowohl eine hohe Geschwindigkeit, einen nicht wesentlich vom Durchmesser des Faserverbandes abweichenden Verbindungsdurchmesser aufweist und eine hohe Reissfestigkeit gewährleistet, wobei die Verbindung ferner keine ins Gewicht fallende, die weitere Verarbeitung der verbundenen Faserverbände hindernde oder erschwerende Eigenschaft aufweisen soll.
  • Die Lösung dieser Aufgabe wird dadurch erreicht, dass die zum Umschlingen dienenden Fasern aus dem Verbindungsbereich mindestens eines der Faserverbände selbst gebildet sind, von dem sie nicht abgetrennt sind.
  • Die Verbindung beruht somit auf der gezielten Verlagerung von Bestandteilen der zu verbindenden Faserverbände, wodurch es möglich wird, einen nicht wesentlich vom Durchmesser des Faserbandes abweichenden Verbindungsdurchmesser und eine hohe Geschmeidigkeit zu erreichen und dennoch eine Reissfestigkeit sicherzustellen.
  • Bei der bevorzugten Ausführungsform des Verfahrens zur Erzeugung einer solchen Verbindung werden die miteinander zu verbindenden Faserverbände in wenigstens annähernd parallele, eng benachbarte Lage zueinander verbracht, wobei die Besonderheit des Verfahrens darin besteht, dass mindestens auf einen Teil des Umfanges jedes der zu verbindenden Faserverbände und die Gesamtheit der Faserverbände durch körperhafte Berührung derselben mit mindestens zwei die Faserverbände in entgegengesetzter Richtung quer zur Länge des Verbindungsbereichs zusammendrückenden Verformungsorganen sowohl Schubkräfte als auch Zug- und/oder Druckkräfte ausgeübt werden um einerseits die ursprünglichen Querschnitte und/oder Struktur der zu verbindenden Faserverbände zu verändern und anderseits mindestens aus einem der zu verhindenden Faserverbände Einzelfasern mindestens teilweise aus ihrem Verband zu lösen und derart zu verlagern, dass sie schliesslich die zu verbindenden Faserverbände mindestens in einem Teil des Einwirkungsbereiches der Verformungsorgane kraftschlüssig umschlingen und anschliessend die durch die Umschlingung verbun- . denen Faserverbände wieder aus dem Einwirkungsbereich der Verformungsorgane gebracht werden.
  • Dieses Verfahren lässt sich einfach und rasch auch von Hilfskräften durchführen und eignet sich vor allem zum Einsatz in automatischen Verarbeitungsprozessen. Für die mechanische Bearbeitung der Faserverbände an der Verbindungsstelle ist nur ein sehr geringer Energieverbrauch erforderlich.
  • Eine besonders vorteilhafte Ausführungsform einer Vorrichtung zur Ausführung des Verfahrens nach der Erfindung zeichnet sich dadurch aus, dass die Vorrichtung mindestens zwei Verformungsorgane aufweist, welche auf einem Träger beweglich gelagert sind, wobei die Verformungsorgane sich in einem Einwirkungsbereich auf die zu verbindenden Faserverbände gegenläufig bewegen und die zu verbindenden Faserverbände dem Einwirkungsbereich mittels einer ersten Führungsvorrichtung zuführbar und die verbundenen Faserverbände aus diesem Einwirkungsbereich mittels einer zweiten Führungsvorrichtung wegführbar sind.
  • Eine derartige Vorrichtung ist sehr preiswert herstellbar und erlaubt in Verbindung mit der unkomplizierten Zuführung und Wegführung der Faserverbände eine zuverlässige und rasche Arbeitsweise.
  • Weitere besonders vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Im folgenden wird die Erfindung anhand der Zeichnung beispielsweise erläutert. Dabei zeigt:
    • Fig. 1 eine Verbindung zweier Faserverbände;
    • Fig. 2 eine relative Lage zweier zu verbindender Faserverbände vor der Verbindung;
    • Fig. 3 einen Querschnitt durch eine Verbindung mit einer ersten Struktur;
    • Fig. 4 einen Querschnitt durch eine Verbindung mit einer zweiten Struktur;
    • Fig. 5 einen Querschnitt durch eine Verbindung mit einer dritten Struktur;
    • Fig. 6 einen Querschnitt durch eine Verbindung mit einer vierten Struktur;
    • Fig. 7 eine schematische Darstellung der Entstehung der Verbindung;
    • Fig. 8 eine schematische Darstellung einer Vorrichtung zur Ausführung des Verfahrens;
    • Fig. 9 eine schematische Darstellung der Verformung zweier zu verbindender Faserverbände bei sich gegenüberstehenden Zähnen der Verformungsorgane;
    • Fig. 10 eine schematische Darstellung der Verformung zweier zu verbindender Faserverbände bei ungleichstehenden Zähnen der Verformungsorgane;
    • Fig. 11 eine schematische Darstellung der zeitweisen Freigabe der Faserverbände bei sich gegenüberstehenden Zahnlücken;
    • Fig. 12 ein Verformungsorgan mit unterschiedlicher Breite der Mantelfläche;
    • Fig. 13 ein Verformungsorgan mit teilweise konstanter und teilweise variabler Breite der Mantelfläche;
    • Fig. 14 ein Verformungsorgan mit einem Bereich konstanter voller Breite und einem Bereich mit reduzierter Breite der Mantelfläche;
    • Fig. 15 ein Verformungsorgan mit variablen und konstanten Bereichen der Breite der Mantelfläche;
    • Fig. 16 ein Verformungsorgan mit schräg verzahnter Mantelfläche mit Bereichen unterschiedlicher Breite derselben;
    • Fig. 17 ein Verformungsorgan mit schräg verzahnter Mantelfläche;
    • Fig. 18 eine schematische Darstellung einer Einrichtung zur Einstellung der Weite des Einwirkungsbereichs der Verformungsorgane;
    • Fig. 19 eine schematische Darstellung einer Vorrichtung mit Verformungsorganen und Antriebsrad mit unterschiedlichen Zähnezahlen;
    • Fig. 20 eine schematische Darstellung einer Vorrichtung mit indirektem Antrieb der Verformungsorgane;
    • Fig. 21 bis 28 verschiedene Ausführungsarten von Strukturen der Mantelflächen von Verformungsorganen;
    • Fig. 29 eine schematische Darstellung linear beweglicher Verformungsorgane;
    • Fig. 30 eine schematische Darstellung von Führungseinrichtungen für die zu verbindenden Faserverbände;
    • Fig. 31 eine weitere Ausführungsvariante von Führungseinrichtungen für zu verbindende Faserverbände;
    • Fig. 32 eine schematische Darstellung einer weiteren Ausführungsvariante der Vorrichtung. In allen Figuren sind sich entsprechende Teile mit gleichen Hinweiszeichen versehen. Die Figuren sind nicht massstäblich gezeichnet.
  • Die Fig. 1 stellt eine schematische Darstellung einer Verbindung 1 von beispielsweise zwei Faserverbänden 2 und 3 dar; dabei ist im wesentlichen nur die Verbindungsstelle selbst gezeichnet und auf jeder Seite eine kurze Fortsetzung verbundener Faserverbände 2 und 3. Die toten Enden der miteinander verbundenen Faserverbänden 2 und 3 können nach Herstellen der Verbindung etwa an den Enden der Verbindungslänge L abgeschnitten werden.
  • Mindestens über einen Teil 6 der Länge L der Verbindung 1 sind die Faserverbände 2 und 3 mit aus mindestens einem der Faserverbände 2 oder 3 stammenden Fasern umschlungen. Innerhalb der Umschlingung 4 befindet sich dabei der Rest 5 des Fasermaterials der Faserverbände 2 und 3, welcher übrig bleibt nach der mindestens teilweisen Herausnahme von, für die Umschlingung 4 benötigten Fasern, aus mindestens einem der zu verbindenden Faserverbände 2 und 3. Wichtig ist dabei, dass einerseits der restliche Materialquerschnitt, d.h. die Summe der Querschnitte der in einem Querschnitt durch die Verbindung 1 mindestens um die für die Umschlingung 4 verwendeten Fasern gegenüber den ursprünglichen Faserverbänden verkleinert ist. Bei der Erzeugung der Verbindung 1 ist es aber durchaus möglich, dass auch ein weiterer Teil von Fasern aus mindestens einem der Faserverbände 2 und 3 herausgenommen und entfernt wird. Wichtig ist es weiterhin, dass die Umschlingung 4 kraftschlüssig ist, d.h. dass die, die Umschlingung 4 bildenden Fasern mit sich selbst und vorzugsweise mit umschlungenen Fasern in guter Haftverbindung stehen und auf diese Weise die von der Umschlingung 4 umschlungenen restlichen Fasern der Faserverbände 2 und 3 im wesentlichen mit mindestens der gleichen Pressung zusammengehalten werden, wie dies im ursprünglichen Zustand der einzelnen Faserverbände der Fall war. Hierdurch wird eine Reissfestigkeit der Verbindung erzielt, welche nicht wesentlich unter der Reissfestigkeit eines einzelnen Faserverbandes oder sogar dieser gleich oder höher ist.
