EP0015697A1 - Non-electric delay detonator and assembly of a detonating cord and a delay detonator - Google Patents

Non-electric delay detonator and assembly of a detonating cord and a delay detonator Download PDF

Info

Publication number
EP0015697A1
EP0015697A1 EP80300544A EP80300544A EP0015697A1 EP 0015697 A1 EP0015697 A1 EP 0015697A1 EP 80300544 A EP80300544 A EP 80300544A EP 80300544 A EP80300544 A EP 80300544A EP 0015697 A1 EP0015697 A1 EP 0015697A1
Authority
EP
European Patent Office
Prior art keywords
shell
cord
charge
capsule
detonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP80300544A
Other languages
German (de)
English (en)
French (fr)
Inventor
Paul Bryan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of EP0015697A1 publication Critical patent/EP0015697A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C7/00Non-electric detonators; Blasting caps; Primers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/16Pyrotechnic delay initiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/26Arrangements for mounting initiators; Accessories therefor, e.g. tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition

Definitions

  • the present invention relates to a non-electric delay detonator, and to an assembly of a delay detonator and a low-energy detonating cord adapted to actuate the detonator.
  • a typical high-energy detonating cord has a uniform detonation velocity of about 6000 meters per second and comprises a core of 6 to 10 grams per meter of pentaerythritol tetranitrate (PETN) covered with various combinations of materials, such as textiles, waterproofing materials, plastics, etc.
  • PETN pentaerythritol tetranitrate
  • the magnitude of the noise produced when a cord having such PETN core loadings is detonated on the surface of the earth, as in trunk- lines often is unacceptable in blasting operations in developed areas.
  • the brisance (shattering power) of such a cord may be sufficiently high that the detonation impulse can be transmitted laterally to an adjacent section of the cord or to a mass of explosive which, for example, the cord contacts along its length. In the latter situation, the cord cannot be used to initiate an explosive charge in a borehole at the bottom (the "bottomhole priming" technique), as is sometimes desired.
  • LEDC Low-energy detonating cord
  • This improved cord has a continuous solid core of a deformable bonded detonating explosive composition
  • a deformable bonded detonating explosive composition comprising a crystalline high explosive compound admixed with a binding agent, and a protective plastic sheath enclosing the core, no metal or woven textile layers being present around the core or sheath.
  • one or more continuous strands of reinforcing yarn e.g., running substantially parallel to the core's longitudinal axis, are present outside the core.
  • the loading of crystalline high explosive in the bonded explosive core is about from 0.1 to 2 g-rams per meter of length.
  • auxiliary means are used to relay the detonation stimulus from the cord to the charges to be initiated.
  • Delay detonators actuated by LEDC downlines, are used for this purpose, providing also a delay interval between the initiation of multiple charges.
  • One such detonator described in U.S. Patent 3,021,786, has an open-ended metal capsule therein enclosing an air gap and having a central aperture.
  • the air gap is between the end of a length of LEDC and an exothermic-burning delay composition, the initiating impulse from the detonation of the explosive core of the LEDC jumping the air gap, passing through the aperture, and igniting the exothermic-burning composition,; Peripheral crimps in the side wall of the detonator shell hold the cord in place, the latter forming a plug closure at the open end of the shell, so that the cord and detonator are formed into a composite unit or assembly at the time that the detonator is manufactured.
  • the section of LEDC extending into the detonator shell has a lower looped portion positioned adjacent to the metal capsule that forms the air gap.
  • the looped portion of cord is positioned in the shell by means of a resilient plug which is crimped in place so as to close off the open end of the shell.
  • the cord and detonator are formed into a composite unit or assembly at the time that the detonator is manufactured.
  • the looped section of cord is said to provide improved initiation characteristics possibly due to increased confinement of the explosive core of a metal-sheathed LEDC.
  • the cord is disposed outside a closed shell that contains an impact-sensitive ignition composition, held, for example, in an empty primed rim-fired or center-fired rifle cartridge casing used as an end closure for a detonator.
  • the cord is external in its entirety to the closed interior of the detonator shell, and its end or side is in direct and abutting contact with the exterior surface of the primer end, thereby permitting utilization of either the side or end output of the cord for ignition.
  • Another LEDC-actuated delay detonator is described in Canadian Patent 627,435.
  • This detonator has an impact- or friction-sensitive ignition charge abutting one side of a diaphragm that can be deformed by a weak blow.
  • the end of a "length of LEDC is to be crimped into the open end of the.detonator shell with its end abutting the other side of the diaphragm.
  • the ignition of the ignition charge by the detonation of the cord abutting the diaphragm occurs by impact or friction in a manner analogous to the blow given by the firing pin of a shot gun, in contrast to ignition by heat or flame.
