EP0021167B1 - Procédé et dispositif pour le décokage thermique d'un réacteur de craquage thermique d'hydrocarbures, le reacteur comportant une zone de craquage et un refroidisseur pour le gaz de craquage - Google Patents

Procédé et dispositif pour le décokage thermique d'un réacteur de craquage thermique d'hydrocarbures, le reacteur comportant une zone de craquage et un refroidisseur pour le gaz de craquage Download PDF

Info

Publication number
EP0021167B1
EP0021167B1 EP80103123A EP80103123A EP0021167B1 EP 0021167 B1 EP0021167 B1 EP 0021167B1 EP 80103123 A EP80103123 A EP 80103123A EP 80103123 A EP80103123 A EP 80103123A EP 0021167 B1 EP0021167 B1 EP 0021167B1
Authority
EP
European Patent Office
Prior art keywords
cracking
gas cooler
gas
decoking
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80103123A
Other languages
German (de)
English (en)
Other versions
EP0021167A1 (fr
Inventor
Bernhard Dr. Lohr
Peter Dr. Hesse
Robert Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25779465&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0021167(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19792923326 external-priority patent/DE2923326A1/de
Priority claimed from DE19792934570 external-priority patent/DE2934570A1/de
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to AT80103123T priority Critical patent/ATE734T1/de
Publication of EP0021167A1 publication Critical patent/EP0021167A1/fr
Application granted granted Critical
Publication of EP0021167B1 publication Critical patent/EP0021167B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/16Preventing or removing incrustation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/949Miscellaneous considerations
    • Y10S585/95Prevention or removal of corrosion or solid deposits