  • Durch die Herausnahme weiterer Fasern aus den Faserverbänden 2 und/oder 3 als diejenigen die für die Umschlingung 4 benötigt werden, lässt sich der Materialquerschnitt im Bereich der Verbindung 1 gezielt vermindern, um sowohl einen kleineren Durchmesser D der Verbindung 1 zu erzielen, als auch eine höhere Geschmeidigkeit der Verbindung 1 zu erreichen. Zufolge der hohen Pressung, welcher die innerhalb der Umschlingung 4 liegenden restlichen Fasern der Faserverbände 2 und 3 ausgesetzt sind, kann eine Reissfestigkeit der Verbindung 1 erreicht werden, welche trotz des verminderten Materialquerschnitts, der Reissfestigkeit eines einzelnen Faserverbandes nicht wesentlich nachsteht oder sogar mindestens gleichkommt.
  • Der Rest 5 der innerhalb der Umschlingung 4 verbleibenden Fasern entspricht im wesentlichen der Summe der an der Verbindungsstelle der verbundenen Faserverbände 2 und 3 vor der Erzeugung der Verbindung 1 vorhandenen Fasern, abzüglich der für die Umschlingung 4 im Umschlingungsbereich 6 verwendeten Fasern.
  • Die Fig. 2 zeigt schematisch einen Querschnitt durch zwei aneinander liegende Faserverbände 2 und 3. Dabei weist der erste Faserverband 2 einen Durchmesser D, und einen Querschnitt Q, auf und der zweite Faserverband 3 einen Durchmesser D2 und einen Querschnitt Q".
  • Die Fig. 3 zeigt schematisch einen Querschnitt durch eine Verbindung 1, aus welchem zu ersehen ist, dass die ursprünglich kreisförmigen Querschnitte Q, und Qz zu kleineren Flächen F, und F2 im Umschlingungsbereich 6 umgeformt worden sind, wobei diese umgeformten Querschnitte etwa Halbkreisform bzw. Sektorform aufweisen. Die auf diese Art verformten Faserverbände liegen etwa längs einer Durchmesserlinie aneinander und ergeben eine erste Struktur der Verbindung.
  • Die Fig. 4 zeigt eine zweite Struktur des Querschnittes der Verbindung 1 wie sie durch geeignete Wahl der Verformungsparameter erreichbar ist. Hierbei umschlingen sich die Flächen F, und F2 teilweise, so dass sich eine innigere Berührung der beiden verformten Querschnitte der zusammengepressten Faserverbände ergibt.
  • Die Fig. 5 zeigt eine dritte Struktur des Querschnittes durch die Verbindung 1 wie sie bei geeigneter Wahl von Verformungsparametern erzielt werden kann. Diese dritte Struktur ist dadurch gekennzeichnet, dass sich innerhalb der Umschlingung 4 eine Kernzone 7 und eine Mantelzone 8 bilden, welche von umschlingenden Fasern 4 umfasst ist. Die Kernzone 7 besteht dabei im wesentlichen aus Fasern des einen Faserverbandes und die Kernzone 8 im wesentlichen aus Fasern des anderen Faserverbandes. Die Kernzone 7 kann symmetrisch oder asymmetrisch innerhalb der Mantelzone 8 liegen.
  • Die Fig. 6 zeigt eine vierte Struktur des Querschnittes durch die Verbindung 1, welche dadurch gekennzeichnet ist, dass sich durch die Wirkung der Verformungsorgane die Fasern des Faserverbandes 2, sie sind in Fig. 6 durch einen Kreis mit einem Punkt in der Mitte dargestellt, und die Fasern des Faserverbandes 3, sie sind in Fig. 6 mit einem kleinen Kreis mit Kreuz dargestellt, wenigstens teilweise durchmischt haben und als vermischtes Bündel von der Umschlingung 4 umfasst sind. Diese Struktur zeichnet sich durch eine erhöhte Haftung der zu den einzelnen Faserverbänden gehörenden Fasern untereinander aus.
  • Eine weitere Erhöhung der Haftung von Fasern sowohl der verbundenen Faserverbände als auch der in der Umschlingung 4 liegenden Fasern lässt sich dadurch erreichen, dass mindestens ein Teil dieser Fasern in ihrer Struktur und/oder Oberflächenbeschaffenheit im Bereich der Verbindung 1 gegenüber ihrem Zustand vor der Verbindung und ausserhalb der Verbindung 1 gezielt verändert ist, beispielsweise durch entsprechende Ausbildung der Struktur der Verformungsorgane. Die Veränderung der Struktur und/oder Oberflächenbeschaffenheit wird vorzugsweise in der Richtung einer Erhöhung der Adhäsion vorgenommen, beispielsweise durch Aufrauhung der Oberfläche der Fasern und/oder Aufprägung von Welligkeit oder Kräuselung auf die Einzelfasern.
  • Es ist hierdurch möglich, dass die Länge von Einzelfasern innerhalb der Verbindung 1 gegenüber der Länge von Einzelfasern ausserhalb der Verbindung verkürzt ist.
  • Die Fig. 7 zeigt eine schematische Darstellung der Entstehung der Verbindung. Die zwei Faserverbände 2 und 3 werden im wesentlichen parallel nebeneinanderliegend in Richtung des Pfeils 17 einem Einwirkungsbereich 14 zwischen zwei Verformungsorgan 11 und 12 zugeführt. Die Verformungsorgane 11 und 12 berühren sich nicht, sondern lassen eine Weite W des Einwirkungsbereichs 14 an der engsten Stelle zwischen den Verformungsorganen 11 und 12 frei. Die Verformungsorgane 11 und 12 drehen sich in Richtung der Pfeile 15, bzw. 16, so dass sich also deren äusserste Konturen in entgegengesetzter Richtung aneinander vorbei bewegen.
  • Innerhalb des Einwirkungsbereiches 14, in Fig. 7 gekreuzt schraffiert dargestellt, werden die beiden Faserverbände 2 und 3 verformt und zusammengepresst. Ausserdem werden wenigstens einzelne Fasern aus wenigstens einem der beiden Faserverbände 2 und 3 aus diesen wenigstens teilweise herausgezogen und durch die gegenseitige Drehbewegung der Verformungsorgane 11 und 12 als Umschlingung 4 verbraucht. Wenn die verformten Faserverbände den Einwirkungsbereich 14 in Richtung Pfeil 18 verlassen, haben sie einen Querschnitt 19, welcher im wesentlichen kreisförmig ist, wobei die Querschnittsfläche kleiner ist als die Summe der Querschnitte der Faserverbände 2 und 3 vor ihrem Eintritt in den Einwirkungsbereich 14.
  • Die Struktur des Querschnittes 19 kann irgendeine der in den Fig. 3, 4, 5 und 6 dargestellten Strukturen haben oder auch eine Mischform derselben.
  • Im Bereich der Verbindung 1 kann die Anzahl der mindestens einen Querschnitt durch die Verbindung 1 durchsetzenden Einzelfasern kleiner sein als die ursprüngliche Summe der Fasern der verbundenen Faserverbände.
  • Der Durchmesser D der Verbindung 1 kann kleiner sein als der Durchmesser eines Kreises dessen Fläche gleich ist der Summe der ursprünglichen Querschnitte der verbundenen Faserverbände.
  • Das Verfahren zur Erzeugung der Verbindung 1 ist durch die in den Ansprüchen und in der Beschreibungseinleitung erwähnten Merkmale gekennzeichnet. Eine vorteilhafte Ausgestaltung des Verfahrens besteht darin, mindestens einen Arbeitsparameter für die Erzeugung der Verbindung veränderbar und/oder einstellbar zu machen um durch eine bestimmte Wahl von einzelnen solchen Parametern und/oder bestimmten Kombinationen von solchen Parametern die Bildung bevorzugter Verbindungsstrukturen, wie sie beispielsweise anhand der Fig. 3 bis 6 erläutert worden sind, zu begünstigen. Es können auch Mischformen der Strukturen gemäss den Fig. 3 bis 6 erzielt werden.
  • Das Verfahren kann insbesondere derart weiter ausgebildet werden, dass als Arbeitsparameter einer oder mehrere der nachfolgend aufgeführten Arbeitsparametern veränderbar und/oder einstellbar ist bzw. sind:
    • 1. Entfernung zwischen den Einspannstellen der zu verbindenden Faserverbände;
    • 2. Spannung der eingespannten Faserverbände;
    • 3. Struktur der Verformungsorgane;
    • 4. Gegenseitiger Abstand der Verformungsorgane;
    • 5. Gegenseitige räumliche Orientierung der Verformungsorgane;
    • 6. Druck der Verformungsorgane auf die zu verbindenden Faserverbände;
    • 7. Geschwindigkeit der Verformungsorgane relativ zu den Faserverbänden;