  • the diaphragm fits tightly in a pocket, and the latter similarly in the detonator shell.
  • this detonator is said to be capable of assembly with the cord in the field by crimping
  • field assembly of such a detonator presents certain problems.
  • the necessary abutment of the cord end against the diaphragm may not always be achieved in practice in the field owing to the vagaries associated with different handlers, the effects of weather, etc.
  • foreign material could enter the shell prior to insertion of the cord, preventing the necessary cord-to-diaphragm abutting relationship.- Dislodgement of the diaphragm-pocket unit also is a possibility.
  • LEDC-actuated delay detonators are also described in U.S. Patent 3,306,201, wherein the ignition composition also is actuated by percussion of the detonation stimulus from the cord against an imperforate partition.
  • the present invention provides an improved non-electric delay detonator adapted to be actuated by a low-energy detonating cord, preferably a cord having a core explosive loading of less than about 1 gram per meter of length, which detonator comprises a first tubular metal shell integrally closed at one end, the first shell containing, in sequence from the closed end:
  • a preferred cord-retention means consists of one or more inwardly directed teeth or prongs formed on the inside wall of the second shell or, preferably, on the inner end of an open-ended metal or plastic sleeve that frictionally engages the inside wall of the second shell.
  • the detonator is a self-contained, sealed unit adapted to be packaged, stored, and transported apart from the detonating cord which is used to actuate it. At the place of use it can be incorporated into a cord-detonator assembly for initiating a blasting charge wherein an end-section of a length of low-energy detonating cord is held coaxially in the cavity of the second shell by the cord-retention means in a manner such that the plane that passes through the end of the cord within the cavity normal to the cord axis passes preferably also through the ignition charge or, if not, is axially spaced from the plane in which the boundary of the ignition charge lies by a distance no greater than about 2.5 millimeters.
  • 1 is a first tubular metal shell having one integrally closed end
  • 2 is a base charge of a detonating explosive composition
  • 3 is a priming charge of a heat-sensitive detonating explosive composition
  • 4 is a delay carrier in the form of a heavy-walled tube of rigid material containing an axial core 5 of a delay charge of an exothermic-burnina composition
  • 6 is a tubular rigid metal capsule nested within shell 1 in snug fit therein, capsule 6 having one open extremity 7, and a closed extremity 8 provided with an axial orifice 9. Closed extremity 8 of capsule 6 rests against adjacent delay carrier 4, core 5 being coaxial and in communication with orifice 9.
  • a percussion-sensitive ignition charge 11 is located in this spacing. Ignition charge 11 is in contact with the delay charge in core 5 by virtue of orifice 9.
  • a deformable grommet or sleeve 12 e.g., one made of rubber or a plastic such as polyethylene, is sandwiched between shells 1 and 10 starting from their open ends and extending to the open extremity 7 of capsule 6.
  • Open cavity 13 which extends from one end to the other of shell 10, acts as a well for the proper axial positioning of a detonating cord therein for the ignition of ignition charge 11.
  • Located in cavity 13 is a cord-retention means in the form of an open-ended metal sleeve 14 that frictionally engages the inside wall of shell 10 and has cord-gripping means 15, i.e., a number of inwardly directed prongs, formed on its inner end.
  • Sleeve 14 extends from the open end of shell 10 to a plane which will place the end of the gripped cord in a plane normal to the axis of shell 10 which is axially spaced from the plane in which the boundary 16 of ignition charge 11 lies by a distance no greater than about 2.5 millimeters regardless of how incompletely the cord may be pushed into the cavity.
  • the sleeve places the cord so that the cord end is axially spaced from the bottom of shell 10 by no more than about 5 millimeters.
  • the outer end of metal sleeve 14 is provided with a lip portion 17 that extends over the outer ends of shell 10 and grommet 12.
  • Crimp 18 locks shell 10 in place, keeping it from becoming dislodged by the internal pressure produced when charge 11 ignites.
  • Ignition charge 11 is one which is sensitive to ignition by a pressure pulse produced by the detonation of a low-energy detonating cord positioned coaxially in cavity 13 in a manner such that it is gripped by prongs 15.
  • the detonator is a self-contained, sealed unit and can be stored, transported, and otherwise handled as required separated from the detonating cord with which it is designed to be used.
  • the detonator can be assembled with the cord used to actuate it by inserting the cord into cavity 13 of shell 10 until it is gripped by prongs 15 and preferably becomes seated against the closed end of shell 10 as is shown in FIG. 2. Separation of the components of the detonator/cord assembly until use offers such advantages as safety and convenience during handling and storage, possible separate classification of the components for transportation, etc.