Definitions

  • the invention relates to a method for thermal decoking of a device for thermal cracking of hydrocarbons, the cracking tubes arranged in a cracking zone and a subsequent cracking gas cooler for cooling the cracked products by indirect heat exchange with a cooling medium, wherein a water stream and oxygen-containing gas flow through the cracking tubes and the Cracked gas cooler passed and the cooling medium is also passed through the cracked gas cooler during decoking.
  • the invention also relates to a device suitable for carrying out the method.
  • a common decoking process for the cracked gas cooler therefore consists in cooling the system and then separating the cracked gas cooler from the cracking zone and cleaning it mechanically.
  • This cleaning can be carried out by a water jet which emerges from a nozzle under very high pressure, for example 700-1000 bar, and causes the deposits to spring off.
  • This process which usually takes about three days, is not only time-consuming, but also leads to a thermal load on the system due to the periodically repeated heating and cooling cycles, which limits the service life of the can.
  • the invention is therefore based on the object of designing a method of the type mentioned at the outset in such a way that the cost and time required for decoking is reduced.
  • this object is achieved in that, in a first process stage, the gas stream is passed through the device in such an amount that the temperature of the deposits on the heat-exchanging surfaces of the cracked gas cooler is in the range of the operating temperature prevailing during thermal cracking, that the first process stage as long as it continues until the can is largely decoked and that the gas flow is then increased in a second process stage to such an extent that the temperature of the deposits on the heat-exchanging surfaces of the cracked gas cooler increases to such an extent that the temperature of the gas stream at the outlet from the cracked gas cooler is at least 400 ° C.
  • a cracked gas cooler has already become known, which is also decoked by thermal means (Bulletin of the Japan Petroleum Institute, Vol. 13, No. 2, November 1971, pages 279 to 284), but deviates in essential points from the method according to the invention becomes.
  • this known cracked gas cooler the cracked gases are cooled in tubes arranged in a spiral.
  • the decoking process is practically the same as that in a cracking zone, because the cooling water is removed from the cracking gas cooler during the decoking phase, causing the cooling pipes to heat up to over 700 ° C and the contaminants burn off.
  • a major disadvantage of this known cracked gas cooler is, however, that the temperature of the tubes in the cracked gas cooler is subject to large fluctuations. This is particularly important because the pipes are arranged in a high-pressure container, which has an operating pressure of the order of 100 bar, for example. If such a container is heated to over 700 ° C at regular intervals compared to the operating temperature of the order of 300 ° C, special measures must be taken for the operational safety of such a cracked gas cooler. In addition, this well-known fission gas cooler deviates from the most commonly used type. In contrast to conventional cracked gas coolers, it does not use straight heat exchange tubes, but rather spirally arranged coils.
  • FR-PS 153'2127 a method is known in which the thermal decoking takes place by the action of water vapor and air on the inner surfaces of the tubes both in the cracking zone and in the cracking gas cooler. It is stated that the heat exchanger for cracked gas cooling can be left in operation during decoking, but if this is actually done, this has two consequences for decoking: either there is insufficient decoking of the cracked gas cooler, as effects occur as they do have already been mentioned at the beginning, or the decoking gas must be passed through the entire system with such a high throughput that damage to the system occurs after a relatively short time.
  • FR-PS 1 532127 does not provide any references to a two-stage process, as is provided according to the invention.
  • a method is known from US Pat. No. 3,365,387 ' which describes the decoking of individual, parallel-connected canned tubes in a split zone. However, references to a two-stage decoking cannot be found in this document either.
  • a gas mixture containing water vapor and oxygen usually a mixture of water vapor and air, is passed through the cracking plant, the deposits in the cracking tubes being burnt off in the manner customary hitherto.
  • a gas mixture containing water vapor and oxygen usually a mixture of water vapor and air
  • the second process stage follows, in which a substantially larger amount of the gas mixture is passed through the plant.
  • the canned tubes are further cleaned and, moreover, the coke in the cracked gas cooler is largely broken down. This is due to the fact that the gas mixture is passed through the cracked gas cooler in such an amount that the temperature of the coke deposits on the inner wall of the tubes increases to such an extent that a noticeable water gas reaction sets in. This temperature increase is possible despite the cooling of the pipes because the thermal conductivity of the coke layer is very low.
  • the two-step procedure is necessary with regard to the service life of the can. If, at the beginning of the decoking process, the gas flow was selected to be so strong that the water gas reaction starts in the cracked gas cooler, there would be a risk that coke parts flaking off in the cracking zone would have an erosive effect on the cracked tubes and damage them.
  • a gas mixture containing water vapor and oxygen is also used in the second process stage, although actually only water vapor is required for the water gas reaction.