    • 8. Winkelstellung der Verformungsorgane oder ihrer Bewegungsrichtung relativ zu den Faserverbänden;
    • 9. Durchlaufgeschwindigkeit und/oder Durchlauf- und/oder Verweilzeit der zu verbindenden Faserverbände durch bzw. im Einwirkungsbereich der Verformungsorgane.
  • Hierzu ist zu bemerken, dass die Wahl der Entfernung zwischen den Einspannstellen der zu verbindenden Faserverbände voneinander und vom Einwirkungsbereich 14 (Fig. 7) einen Einfluss auf den sich ergebenden Ausgleich von Drallveränderungen während und nach der Erzeugung einer Verbindung ausübt und daher vorteilhaft eingestellt werden sollte.
  • In analoger Weise wirkt sich auch die Einstellung der Längsspannung der eingespannten, miteinander zu verbindender Faserverbände aus.
  • Je nach der Art insbesondere auch des Ausgangsmaterials und der Verarbeitung, z. B. Verspinnung, und Anzahl der Verwindungen der Faserverbände pro Längeneinheit ergeben sich Strukturunterschiede im Sinne der Ausführungen zu den Fig. 3 bis 6.
  • Der Abstand der Verformungsorgane und dadurch die Weite W des Verformungsbereiches 14 (Fig. 7) haben einen auch von Durchmessern D1 und O2 der zu verbindenden Faserverbände 2 und 3 abhängigen Einfluss auf die Verformungskräfte und dadurch auf die Bevorzugung der verschiedenen Strukturen im Sinne der Figuren, Fig. 3 bis 6.
  • Auch die räumliche Anordnung, d. h. die gegenseitige räumliche Orientierung der Verformungsorgane zueinander und in Bezug auf die zu verbindenden Faserverbände, beispielsweise ob die Hauptebenen der Verformungsorgane in einem rechten Winkel zur Richtung der Faserverbände stehen oder dazu im gleichen oder unterschiedlichen Masse geneigt sind, hat einen Einfluss auf die sich ergebende Struktur der erzeugten Verbindung. Die Verformungsorgane können auch mit mehr oder weniger Druck gegen die zu verbindenden Faserverbände gerichtet werden, wodurch sich ebenfalls ein Einfluss auf die sich ergebende Struktur der erzeugten Verbindung ergibt.
  • Die Verformungsorgane bewegen sich im Einwirkungsbereich 14 in entgegengesetzter Richtung. Die Umfangsgeschwindigkeiten der Verformungsorgane werden dabei vorzugsweise etwa im Bereich von 2 bis 20 m/Sek. liegend gewählt. Dabei ergeben sich bei Verzahnungsprofilen der Konturen der Verformungsorgane im Einwirkungsbereich für die zu verbindenden Faserverbände vorteilhafte Zeitintervalle mit Druckeinwirkung auf die Faserverbände von etwa 0,1 Millisekunden und Zeitintervalle für die vorübergehende Freigabe der Faserverbände von etwa 0,2 Millisekunden wenn die Faserverbände 2 und 3 während einer vorteilhaften Zeitspanne von etwa 0,5 bis 2 Sekunden durch den Einwirkungsbereich 14 geführt werden.
  • Durch Schrägstellung der Verformungsorgane zur Längsrichtung der zu verbindenden Faserverbände kann auch die Erzeugung von Schubkräften mit Kraftkomponenten in Längsrichtung der Faserverbände erreicht werden, wodurch sich eine zusätzliche Begünstigung der Vermischung der Fasern der einzelnen Faserverbände ergibt.
  • Eine Beeinflussung der sich ergebenden Struktur innerhalb der Verbindung ist auch durch die Wahl einer geeigneten Durchlaufgeschwindigkeit und/oder Durchlauf- oder Verweilzeit der zu verbindenden Faserverbände durch bzw. im Einwirkungsbereich 14 der Verformungsorgane möglich.
  • Infolge der recht komplizierten und z.T. miteinander verknüpften Einflüsse der erwähnten Parameter und der Verhältnisse bei der Bildung einer Verbindung lassen sich sowohl eine bestimmte Wahl von Parametern als auch von Einstellungen am besten auf empirischem Wege finden. Dank der raschen Arbeitsweise und der guten Reproduzierbarkeit ist dieses Vorgehen vorteilhaft und führt am raschesten zu einer optimalen Betriebsweise.
  • Es ist sowohl möglich eine Verbindung zu erzeugen, wenn die zu verbindenden Faserverbände mit annähernd konstanter Geschwindigkeit durch den Einwirkungsbereich 14 hindurch geführt werden als auch wenn die zu verbindenden Faserverbände während einer bestimmten Verweilzeit innerhalb des Einwirkungsbereiches 14 in annähernd konstanter Lage gehalten werden.
  • Es ist zu beachten, dass zufolge der Struktur der mit den zu verbindenden Faserverbänden in Berührung kommenden Flächen der Verformungsorgane 11 und 12 die von den Verformungsorganen auf die zu verbindenden Faserverbände wirkenden Kräfte in rascher zeitlicher Folge in ihrer Grösse und/oder Richtung variieren. Während der Durchlaufzeit oder Verweilzeit der zu verbindenden Faserverbände 2 und 3 durch oder im Einwirkungsbereich 14 der Verformungsorgane 11 und 12 ergeben sich Zeitintervalle der Einwirkung der Verformungsorgane mit variabler Kraftwirkung und Zeitintervalle der mindestens teilweisen Freigabe der Faserverbände durch die Struktur der Verformungsorgane in rascher zeitlicher Folge bzw. mit raschem Wechsel.
  • Wie aus den Fig. 3 bis 6 erkennbar ist, ergeben sich durch die Struktur der Verformungsorgane und/oder die Stärke und/oder Häufigkeit der Krafteinwirkungen mindestens auf Teile der zu verbindender Faserverbände Änderungen in der Verteilung innerhalb der Faserverbände gegenüber der ursprünglichen Verteilung vor Einwirkung der Verformungsorgane. Dadurch wird die Reissfestigkeit der Verbindung verbessert.
  • Durch die Wirkung der Verformungsorgane kann es auch zu einer Vermischung von Fasern eines Faserverbandes mit Fasern desselben und/ oder eines anderen Faserverbandes kommen. Auch diese Vermischung von Fasern erhöht die Reissfestigkeit der Verbindung.
  • Durch die Wirkung der Verformungsorgane auf die Einzelfasern der zu verbindenden Faserverbände lässtsich deren Oberfläche und/oder Struktur adhäsionserhöhend verändern und dadurch die Haftung von Fasern aneinander im Bereich der zu erzeugenden Verbindung 1 gegenüber Teilen der Faserverbände, die nicht in den Einwirkungsbereich 14 der Verformungsorgane 11, 12 geraten, erhöhen, was eine Verbesserung der Reissfestigkeit der Verbindung ergibt.
  • Die kraftschlüssige Umschlingung 4 bei der Verbindung 1 führt zu einer Erhöhung der Zusammenpressung der Einzelfasern im Bereich der Umschlingung 4 innerhalb des Restes 5 der zu verbindenden Faserverbände 2 und 3 und dadurch zu einer erhöhten Haftung der einzelnen Fasern aneinander und dadurch wird ebenfalls die Reissfestigkeit der Verbindung 1 erhöht.
  • Schliesslich kann durch eine geeignete Struktur, wie z.B. feine Rippen auf den Mantelflächen der Verformungsorgane 11 und 12 erreicht werden, das sich wenigstens einzelne Fasern der Faserverbände 2 und 3 in ihrer Struktur verändern, beispielsweise gewellt, gewendelt oder gekräuselt werden und dadurch die Neigung erhalten sich ineinander zu verkrallen. Erfolgt diese Verkrallung innerhalb des Restes 5 (Fig. 1) so wird dadurch die Reissfestigkeit der Verbindung 1 erhöht. Erfolgt diese Verkrallung hauptsächlich im Bereich der Umschlingung 4, so wird dadurch die Kraftschlüssigkeit derselben verbessert, was ebenfalls der Güte der Verbindung 1 zugute kommt.
  • Die Fig. 7 zeigt eine schematische Darstellung der Entstehung der Verbindung in einer schematischen Darstellung des prinzipiellen Aufbaues einer Vorrichtung zur Ausführung des beschriebenen Verfahrens. Die Vorrichtung 10 besitzt mindestens zwei Verformungsorgane 11 und 12, welche auf einem Träger 13 beweglich, im Beispiel der Fig. 7 drehbar, gelagert sind. Die Verformungsorgane 11 und 12 oder ihre Konturen nähern sich in einem Einwirkungsbereich 14 auf die zu verbindenden Faserverbände 2 und 3, ohne sich jedoch gegenseitig zu berühren. An der engsten Stelle zwischen den sich in Richtung des Pfeils 15 bzw. 16 drehenden Verformungsorganen 11 und 12 hat der dazwischenliegende Einwirkungsbereich 14 eine Weite W. Die zu verbindenden Faserverbände 2 und 3 sind etwa parallel aneinanderliegende in Richtung des Pfeils 17 dem Einwirkungsbereich 14 zuführbar. Durch die Verformungsarbeit, welche die Verformungsorgane 11 und 12 auf die Faserverbände 2 und 3 ausüben, werden diese miteinander verbunden und die miteinander verbundenen Faserverbände 2 und 3 sind beispielsweise in Richtung des Pfeils 18 aus dem Einwirkungsbereich 14 wegführbar. Es ist aber auch möglich, die verbundenen Faserverbände entgegen der Richtung des Pfeil 17 wieder aus dem Einwirkungsbereich 14 wegzuführen.