  • the presence of oxygen is advantageous for the rate at which the coke is broken down in the cracked gas cooler. This is related to the fact that the water gas reaction is catalyzed by trace constituents from the pipe materials, in particular chromium and nickel, which are contained in the coke by diffusion from the pipe materials.
  • this catalytic effect only occurs when the sulfur components that are always contained in the coke have been broken down.
  • the presence of oxygen in the gas stream now leads to the sulfur traces predominantly being converted into SO 2 delt so that they can no longer act as a catalyst poison.
  • the temperature of the decoking gases at the outlet from the cracked gas cooler is at least 400 ° C. It has been shown that the rate of coke removal in the cracked gas cooler is too low at lower temperatures to ensure an effective decoking treatment. If the amount of decoking gas is kept constant during the second stage of the process, it is expedient to choose the outlet temperature at the beginning of the second stage of the process considerably above the minimum temperature of about 400 ° C, since the outlet temperature decreases with decoking and the minimum temperature should not be fallen below.
  • the deposition layer in the tubes is continuously thinning, which improves the heat exchange with the coolant, so that the outlet temperature drops as the decoking progresses.
  • a termination of the decoking process can therefore be easily determined by checking the outlet temperature, since in this case it remains practically constant.
  • the method according to the invention is illustrated below using an example.
  • the high-severity cracking of a heavy atmospheric gas oil resulted in a cracked gas cooler outlet temperature of 634 ° C after 60 days of operation at an oven outlet temperature of 800 ° C, which indicated strong coking.
  • a steam-air mixture with a mass velocity of 25 kg / sm 2 was used in the cracked gas cooler for 8 hours, the furnace outlet temperature being 750 ° C.
  • the mass velocity in the cracked gas cooler was then increased to 45 kg / sm 2 and the furnace outlet temperature to 800 ° C.
  • the rate of coke extraction is the lowering of the cracked gas cooler outlet temperature during decoking under completely constant conditions.
  • the coke extraction rate during the induction period was 2 K / h, while it subsequently reached a maximum value of 15 K / h.
  • This second phase of decoking was ended after 16 hours.
  • the exit temperature of the decoking gases from the cracked gas cooler was about 400 ° C. The decoking process was ended here.
  • the cracking gas cooler outlet temperature reached about 470 ° C. This means that the cracked gas cooler has been almost completely cleaned. In the subsequent runtime, 60 days could also be reached again, which indicates that the coking rate of the cracked gas cooler cleaned according to the invention is not greater than that of a mechanically cleaned cracked gas cooler.
  • cooling a cracked gas obtained from gas oil leads to rapid coking of the cracked gas cooler when cooling down to about 470 ° C
  • cooling down to temperatures of about 350 to 370 ° C can be carried out with a cracked gas obtained from naphtha, without any more Fear of coking tendencies.
  • the gas emerging from the cracked gas cooler is then usually further cooled by direct heat exchange with a quench oil.
  • the cracked gas cooler is decoked step by step each step the gas flow is only passed through part of the heat-exchanging surface. It is essential here that the heat-exchanging surface is reduced during the decoking of the cracked gas cooler, in order in this way to achieve a temperature increase in the sections through which flow occurs.
  • this can be done, for example, by passing the entire stream of decoking gas through only part of the cooling tubes while other tubes are being shut down.
  • the heat supply to the individual sections of the coked cracked gas cooler can hereby be increased to such an extent that the temperatures required for a sufficiently strong water gas reaction are reached. In contrast, this tempe is due to the exclusive increase in mass throughput temperature increase is not possible because the gas flow is then no longer heated to the required high temperature when it passes through the gap zone.
  • the complete decoking of the cracked gas cooler takes place in this embodiment of the invention in that after decoking a first part of the heat-exchanging surface, the latter is shut off and the gas flow is then passed through a further part in which the process is repeated. This process is continued until the entire cracked gas cooler is decoked.
  • a modified cracked gas cooler which, in addition to the usual features such as a gas inlet hood, a gas outlet hood, and cooling pipes surrounded by a coolant, also has shut-off devices that allow part of the cooling pipes to be shut down becomes. It has proven to be advantageous to arrange the shut-off elements in the area of the gas outlet hood of the cracked gas cooler. Since the shut-off elements are arranged in the colder part of the cracked gas cooler in this way, a structurally simpler design is possible.
  • shut-off devices arranged in the area of the gas inlet hood must remain functional at temperatures of, for example, 850 ° C., it is sufficient to provide valves in the area of the outlet hood that are functional at temperatures of up to, for example, 550 ° C.
  • a particularly simple way of dividing the heat-exchanging surface of the cracked gas cooler has been found to be to split the gas outlet hood into several separate areas. Each area is connected to a number of cooling pipes and each has a gas outlet that can be shut off.
  • the only structural change compared to conventional cracked gas coolers is the subdivision of the gas outlet hood and can therefore be carried out at low cost even with existing systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Claims (9)

1. Procédé de décokage thermique d'un dispositif de craquage thermique d'hydrocarbures qui présente des tubes de craquage disposés dans une zone de craquage et un refroidisseur de gaz de craquage qui y fait suite et sert à refroidir les produits de craquage par échange de chaleur indirect avec un agent de refroidissement, procédé dans lequel on fait circuler un courant gazeux contenant de la vapeur d'eau et de l'oxygène dans les tubes de craquage et dans le refroidisseur de gaz de craquage et on fait passer l'agent de refroidissement dans le refroidisseur de gaz de craquage également pendant le décokage, procédé caractérisé en ce que, dans une première phase du procédé, on fait circuler le courant gazeux dans le dispositif à un débit tel que la température des dépôts formés sur les surfaces échangeuses de chaleur du refroidisseur de gaz de craquage se trouve dans la région de la température de service régnant lors du craquage thermique, en ce qu'on prolonge la première phase du procédé jusqu'à ce que les tubes de craquage soient largement décokés et en ce que, ensuite, dans une deuxième phase du procédé, on accroît le courant gazeux de sorte que la température des dépôts formés sur la surface échangeuse de chaleur du refroidisseur de gaz de craquage soit augmentée pour que la température du courant gazeux à la sortie du refroidisseur de gaz de craquage soit au moins égale à 400°C.
2. Procédé suivant la revendication 1, caractérisé en ce que, dans la deuxième phase du procédé, on fait passer dans le dispositif un courant gazeux à débit constant et en ce qu'on interrompt cette deuxième phase du procédé lorsque la température de sortie du courant gazeux sortant du refroidisseur de gaz de craquage a atteint une valeur à peu près constante.
3. Procédé suivant la revendication 1 ou 2, caractérisé en ce que le refroidisseur de gaz de craquage est décoké par étapes successives, le courant gazeux ne circulant dans chaque étape que dans une partie de la surface échangeuse de chaleur.
4. Procédé suivant la revendication 3, caractérisé en ce que le refroidisseur de gaz de craquage est décoké en deux étapes.
5. Procédé suivant 'la revendication '3 ou 4, caractérisé en ce que le décokage par étapes successives du refroidisseur de gaz de craquage ne s'effectue que pendant la deuxième phase du procédé.
6. Procédé suivant l'une des revendications 3 à 5, caractérisé en ce que, dans la deuxième phase du procédé, on fait circuler un courant gazeux à débit constant dans le dispositif et en ce qu'on arrête une étape de la deuxième phase du procédé lorsque la température de sortie du courant gazeux quittant le refroidisseur de gaz de craquage a atteint une valeur à peu près constante.
7. Dispositif pour la mise en oeuvre du procédé suivant l'une des revendications 3 à 6, caractérisé en ce que le refroidisseur de gaz de craquage comprend une hotte d'entrée des gaz, une hotte de sortie des gaz, des tubes de refroidissement qui s'étendent entre ces hottes et des organes d'arrêt servant à mettre hors service une partie des tubes de refroidissement.
8. Dispositif suivant la revendication 7, caractérisé en ce que les organes d'arrêt sont disposés dans la région de la hotte de sortie des gaz du refroidisseur de gaz de craquage.
9. Dispositif suivant la revendication 8, caractérisé en ce que la hotte de sortie des gaz est subdivisée en plusieurs zones séparées les unes des autres dont chocune est en liaison avec un certain nombre de tubes de refroidissement et en ce que chaque zone est munie d'un organe d'arrêt.
EP80103123A 1979-06-08 1980-06-04 Procédé et dispositif pour le décokage thermique d'un réacteur de craquage thermique d'hydrocarbures, le reacteur comportant une zone de craquage et un refroidisseur pour le gaz de craquage Expired EP0021167B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80103123T ATE734T1 (de) 1979-06-08 1980-06-04 Verfahren und vorrichtung zur thermischen entkokung einer aus spaltzone und nachfolgendem spaltgaskuehler bestehenden vorrichtung zum thermischen spalten von kohlenwasserstoffen.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19792923326 DE2923326A1 (de) 1979-06-08 1979-06-08 Verfahren zur thermischen entkokung einer vorrichtung zum thermischen spalten von kohlenwasserstoffen
DE2923326 1979-06-08
DE19792934570 DE2934570A1 (de) 1979-08-27 1979-08-27 Verfahren zur thermischen entkokung einer vorrichtung zum thermischen spalten von kohlenwasserstoffen
DE2934570 1979-08-27