  • Damit auf die zu verbindenden Faserverbände 2 und 3 Verformungskräfte wirken können, ist es wesentlich, dass die Weite des Einwirkungsbereiches 14 an seiner engsten Stelle kleiner ist als die Summe der Durchmesser D, bzw. Dz (siehe Fig. 2) der miteinander zu verbindenden Faserverbände 2 und 3.
  • Die Fig. 8 zeigt eine schematische Darstellung einer Vorrichtung der Ausführung des Verfahrens. Die verschiedenen Teile der Vorrichtung 10 sind auf einem Träger 13 aufgebaut. Zwei Verformungsorgane 11 und 12 sind je auf einer Achse 20 bzw. 21 drehbar gelagert und sie sind über ein Antriebsrad 22 drehbar. Das Antriebsrad 22 selbst ist mit einem Kraftantrieb 23 über ein Kupplungsorgan 24, beispielsweise eine Welle gekuppelt. Als Kraftantrieb 23 eignet sich beispielsweise ein kleiner Elektromotor. Die Verformungsorgane 11 und 12 sind im Ausführungsbeispiel gemäss Fig. 8 Rotationskörper und mindestens ein Teil ihrer Oberfläche, beispielsweise ihre Mantelflächen sind strukturiert. Diese Strukturierung kann in der Form einer Verzahnung ausgeführt sein, welche beispielsweise gleiches Profil hat wie das Antriebsrad 22, wobei sowohl die Verzahnung des Verformungsorganes 11 als auch diejenige des Verformungsorganes 12 mit der Verzahnung des Antriebsrades 22 im Eingriff ist.
  • Vorzugsweise ist auf dem Träger 13 auch eine einstellbare Lagereinrichtung 25 befestigt, in welcher ein Verformungsorgan, im Beispiel der Fig. 8 ist es das Verformungsorgan 12, drehbar gelagert ist, wobei durch diese einstellbare Lagereinrichtung 25 die Weite W des Einwirkungsbereiches 14 einstellbar ist.
  • Es ist vorteilhaft in der Vorrichtung 10 mindestens ein bewegliches Organ 26 vorzusehen zur mindestens zeitweisen Führung und/oder Abtastung der zu verbindenden Faserverbände 2 und 3. Beim Einführen der zu verbindenden Faserverbände 2 und 3 kann beispielsweise durch eine an geeigneter Stelle des beweglichen Organs 26 angebrachte Nute die vorteilhafteste Lage der Faserverbände 2 und 3 für die optimale Einführung in den Einwirkungsbereich der Verformungsorgane 11 und 12 sichergestellt werden. Es ist ausserdem möglich mittels des beweglichen Organes 26 die momentane Lage der Faserverbände 2 und 3 abzutasten. Durch das Einführen der Faserverbände 2 und 3 in den Einwirkungsbereich 14 (siehe Fig. 7) der Vorrichtung 10 wird das bewegliche Organ 26 geschwenkt und kann, wenn es mit einem Schaltorgan 27 in Verbindung steht, dieses in Abhängigkeit von der Lage der zu verbindenden Faserverbände betätigen und dadurch den Kraftantrieb 23 zeitweise einschalten oder ausschalten.
  • Bei der Vorrichtung 10 nach Fig. 8 ist mindestens ein Teil der Oberfläche oder die Mantelfläche der Verformungsorgane 11 und 12 gezähnt und der Achsabstand der Verformungsorgane 11 und 12 ist so gewählt, dass sich deren Zähne nicht berühren, aber bei Gegenüberstellung an der engsten Stelle des Einwirkungsbereiches 14 (siehe Fig. 7) bis auf eine Weite W von weniger als der Summe der Durchmesser D, und D2 der zu verbindenden Faserverbände 2 und 3 nähern.
  • Bei Verformungsorganen 11 und 12 mit gezähnter Mantelfläche lässt sich anhand der Fig. 9, 10 und 11 erkennen, in welcher Weise die eingeführten Faserverbände 2 und 3 unter der Einwirkung der Verformungsorgane verformt werden. Die Fig. 9 stellt dabei die Verhältnisse dar, wenn sich zwei Zähne genau gegenüber stehen, die Fig. 10 zeigt die Verhältnisse in einer Zwischenstellung und die Fig. 11 zeigt die Verhältnisse bei sich gegenüberstehende Zahnlücken. Es ist erkennbar, dass sowohl die Stärke als auch die Richtung der von der Verformungsorganen auf die Faserverbände 2 und 3 ausgeübten Kräfte sich laufend verändern und dass es sowohl Zeitintervalle der kraftmässigen Beeinflussung der Faserverbände 2 und 3 als auch Zeitintervalle der vorübergehenden Freigabe der Faserverbände gibt. Zeitintervalle der Krafteinwirkung sind in den Fig. 9 und 10 dargestellt, ein Zeitintervall der Freigabe ist in Fig. 11 dargestellt.
  • Zur Erzielung oder Begünstigung bestimmter Verbindungsstrukturen, etwa nach den Fig. 3 bis 6 oder Mischformen derselben, erweist sich als vorteilhaft, Verformungskörper unterschiedlicher Gestalt zu verwenden.
  • Die Fig. 12 zeigt ein Verformungsorgan 11, welches ein Rotationskörper mit strukturierter Mantelfläche 27, ist, wobei die Mantelfläche 27 längs des Umfanges derselben eine unterschiedliche Breite B aufweist.
  • Die Fig. 13 zeigt ein Verformungsorgan als Rotationskörper mit strukturierter Mantelfläche 27, wobei die Mantelfläche über einen ersten Bereich ihres Umfanges eine konstante Breite B, und über einen weiteren Bereich des Umfanges eine unterschiedliche Breite B2 aufweist.
  • Die Fig. 14 zeigt ein Verformungsorgan 11 als Rotationskörper mit strukturierter Mantelfläche 27, welches derart ausgebildet ist, dass im Bereich einer Aussparung 28 nur ein Teil der Breite B1 der Mantelfläche 27 in Berührung mit den zu verbindenden Faserverbänden kommt.
  • Die Fig. 15 zeigt eine weitere Ausführungsvariante eines Verformungsorganes 11, welches als Rotationskörper mit strukturierter Mantelfläche ausgebildet ist, wobei im Verformungsorgan 11 einerseits eine keilförmige Aussparung 29 und im Bereich einer Abschrägung 30 die restliche Mantelfläche 27 längs ihres Umfanges unterschiedliche Wirkungsbreite aufweist.
  • Die Fig. 16 zeigt eine Ausführungsvariante eines Verformungsorganes 11, welches als Rotationskörper mit strukturierter Mantelfläche ausgebildet ist, wobei das Verformungsorgan 11 auf einem ersten Teil des Umfanges eine zur Mittelebene des Verformungsorgans 11 symmetrisch liegende Aussparung 28 und in einem anderen Teil des Umfanges weitere sich gegenüberliegende Aussparungen 31 und 32 aufweist, so, dass im Betrieb abwechslungsweise Stellen der Mantelfläche 27 mit unterschiedlicher Breite und Lage der Mantelfläche (33, 34, 35) mit den zu verbindenden Faserverbänden 2 und 3 in Berührung kommen und wirksam werden.
  • Die Fig. 8 und 12 bis 17 zeigen Verformungsorgane, bei denen die Struktur der Mantelfläche 27 durch eine Verzahnung dargestellt ist, welche gerade oder schräg verlaufend ausgeführt ist.
  • Die Fig. 18 zeigt eine Ausführungsbeispiel einer Lagereinrichtung 25 in welcher mindestens ein Verformungsorgan 12 drehbar gelagert ist und die Lagereinrichtung 25 quer in Richtung des Doppelpfeils 36 verschiebbar und durch eine Einstelleinrichtung 37 einstellbar und durch ein Feststellorgan 38 feststellbar ist. Durch Drehen des Feststellorgans 38 kann eine bestimmte Einstellung der Einstelleinrichtung 37 fixiert werden. Die Lagereinrichtung 25 weist zwei Stege 41 und 42 und ein zwischen ihnen liegendes Mittelstück 47 auf, wobei die Lagereinrichtung 25 in Nuten der Stege 41, 42 verschiebbar ist. Die Einstelleinrichtung 37, beispielsweise eine Gewindespindel, läuft im Mittelstück 40.
  • Die Fig. 19 zeigt eine weitere schematische Darstellung für eine Vorrichtung 10, in welcher die Verformungsorgane 11 und 12 Rotationskörper mit einer Mantelfläche mit Verzahnung sind, welche je mit dem Antriebsrad 22 im Eingriff stehen. Dabei können die Verformungsorgane 11 und 12 und/oder das Antriebsrad 22 gleiche oder unterschiedliche Zähnezahlen aufweisen. Die Einführung der miteinander zu verbindenden Faserverbände 2 und 3 in den Einwirkungsbereich 14 erfolgt in Richtung des Pfeils 17 und die Entnahme der verbundenen Faserverbände kann in Richtung des gestrichelt gezeichneten Pfeiles 18 erfolgen.
  • Die Fig. 20 zeigt einen Ausschnitt aus der Darstellung einer weiteren Ausführungsvariante der Vorrichtung 10, bei welcher die Verformungsorgane 11 und 12 eine strukturierte Mantelfläche aufweisen, die Verformungsorgane 11 und 12 jedoch indirekt angetrieben sind und ihre Mantelflächen 27 selbst nicht im Eingriff mit weiteren Verzahnungen stehen.
  • Bei dem in Fig. 20 dargestellten Anführungsbeispiel sind die Verformungsorgane 11 und 12 über ihre Achsen 20 und 21 mit Zwischenrädern 43 und 44 verbunden, welche durch eine bewegliche Zahnschiene 45 antreibbar sind, wobei die Zahnschiene 45 beispielsweise eine Bewegung in Richtung des Pfeils 46 ausführt. Die Zwischenräder 43 und 44 könnten aber auch durch das Antriebsrad 22 antreibbar sein.
  • Die Fig. 21 bis 26 zeigen Verformungsorgane, welche eine strukturierte Mantelfläche aufweisen und die Struktur verzahnungs- oder verzahnungs- ähnlichen Charakter aufweist. Es ist aber zu beachten, dass wegen der Bildung des Einwirkungsbereiches 14 die Verzahnungen der beiden Verformungsorgane 11 und 12 nicht miteinander im Eingriff sind. Bei geeigneter Formgebung können die Verzahnungen der Verformungsorgane 11 und 12 jedoch mit dem Antriebsrad 22 (siehe Fig. 8) im Eingriff stehen, sofern das Antriebsrad 22 eine passende Verzahnung aufweist. Bei einer Anordnung nach Fig. 20, d.h. mit indirektem Antrieb der Verformungsorgane über Zwischenräder 43 und 44 ist die Zahnform frei wählbar.
  • Die Fig. 21 zeigt Verformungsorgane mit Zähnen 27a mit rechteckigem Profil.
  • Die Fig. 22 zeigt Verformungsorgane 11 und 12 mit Zähnen 27b mit trapezförmigem Profil.
  • Die Fig. 23 zeigt Verformungsorgane 11 und 12 mit sägezahnförmigen Zähnen 27c.
  • Die Fig. 24 zeigt Verformungskörper 11 und 12 mit rippenförmigem Profil 27d auf den Mantelflächen.
  • Die Fig. 25 zeigt Verformungskörper 11 und 12 an deren Mantelfläche 27e abwechselnd konkave und konvexe Partien aufweisen.
  • Die Fig. 26 zeigt Verformungsorgane 11 und 12 deren Mantelfläche 27f abwechselnd mit zylindrischen und ebenen Flächen versehen ist.
  • Die Fig. 27 zeigt Verformungskörper 11 und 12 deren Mantelfläche 27g scharfkantig ausgebildete Zähne aufweist.
  • Die Fig. 28 zeigt Verformungsorgane 11 und 12 deren Mantelfläche 27h eine Struktur ähnlich einer Schleifscheibe aufweist, wobei die Rauhigkeit dem Materialcharakter der zu verbindenden Faserverbände angepasst ist.
  • Die Fig. 29 zeigt ein Beispiel für Verformungsorgane die als linear bewegliche Körper ausgebildet sind und sich paarweise mit strukturierten Oberflächen gegenüberstehen, wobei die zu verbindenden Faserverbände zwischen den strukturierten Oberflächen 27i hindurchführbar sind. Solche linear bewegliche Körper als Verformungsorgane können beispielsweise auch von einem Schwingankerantrieb bewegt werden.
  • Die Fig. 30 zeigt wie bei einer Vorrichtung 10 beidseitig des Einwirkungsbereiches 14 der Verformungsorgane 11 und 12 Führungseinrichtungen 49 und 51 angeordnet sein können. Die erste Führungseinrichtung 49 ist hierbei in einem ersten Abstand 50 und die zweite Führungseinrichtung 51 in einem zweiten Abstand 52 auf gegenüberliegenden Seiten des Einwirkungsbereichs 14 angeordnet.
  • Je nach der Verwindung der Faserverbände 2 und 3, d.h. sowohl nach der Anzahl Verwindungen pro Längeneinheit als auch dem Verwindungssinn kann sich durch die Wirkung der Verformungsorgane im Bereich der zu erzeugenden Verbindung 1 als auch in benachbarten Zonen eine Veränderung des zuvor bestandenen Dralles der Faserverbände ergeben. Durch geeignete Wahl des ersten Abstandes 50 bzw. des zweiten Abstandes 52 kann diesem Umstand Rechnung getragen werden und es kann insbesondere dadurch dafür gesorgt werden, dass Dralländerungen nicht schädlich wirken bzw. sich im Nachbargebiet der Verbindung 1 ausgleichen können. Da sich bei gegebener Drallrichtung der Faserverbände 2 und 3 die Drallveränderungen links und rechts des Einwirkungsbereiches 14 unterschiedlich auswirken können, kann diesem Umstand durch ungleiche Wahl des ersten Abstandes 50 und des zweiten Abstandes 52 Rechnung getragen werden.
  • Die Fig. 31 zeigt Varianten 49* und 51* für die Führungseinrichtungen, welche derart ausgebildet sind, dass die zu verbindenden Faserverbände voneinander getrennt geführt sind.
  • Die Fig. 32 zeigt eine Ausführungsvariante 10a einer Vorrichtung zur Ausführung des Verfahrens, welche dadurch gekennzeichnet ist, dass die Verformungsorgane 11 und 12 drehbar in den Richtungen gemäss den Pfeilen 15 und 16 auf Schwenkarmen 52a bzw. 53 gelagert sind und über Zwischenräder 43 und 44 vom Antriebsrad 22 angetrieben werden. Je nach der Grösse des Schwenkwinkels a der Schwenkorgane 52a und 53 ändert sich die Weite W des Einwirkungsbereichs 14. Werden die Schwenkorgane 52a und 53 beispielsweise durch einen Hebelmechanismus 54 betätigt, so kann die Vorrichtung 10a bei grosser Weite W in den Bereich feststehender zu verbindender Faserverbände 2 und 3 gebracht werden, ohne dass die Faserverbände 2 und 3 bereits mit den Verformungsorganen 11 und 12 in Berührung kommen. Anschliessend kann durch Betätigen des Hebelmechanismus 54 ein Zusammenrücken der Verformungsorgane 11 und 12 erreicht werden, wodurch die Verformung der Faserverbände beginnt und eine Verbindung 1 zustande kommt. Nachdem dies erfolgt ist kann durch erneutes Betätigen des Hebelmechanismus 54 eine Öffnung des Einwirkungsbereiches 14 erreicht werden und die Vorrichtung 10a weggezogen werden, so dass die miteinander verbundenen Faserverbände 2 und 3 mit ihrer Verbindung 1 frei zugänglich sind. Eine Ausführung der Vorrichtung 10 nach der Variante 10a eignet sich besonders beim Einsatz in einem automatischen Arbeitsablauf.
  • Es hat sich gezeigt, dass nach den beschriebenen Verfahren und mit den beschriebenen Einrichtungen sich Verbindungen 1 erzeugen lassen, welche allen praktischen Anforderungen vollauf genügen. Zu beachten ist hierbei, dass die Erzeugung einer solchen Verbindung in etwa einer Sekunde erfolgt und der ganze Arbeitszyklus, d.h. Einführen der Faserverbände, Bildung der Verbindung und Wegführung der verbundenen Faserverbände innert weniger Sekunden durchführbar ist. Es hat sich weiter gezeigt, dass nach dem beschriebenen Verfahren hergestellte Verbindungen, wenn die Parameter optimal gewählt sind schon bei einer Länge L der Verbindung 1 ab etwa der Grösse des Durchmessers D eine ausreichende Reissfestigkeit aufweisen, die etwa im Bereiche der Reissfestigkeit eines einzelnen Faserverbandes oder sogar darüber liegt. Ein weiterer Vorteil der beschriebenen Verbindungen ist ihre sehr hohe Geschmeidigkeit und die Tatsache, dass der Durchmesser D der Verbindung etwa gleich dem ursprünglichen Durchmesser eines der zu verbindenden Faserverbände gewählt werden kann. Ein weiterer Vorteil der beschriebenen Verbindung ist darin zu sehen, dass keine Fremdmaterialien für die Umschlingung 4 benötigt werden, so dass sich beispielsweise bei der nachträglichen Färbung keine Unterschiede zeigen. Schliesslich ist noch darauf hinzuweisen, dass die für die Ausführung der Verbindung benötigte Vorrichtung 10 etwa im Vergleich zu automatischen Knüpfeinrichtungen sehr viel einfacher aufgebaut ist und daher auch mit kleineren Kosten hergestellt werden kann. Zufolge des geringen Energieverbrauchs ist es auch sehr leicht möglich eine bewegliche beziehungsweise tragbare Vorrichtung, beispielsweise mit einem batteriebetriebenen Elektromotorantrieb herzustellen.
  • Die Vorrichtung weist ausserdem den Vorteil auf, selbstreinigend zu wirken, indem durch einen von ihr beziehungsweise ihren bewegten Teilen erzeugten Luftstrom eine Verschmutzung der Vorrichtung praktisch vermieden wird.