Publications (2)

Publication Number Publication Date
EP0021167A1 EP0021167A1 (fr) 1981-01-07
EP0021167B1 true EP0021167B1 (fr) 1982-03-03

Family

ID=25779465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80103123A Expired EP0021167B1 (fr) 1979-06-08 1980-06-04 Procédé et dispositif pour le décokage thermique d'un réacteur de craquage thermique d'hydrocarbures, le reacteur comportant une zone de craquage et un refroidisseur pour le gaz de craquage

Country Status (4)

Country Link
US (1) US4376694A (fr)
EP (1) EP0021167B1 (fr)
DE (1) DE3060219D1 (fr)
IN (1) IN153444B (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3010000A1 (de) * 1980-03-15 1981-09-24 Basf Ag, 6700 Ludwigshafen Verfahren zur thermischen entkokung von spaltgaskuehlern
US4917787A (en) * 1983-10-31 1990-04-17 Union Carbide Chemicals And Plastics Company Inc. Method for on-line decoking of flame cracking reactors
CA1232856A (fr) * 1983-10-31 1988-02-16 Akinobu Fukuhara Deco-kefaction en reseau pour reacteurs de fractionnement par pyrogenation
US5439583A (en) * 1984-10-31 1995-08-08 Chevron Research And Technology Company Sulfur removal systems for protection of reforming crystals
US4988367A (en) * 1987-12-29 1991-01-29 Shell Oil Company Process for removal of flyash deposits
US4963162A (en) * 1987-12-29 1990-10-16 Shell Oil Company Coal gasification process
KR940009317A (ko) * 1992-10-05 1994-05-20 알버트 어네스트 가레드 공기 펄스를 이용한 코크스제거 방법
DE4334827C1 (de) * 1993-10-08 1994-10-06 Mannesmann Ag Verfahren zur Verminderung der Verkokung von Wärmetauschflächen
DE4335711C1 (de) * 1993-10-20 1994-11-24 Schmidt Sche Heissdampf Verfahren zur thermischen Entkokung eines Spaltofens und des nachgeschalteten Spaltgaskühlers
FR2743007B1 (fr) * 1995-12-27 1998-01-30 Inst Francais Du Petrole Procede de pyrolyse et de decokage en continu applicable notamment a la production d'acetylene
FR2748273B1 (fr) 1996-05-06 1998-06-26 Inst Francais Du Petrole Procede et dispositif de conversion thermique d'hydrocarbures en hydrocarbures aliphatiques plus insatures que les produits de depart, combinant une etape de vapocraquage et une etape de pyrolyse
US6113774A (en) * 1998-05-22 2000-09-05 Phillips Petroleum Company Antifoulant control process
US6585883B1 (en) 1999-11-12 2003-07-01 Exxonmobil Research And Engineering Company Mitigation and gasification of coke deposits
FR2837273B1 (fr) * 2002-03-15 2004-10-22 Inst Francais Du Petrole Procede d'elimination au moins partielle de depots carbones dans un echangeur de chaleur
CN100425940C (zh) * 2005-10-21 2008-10-15 中国石油化工股份有限公司 一种大型管壳类换热设备管束的高温裂解除垢设备及除垢方法
US7513260B2 (en) * 2006-05-10 2009-04-07 United Technologies Corporation In-situ continuous coke deposit removal by catalytic steam gasification
EP2150602A4 (fr) * 2007-05-07 2013-07-24 Lummus Technology Inc Procédé de décokage de serpentin radiant de four de production d'éthylène
DE102007048984A1 (de) 2007-10-12 2009-04-16 Linde Aktiengesellschaft Verfahren zur Entkokung von Spaltöfen
US8137476B2 (en) * 2009-04-06 2012-03-20 Synfuels International, Inc. Secondary reaction quench device and method of use
WO2014039694A1 (fr) * 2012-09-06 2014-03-13 Ineos Usa Llc Intervention de vapeur moyenne pression dans un mode opératoire de décokage de four de craquage d'oléfines

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2289351A (en) * 1939-04-06 1942-07-14 Texas Co Method of cleaning heater tubes
US2405364A (en) * 1942-10-05 1946-08-06 Phillips Petroleum Co Hydrocarbon conversion process and apparatus
US3365387A (en) * 1966-04-29 1968-01-23 Exxon Research Engineering Co Off-stream decoking of a minor portion of on-stream thermal cracking tubes
FR1532127A (fr) * 1966-07-25 1968-07-05 Idemitsu Petrochemical Co Procédé perfectionné pour enlever les dépôts de carbone des appareils de craquage thermique
JPS503268B1 (fr) * 1966-07-25 1975-02-01