Claims (41)

1. Verbindung der Endbereiche von Faserverbänden, bei der über einen Bereich (6) der Länge (L) der Verbindung (1) die Faserverbände (2, 3) kraftschlüsslich durch Fasern (4) umschlungen sind, dadurch gekennzeichnet, dass die zum Umschlingen dienenden Fasern (4) aus dem Verbindungsbereich (6) mindestens eines der Faserverbände (2, 3) selbst gebildet sind, von dem sie nicht abgetrennt sind.
2. Verbindung nach Anspruch 1, dadurch gekennzeichnet, dass der Rest (5) der Fasern der verbundenen Faserverbände (2, 3) im wesentlichen die Summe der Einzelfasern an der Verbindungsstelle der verbundenen Faserverbände (2, 3) vor der Erzeugung der Verbindung (1) abzüglich der im Umschlingungsbereich (6) verwendeten Fasern (4) umfasst.
3. Verbindung nach Anspruch 1, dadurch gekennzeichnet, dass der genannte Rest (5) um eine Anzahl aus den Faserverbänden (2, 3) absichtlich entfernter Fasern kleiner ist als die Summe der Einzelfasern im Umschlingungsbereich der Faserverbände (2, 3) vor der Erzeugung der Verbindung und abzüglich der in der Umschlingung verwendeten Fasern.
4. Verbindung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die miteinander verbundenen Faserverbände (2, 3) im Umschlingungsbereich (6) im wesentlichen ohne gegenseitige Durchmischung der aus den zu verbindenden Faserverbänden (2, 3) stammenden Einzelfasern (4) durch die Umschlingung zusammengepresst sind.
5. Verbindung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Verbindung (1) im Umschlingungsbereich (6) einen im wesentlichen kreisförmigen Querschnitt (Q) mit dem Durchmesser (D) aufweist und die ursprünglichen, im wesentlichen kreisförmigen Querschnitte (Q" Qz) der miteinander verbundenen Faserverbände (1, 2) mit ihren ursprünglichen Durchmessern (Di) und (D2) auf Teilflächen (F" Fz) eines Kreises mit annähernd dem Durchmesser D verformt sind.
6. Verbindung nach Anspruch 5, dadurch gekennzeichnet, dass die Teilflächen (Fz, Fz) im wesentlichen gleichartige Flächenabschnitte des kreisförmigen Querschnittes (Q) sind und zwar Halbkreisflächen bei zwei verbundenen Faserverbänden (2, 3) und Sektoren bei mehr als zwei verbundenen Faserverbänden.
7. Verbindung nach Anspruch 5, dadurch gekennzeichnet, dass die Teilflächen (F" Fz) einander mindestens teilweise umschlingen.
8. Verbindung nach Anspruch 5, dadurch gekennzeichnet, dass Fasern mindestens eines Faserverbandes (2) der verbundenen Faserverbände (1, 2) eine Kernzone (7) innerhalb des Querschnittes (Q) der Verbindung (1) bilden und Fasern mindestens eines anderen Faserverbandes (3) der verbundenen Faserverbände (2, 3) eine Mantelzone (8) bilden, welche von umschlingenden Fasern (4) umfasst ist.
9. Verbindung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ursprünglich verschiedenen der miteinander verbundenen Faserverbände (2, 3) angehörende Fasern zumindest im Umschlingungsbereich (6) im wesentlichen gegenseitig durchmischt sind und von den umschlingenden Fasern (4) umfasst sind.
10. Verbindung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mindestens ein Teil der verbundenen und/oder umschlingenden Fasern der Faserverbände in ihrer Struktur und/oder Oberflächenbeschaffenheit im Bereich der Verbindung gegenüber ihrem Zustand vor der Verbindung und ausserhalb der Verbindung (1) gezielt verändert ist.
11. Verbindung nach Anspruch 10, dadurch gekennzeichnet, dass die Veränderung der Struktur und/oder Oberflächenbeschaffenheit adhäsionserhöhend gestaltet ist.
12. Verbindung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Länge von Einzelfasern (4) innerhalb der Verbindung (1) gegenüber der Länge von Einzelfasern (4) ausserhalb der Verbindung (1) gekürzt ist.
13. Verfahren zur Erzeugung einer Verbindung nach einem der Ansprüche 1 bis 12, bei dem die miteinander zu verbindenden Faserverbände (2, 3) in wenigstens annähernd parallele, eng benachbarte Lage zueinander verbracht werden, dadurch gekennzeichnet, dass mindestens auf einen Teil des Umfanges jedes der zu verbindenden Faserverbände (2, 3) und die Gesamtheit der Faserverbände (2, 3) durch körperhafte Berührung derselben mit mindestens zwei die Faserverbände in entgegengesetzter Richtung quer zur Länge des Verbindungsbereichs (6) zusammendrückenden Verformungsorganen (11, 12) sowohl Schubkräfte als auch Zug- und/oder Druckkräfte ausgeübt werden um einerseits die ursprünglichen Querschnitte (D,, Dz) und/oder Struktur der zu verbindenden Faserverbände (2, 3) zu verändern und anderseits mindestens aus einem der zu verbindenden Faserverbände (2, 3) Einzelfasern (4) mindestens teilweise aus ihrem Verband zu lösen und derart zu verlagern, dass sie schliesslich die zu verbindenden Faserverbände (2, 3) mindestens in einem Teil (6) des Einwirkungsbereiches (14) der Verformungsorgane (11, 12) kraftschlüssig umschlingen und anschliessend die durch die Umschlingung verbundenen Faserverbände (2, 3) wieder aus dem Einwirkungsbereich (14) der Verformungsorgane (11, 12) gebracht werden.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass mindestens ein Arbeitsparameter für die Erzeugung der Verbindung veränderbar und/oder einstellbar ist, um durch eine bestimmte Wahl von einzelnen solcher Parameter und/oder bestimmten Kombinationen von solchen Parametern die Bildung bevorzugter Verbindungsstrukturen zu erreichen, wobei als Parameter einer oder mehrere der nachfolgend aufgeführten Arbeitsparameter verwendbar sind:
1. Entfernung zwischen den Einspannstellen der zu verbindenden Faserverbände (2, 3);
2. Spannung der eingespannten Faserverbände;
3. Struktur der Oberflächen der Verformungsorgane (11, 12);
4. Gegenseitiger Abstand der Verformungsorgane (11, 12);
5. Gegenseitige räumliche Orientierung der Verformungsorgane (11, 12);
6. Druck der Verformungsorgane (11, 12) auf die zu verbindenden Faserverbände (2, 3);
7. Geschwindigkeit der Verformungsorgane (11, 12) relativ zu den Faserverbänden (2, 3);
8. Winkelstellung der Verformungsorgane (11, 12) oder ihrer Bewegungsrichtung relativ zu den Faserverbänden (2, 3);
9. Durchlaufgeschwindigkeit und/oder Verweilzeit der zu verbindenden Faserverbände (2, 3) durch den bzw. im Einwirkungsbereich (14) der Verformungsorgane (11, 12).
15. Verfahren nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass durch eine Relativbewegung zwischen den zu verbindenden Faserverbänden (2, 3) und einer Vorrichtung (10) zur Ausführung des Verfahrens die zu verbindenden Faserverbände (2, 3) durch den Einwirkungsbereich (14) der Verformungsorgane (11, 12) bewegt und/oder vorübergehend in diesem Einwirkungsbereich (14) belassen werden.
16. Verfahren nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die auf die zu verbindenden Faserverbände (2, 3) durch die Verformungsorgane (11, 12) wirkenden Kräfte während der Verweilzeit der zu verbindenden Faserverbände (2, 3) in rascher zeitlicher Folge in ihrer Grösse und/oder Richtung variieren.
17. Vorrichtung zur Ausführung des Verfahrens nach Anspruch 13, dadurch gekennzeichnet, dass die Vorrichtung (10) mindestens zwei Verformungsorgane (11, 12) aufweist, welche auf einem Träger (13) beweglich gelagert sind, wobei die Verformungsorgane (11, 12) sich in einem Einwirkungsbereich (14) auf die zu verbindenden Faserverbände (2, 3) gegenläufig bewegen und die zu verbindenden Faserverbände (2, 3) dem Einwirkungsbereich (14) mittels einer ersten Führungsvorrichtung zuführbar und die verbundenen Faserverbände (19) aus diesem Einwirkungsbereich (14) mittels einer zweiten Führungsvorrichtung wegführbar sind.
18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die Verformungsorgane (11, 12) Rotationskörper sind und mindestens ein Teil ihrer Oberfläche strukturiert ist, die Verformungsorgane (11, 12) je auf einer Achse (20, 21) drehbar gelagert sind und über ein Antriebsrad (22) antreibbar sind, wobei das Antriebsrad (22) selbst mit einem Kraftantrieb (23) über ein Kupplungsorgan (24) gekuppelt ist.
19. Vorrichtung nach einem der Ansprüche 17 bis 18, dadurch gekennzeichnet, dass mindestens eines der Verformungsorgane (12) mit seiner Achse (21) in einer einstellbaren Lagereinrichtung (25) gelagert ist, wodurch eine Änderung und/oder bestimmte Einstellung der Weite (W) des Einwirkungsbereiches (14) möglich ist.
20. Vorrichtung nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass mindestens ein bewegliches Organ (26) vorgesehen ist zur mindestens zeitweisen Führung und/oder Abtastung der zu verbindenden Faserverbände (2, 3).
21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, dass das bewegliche Organ (26) in Verbindung steht mit einem Schaltorgan (27), um dieses in Abhängigkeit von der Lage der zu verbindenden Faserverbände (2, 3) zu betätigen und den Einwirkungsbereich (17) freizugeben.
22. Vorrichtung nach einem der Ansprüche 17 bis 21, dadurch gekennzeichnet, dass mindestens ein Teil der Oberfläche oder die Mantelfläche von Verformungsorganen (11, 12) gezähnt ist und der Achsabstand der Verformungsorgane (11, 12) so gewählt ist, dass sich deren Konturen oder Zähne nicht berühren aber bei Gegenüberstellung an der engsten Stelle des Einwirkungsbereiches (14) bis auf eine Weite (W) von weniger als der Summe der Durchmesser (D,, D2) der zu verbindenden Faserverbände (2, 3) nähern.
23. Vorrichtung nach einem der Ansprüche 17 bis 22, dadurch gekennzeichnet, dass mindestens ein Verformungsorgan (11, 12) ein Rotationskörper mit strukturierter Mantelfläche (27) ist, wobei die Mantelfläche längs des Umfanges der Mantelfläche eine unterschiedliche Breite (B) aufweist.
24. Vorrichtung nach einem der Ansprüche 17 bis 22, dadurch gekennzeichnet, dass mindestens ein Verformungsorgan (11) ein Rotationskörper mit strukturierter Mantelfläche (27) ist, wobei die Mantelfläche (27) über einen ersten Bereich ihres Umfanges eine konstante Breite (B1) und über einen weiteren Bereich des Umfanges eine unterschiedliche Breite (B2) aufweist.
25. Vorrichtung nach einem der Ansprüche 17 bis 22, dadurch gekennzeichnet, dass mindestens ein Verformungsorgan (11) als Rotationskörper mit strukturierter Mantelfläche (27) derart ausgebildet ist, dass im Bereich einer Aussparung (28) nur ein Teil der Breite (B,) der Mantelfläche (27) in Berührung mit den zu verbindenden Faserverbänden (2, 3) kommt.
26. Vorrichtung nach einem der Ansprüche 17 bis 22, dadurch gekennzeichnet, dass mindestens ein Verformungsorgan (11) ein Rotationskörper mit strukturierter Mantelfläche (27) ist, wobei im Verformungsorgan (11) einerseits eine keilförmige Aussparung (29) und im Bereich einer Abschrägung (30) die restliche Mantelfläche (27) längs ihres Umfanges unterschiedliche Wirkungsbreite erhält.
27. Vorrichtung nach einem der Ansprüche 17 bis 22, dadurch gekennzeichnet, dass das Verformungsorgan (11) auf einem ersten Teil des Umfanges eine zur Mittelebene des Verformungsorgans (11) symmetrisch liegende Aussparung (28) und in einem anderen Teil des Umfanges weitere sich gegenüberliegende Aussparungen (31, 32) aufweist, so dass im Betrieb abwechslungsweise Stellen der Mantelfläche (27) mit unterschiedlicher Breite und Lage der Mantelfläche (33, 34, 35) mit den zu verbindenden Faserverbänden (2, 3) in Berührung kommen und wirksam werden.
28. Vorrichtung nach einem der Ansprüche 17 bis 27, dadurch gekennzeichnet, dass die Struktur der Mantelfläche (27) durch eine Verzahnung dargestellt ist, welche gerade oder schräg verlaufend ausgeführt ist.
29. Vorrichtung nach einem der Ansprüche 17 bis 28, dadurch gekennzeichnet, dass die Verformungsorgane (11, 12) und/oder das Antriebsrad (22) gleiche oder unterschiedliche Zähnezahlen aufweisen.
30. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die Verformungsorgane (11, 12) eine strukturierte Mantelfläche aufweisen, die Verformungsorgane (11,12) jedoch indirekt angetrieben sind und ihre Mantelflächen selbst nicht im Eingriff mit weiteren Verzahnungen stehen.
31. Vorrichtung nach Anspruch 30, dadurch gekennzeichnet, dass die Verformungsorgane (11, 12) über ihre Achsen (20, 21) und mit ihnen verbundenen Zwischenrädern (43,44) durch eine bewegliche Zahnstange (45) oder durch das Antriebsrad (22) antreibbar sind.
32. Vorrichtung nach Anspruch 28, dadurch gekennzeichnet, dass die Mantelfläche eine Struktur mit rechteckigem oder trapezförmigem oder sägezahnförmigem oder rippenförmigem Profil aufweisen.
33. Vorrichtung nach Anspruch 30, dadurch gekennzeichnet, dass die Mantelfläche abwechselnd konkave und konvexe Zähne aufweist.
34. Vorrichtung nach Anspruch 30, dadurch gekennzeichnet, dass die Mantelfläche abwechselnd mit zylindrischen und ebenen Flächen versehen ist.
35. Vorrichtung nach Anspruch 29, dadurch gekennzeichnet, dass mindestens ein Verformungsorgan eine rauhe Oberfläche in der Art einer Schleifscheibe aufweist.
36. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die Verformungsorgane (11, 12) als linear beweglicher Körper ausgebildet sind und sich paarweise mit strukturierten Oberflächen (27) gegenüberstehen, wobei die zu verbindenden Faserverbände zwischen den strukturierten Oberflächen hindurchführbar sind.
37. Vorrichtung nach einem der Ansprüche 17 bis 36, dadurch gekennzeichnet, dass auf einer Seite des Einwirkungsbereiches (14) der Verformungsorgane (11, 12) eine erste Führungseinrichtung (49) für die zu verbindenden Faserverbände (2, 3) in einem ersten Abstand (50) und auf der anderen Seite des Einwirkungsbereiches (14) der Verformungsorgane (11, 12) eine zweite Führungseinrichtung (51) in einem zweiten Abstand (52) angeordnet ist.
38. Vorrichtung nach Anspruch 37, dadurch gekennzeichnet, dass der erste Abstand (50) und der zweite Abstand (52) wenigstens annähernd gleich gross sind.
39. Vorrichtung nach Anspruch 37, dadurch gekennzeichnet, dass der zweite Abstand (52) grösser ist als der erste Abstand (50).
40. Vorrichtung nach einem der Ansprüche 37 bis 39, dadurch gekennzeichnet, dass mindestens eine der Führungseinrichtungen (49*, 51*) derart ausgebildet ist, dass die zu verbindenden Faserverbände (2, 3) jeweils getrennt geführt sind.
41. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die Verformungsorgane (11, 12) drehbar auf Schwenkorganen (52a, 53) angeordnet und über Zwischenräder (43, 44) von einem Antriebsrad (22) angetrieben sind, wobei sich der Einwirkungsbereich (14) und seine Weite (W) in Abhängigkeit vom Schwenkwinkel (a) der Schwenkorgane (52a, 53) verändert.
EP80100580A 1979-09-28 1980-02-05 Verbindung von Faserverbänden, Verfahren zur Erzeugung der Verbindung und Vorrichtung zur Ausführung des Verfahrens Expired EP0026253B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80100580T ATE10925T1 (de) 1979-09-28 1980-02-05 Verbindung von faserverbaenden, verfahren zur erzeugung der verbindung und vorrichtung zur ausfuehrung des verfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH878479A CH642406A5 (de) 1979-09-28 1979-09-28 Verbindung von faserverbaenden, verfahren zur erzeugung der verbindung und vorrichtung zur ausfuehrung des verfahrens.
CH8784/79 1979-09-28