Also Published As

Publication number Publication date
EP0021167A1 (fr) 1981-01-07
DE3060219D1 (en) 1982-04-01
US4376694A (en) 1983-03-15
IN153444B (fr) 1984-07-14

Similar Documents

Publication Publication Date Title
EP0021167B1 (fr) Procédé et dispositif pour le décokage thermique d'un réacteur de craquage thermique d'hydrocarbures, le reacteur comportant une zone de craquage et un refroidisseur pour le gaz de craquage
DE69825494T2 (de) U-förmige innerlich gerippte strahlende Spule
DE1568469C3 (de) Verfahren zum thermischen Wasserdampf-Cracken von Kohlenwasserstoffen
DE1948635C3 (de) Entkokungsverfahren beim thermischen Cracken von Kohlenwasserstoffen
EP0036151B2 (fr) Procédé de décokage de refroidisseurs de gaz craqués
DE69822498T2 (de) Herstellung von leichten olefinen durch thermische spaltung von kontaminierten flüssigen kohlenwasserstoffen
DE2604496A1 (de) Verfahren zur gewinnung von waerme aus gecrackten kohlenwasserstoffgasen hoher temperatur
DE1643074B2 (de) Verfahren zur Herstellung von niedermolekularen Olefinen durch thermische Spaltung von Kohlenwasserstoffen
DE2019475C3 (de) Indirekt beheizter Vertikalrohrofen zur Herstellung von niedermolekularen Olefinen durch thermische Spaltung stärker gesättigter Kohlenwasserstoffe
DE2845376A1 (de) Verfahren zum abschrecken von crack-gasen
DD200677C4 (de) Heizvorrichtung
CH343374A (de) Verfahren zur Durchführung endothermer chemischer Reaktionen
DE1645864B2 (de) Anlage zur erzeugung von olefinen durch thermische spaltung von kohlenwasserstoffen im wirbelfliessverfahren und verfahren zur erzeugung von olefinen unter verwendung dieser anlage
DE2209302B2 (de) Verfahren zum Dampfkracken von Naphthakohlenwasserstoffen
DE938844C (de) Verfahren zur Umwandlung von Kohlenwasserstoff-Rueckstandsoelen
DE3527663A1 (de) Verfahren und vorrichtung zum thermischen cracken von kohlenwasserstoffen
DE2923326A1 (de) Verfahren zur thermischen entkokung einer vorrichtung zum thermischen spalten von kohlenwasserstoffen
DE1551536A1 (de) Waermeaustauscher und Verfahren zum Kuehlen von Medien
DE2934570A1 (de) Verfahren zur thermischen entkokung einer vorrichtung zum thermischen spalten von kohlenwasserstoffen
DE2028913C3 (de) Verfahren zur Entfernung von Kohlenstoffablagerungen bei der thermischen Spaltung von Kohlenwasserstoffen in Gegenwart von Wasserdampf
DE2333185C3 (de) Verfahren zur Herstellung von Olefinen durch thermische Spaltung von Kohlenwasserstoffen
DE1809177C3 (de) Röhrenofen zur thermischen Spaltung von unter Normalbedingungen gasförmigen oder flüssigen Kohlenwasserstoffen zur Herstellung weniger gesättigter Verbindungen und anderer Produkte
EP0656928B1 (fr) Procede pour le craquage de charges d'hydrocarbures et de fractions en c4 non hydrogenees
DE1568467C3 (de) Verfahren zur Entfernung von Kohlenwasserstoffablagerungen in Apparaturen zum thermischen Kracken von Kohlenwasserstoffen
DE1618622A1 (de) Verfahren und Vorrichtung zur Spaltung oder Dehydrierung von Kohlenwasserstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801023

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 734

Country of ref document: AT

Date of ref document: 19820315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3060219

Country of ref document: DE

Date of ref document: 19820401

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: THE LUMMUS COMPANY

Effective date: 19821203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840326

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840630

Year of fee payment: 5

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19840612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860613

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870630

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19880604

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 19880630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900525

Year of fee payment: 11

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910604

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920707

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301