Publications (2)

Publication Number Publication Date
EP0026253A1 EP0026253A1 (de) 1981-04-08
EP0026253B1 true EP0026253B1 (de) 1984-12-27

Family

ID=4344712

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80100580A Expired EP0026253B1 (de) 1979-09-28 1980-02-05 Verbindung von Faserverbänden, Verfahren zur Erzeugung der Verbindung und Vorrichtung zur Ausführung des Verfahrens

Country Status (10)

Country Link
US (1) US4343143A (de)
EP (1) EP0026253B1 (de)
JP (1) JPS5665775A (de)
AT (1) ATE10925T1 (de)
CA (1) CA1134601A (de)
CH (1) CH642406A5 (de)
CS (1) CS221927B2 (de)
DE (1) DE2942385C2 (de)
DK (1) DK408280A (de)
GB (1) GB2059478B (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH646208A5 (de) * 1980-07-23 1984-11-15 Zellweger Uster Ag Verfahren und vorrichtung zur verminderung abrupten querschnittverlaufs bei der verbindung von faserverbaenden.
CH646209A5 (de) * 1980-07-23 1984-11-15 Zellweger Uster Ag Verfahren und vorrichtung zur erzeugung einer verbindung von faserverbaenden.
CH646210A5 (de) * 1980-07-23 1984-11-15 Zellweger Uster Ag Verfahren und vorrichtung zur erzeugung einer verbindung von faserverbaenden.
DE3114790A1 (de) * 1981-04-11 1982-10-28 W. Schlafhorst & Co, 4050 Mönchengladbach Verfahren und vorrichtung zum herstellen einer knotenlosen fadenverbindung durch spleissen
DE3274101D1 (en) * 1981-11-04 1986-12-11 Savio Spa Splicer device to disassemble and recompose yarn mechanically
DE3243410C2 (de) * 1982-11-24 1985-07-18 Palitex Project-Company Gmbh, 4150 Krefeld Verfahren zur Herstellung einer Verbindung zwischen zwei Enden eines Zwirns
IT1175076B (it) * 1983-03-28 1987-07-01 Savio Spa Giuntafili perfezionato per la giunzione meccanica di fili tessili
DE4000494A1 (de) * 1990-01-10 1991-07-11 Mayer Textilmaschf Fachspulmaschine
KR100878085B1 (ko) * 2007-07-24 2009-01-14 현대자동차주식회사 커먼레일 시스템의 고압펌프 진단 장치 및 진단 방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1345375A (en) * 1919-12-09 1920-07-06 Henry A Lemay Splicing-machine
US2028144A (en) * 1931-04-23 1936-01-21 John F Cavanagh Thread splicing device
US2515172A (en) * 1948-04-30 1950-07-18 Abbott Machine Co Splicing threads
US3040153A (en) * 1959-08-31 1962-06-19 Du Pont Yarn splicer
US3306020A (en) * 1966-07-05 1967-02-28 Spunize Company Of America Inc Method and apparatus for splicing yarn
US3654756A (en) * 1967-05-17 1972-04-11 Boris Ivanovich Yasjukevich Appliance for automatic thread piecing in spinning or spinning and twisting machines
AU430497B2 (en) * 1968-04-16 1972-11-22 Melbourne Ropeworks Pty. Ltd Method and apparatus for joining twine packages
BE722906A (de) * 1968-05-16 1969-04-01
US3581486A (en) * 1968-11-01 1971-06-01 Eastman Kodak Co Splicing of multifilament strands by turbulent gaseous fluid
US3504488A (en) * 1968-12-13 1970-04-07 Burlington Industries Inc Splicing device for yarns or the like
US4002012A (en) * 1975-05-21 1977-01-11 Champion International Corporation Method and apparatus for splicing thermoplastic textile yarn
DE2750913C2 (de) * 1977-11-14 1983-11-24 W. Schlafhorst & Co, 4050 Mönchengladbach Verfahren und Vorrichtung zum Verbinden von Textilfäden
JPS54125732A (en) * 1978-03-17 1979-09-29 Murata Machinery Ltd Air type yarn splicing apparatus
US4254610A (en) * 1978-11-20 1981-03-10 Owens-Corning Fiberglas Corporation Strand splicing apparatus

Also Published As

Publication number Publication date
GB2059478A (en) 1981-04-23
US4343143A (en) 1982-08-10
DK408280A (da) 1981-03-29
GB2059478B (en) 1983-12-07
CA1134601A (en) 1982-11-02
JPS5665775A (en) 1981-06-03
CS221927B2 (en) 1983-04-29
DE2942385C2 (de) 1982-10-28
DE2942385A1 (de) 1981-04-02
CH642406A5 (de) 1984-04-13
ATE10925T1 (de) 1985-01-15
EP0026253A1 (de) 1981-04-08

Similar Documents

Publication Publication Date Title
DE2620118C3 (de) Vorrichtung zum Spinnen von Fasergarn
DE2449583C3 (de) Offenendspinnvorrichtung
DE3104471C2 (de) Vorrichtung zum Erzeugen einer Verbindung von Faserverbänden
EP0026253B1 (de) Verbindung von Faserverbänden, Verfahren zur Erzeugung der Verbindung und Vorrichtung zur Ausführung des Verfahrens
DE1435408C3 (de) Vorrichtung zum Kräuseln eines Fadenstranges
DE3133712C2 (de) Pneumatische Fadenspleißvorrichtung für gesponnene Fäden
DE3411482C2 (de)
DE3714212A1 (de) Vorrichtung zum pneumatischen falschdrallspinnen mit einem streckwerk
EP0356767B1 (de) Fadenspleissvorrichtung zum knotenfreien Verbinden von Fäden und Verfahren zur Fadenendenvorbereitung
DE2723565C2 (de) Einrichtung zur Herstellung von dreidimensional falschdrallgekräuselten Fäden
DE2406177C2 (de) Verfahren zum Schneiden von fortlaufendem Multifilgarn zu Stapelfasern unterschiedlicher Länge
EP0929706B1 (de) Verfahren und vorrichtung zum umeinanderschlingen von wenigstens zwei laufenden fäden
DE3341474C2 (de)
DE1432623B1 (de) Verfahren und Vorrichtung zum Herstellen von Filterstaeben fuer Zigaretten od.dgl.
DE1660210A1 (de) Vorrichtung zur Fadentrennung fuer Falschdraht-Kraeuselmaschinen
DE3641165C2 (de)
EP0372194A2 (de) Vorrichtung zum Verstrecken von thermoplastischen Fäden
DE2460031A1 (de) Vorrichtung zur falschdrallerzeugung bei thermoplastischen garnen
CH620949A5 (en) Apparatus for opening fibres on open-end spinning-rotor units.
DE3641177C2 (de)
DE102004002502B3 (de) Rollenanordnung für eine Vorrichtung zur Herstellung eines Selbstzwirngarns sowie Verfahren zur Herstellung eines Selbstzwirngarns
DE3839816A1 (de) Verseilkopf fuer sz-verseilstrecken
CH363598A (de) Verfahren und Vorrichtung zum Drehen eines endlosen Fadens
DE2032851C (de) Vorrichtung zum Offnen eines Faden bandes
DE3641176C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE FR IT LU NL SE

17P Request for examination filed

Effective date: 19810402

ITCL It: translation for ep claims filed

Representative=s name: BARZANO' E ZANARDO MILANO S.P.A.

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE FR IT LU NL SE

REF Corresponds to:

Ref document number: 10925

Country of ref document: AT

Date of ref document: 19850115

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19850212

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19850228

Year of fee payment: 6

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19860205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19860206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19860228

BERE Be: lapsed

Owner name: ZELLWEGER USTER A.G.

Effective date: 19860228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19861031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

ITCP It: supplementary protection certificate

Spc suppl protection certif: CCP 414

EUG Se: european patent has lapsed

Ref document number: 80100580.2

Effective date: 19861022