  • an end-section of a length of low-energy detonating cord 21 is in coaxial position in cavity 13 of shell 10 and has its end touching the closed end of shell 10. Prongs 15 grip cord 21 and thus prevent it from being pulled out of cavity 10.
  • the plane that passes through the end of cord 21 within cavity 10 normal to the cord axis also passes through ignition charge 11.
  • Cord 21 consists of a continuous solid core 22 of a deformable bonded detonating explosive composition, e.g., superfine PETN admixed with a binding agent such as plasticized nitrocellulose; core-reinforcement means 23 consisting of a mass of filaments derived from multi-filament yarns around and in contact with the periphery of core 22 parallel to the core's longitudinal axis; and a protective plastic sheath 24, which encloses core 22 and core-reinforcing filaments 23.
  • Cords of this type are described in the aforementioned Belgian . Patent 863,290,
  • Shell 1 is a standard detonator shell, e.g., a shell made of commercial bronze, 42 mm long, and having an external diameter of 7.3 mm and a wall and bottom thickness of 0.3 mm.
  • Base charge 2 consists of 0.49 gram of PETN, which has been placed in shell 1 and pressed therein at 1220-1335 Newtons with a pointed press pin.
  • Priming charge 3 is 0.14 gram of an 85/15 mixture (by weight) of dextrinated lead azide and the coarse lead salt of dinitrocresylate, this mixture having been loaded into the shell and pressed at the same pressure as the base charge by a flat pin.
  • Delay carrier'4 is a 7-mm-long swaged lead tube, and delay charge 5 is 0.2 gram of a 2/98 boron/red lead mixture, grained with polysulfide rubber. The diameter of the axial core of carrier 4 is 2 mm.
  • Capsule 6 is made of commercial bronze, is 11.1 mm long, and has a wall thickness of 0.6 mm. Axial orifice 9 is 2 mm in diameter. Capsule 6 is positioned over carrier 4 and pressed at 1220-1335 Newtons by a flat press pin. Ignition charge 11 is 0.08 gram of a 1.5/88.5/10 (by weight) boron/red lead/ dextrinated lead azide mixture.
  • Shell 10 is made of aluminum, and has a wall thickness of 0.56 mm, a bottom thickness of 0.64 mm, and an overall length of 19.8 mm.
  • the outer diameter of shell 10 is 4.9 mm in a 6-mm-long section starting at the closed end; 5.6 mm in a 5-mm-long section starting at the open end; and 5.4 mm in an intermediate section therebetween.
  • Grommet 12 made of low-density polyethylene and having a length of 9 mm, an outer diameter of 6.4 mm, and an inside diameter of 5.4 mm, is fitted onto shell 10 in a manner such that the edge surfaces of shell 10 and grommet 12 at the outer end are substantially coplanar.
  • Bronze sleeve 14 has an overall length of 12 mm, an outer diameter of 4.5 mm, an inner diameter of 4 mm, and a 2.5-mm tapered portion having four cord-gripping prongs 15, which reduce the diameter of the sleeve at the gripping end to 2 mm.
  • Sleeve 14 is fitted into shell 10 in a manner such that lip portion 17 rests over the ends of shell 10 and grommet 12.
  • the assembly of shell 10, grommet 12, and sleeve 14 is pressed into shell 1 at 222-267 Newtons, thereby compacting ignition charge 11 in the spacing between the closed end of shell 10 and closed extremity 8 of capsule 6, and displacing some of charge 11 into the annular space between the facing walls of shell 10 and capsule 6.
  • ignition charge 11 extends about the length (6 mm) of the 4.9-mm outer-diameter section of shell 10, as can be seen by X-ray measurements, or by post-firing observation of shell 10.
  • the inner end of grommet 12 rests against the surface of capsule 6 at the capsule's open extremity 7, and prongs 15 terminate in a plane normal to the longitudinal axis of sleeve 14 that is axially spaced from the plane in which the boundary 16 of ignition charge 11 lies by a distance of about 1.8 mm.
  • Cord 21 has an outer diameter of 2.5 mm, a 0.5-mm-diameter core (22), and a 0.6-mm-thick low-density polyethylene sheath (24).
  • the core 22 consists of a mixture of 75% superfine PETN, 21% acetyl tributyl citrate, and 4% nitrocellulose prepared by the procedure described in U.S. Patent 2,992,087.
  • the average particle size of the superfine PETN is less than 15 microns, with all particles smaller than 44 microns.
  • Core-reinforcing filaments 23 are derived from eight 1000-denier strands of polyethylene terephthalate yarn substantially uniformly distributed on the periphery of core 22.
  • the PETN loading in core 22 is 0.53 gram per meter.
  • cord 21 One end of a 7-meter length of cord 21 is inserted into cavity 13 of shell 10 as is described above.
  • cord 21 is detonated at its other end by a No. 6 blasting cap having its end in coaxial abutment with the exposed end of cord 21, or by the detonation transmitted to it from another detonating cord, e.g., in the cord/booster assembly described in ourco-pending, European Patent Application No. 80300230.2 the detonator fires, giving a delay period of 40 milliseconds.
  • the detonation of core 22 causes shell 10 to expand and ignition charge 11 to be ignited as a result of being suddenly squeezed between shell 10 and capsule 6.
  • the burning of ignition charge 11 ignites delay charge 5, which in turn ignites priming charge 3, causing base charge 2 to detonate.
  • cord 21 of the cord/detonator assembly of this invention is inserted into the cavity of the booster shell as shown in the drawing of the co-pending application. More specifically, cord 13 shown in FIGS. 2 and 3 of the co-pending application is the same as cord 21 of this application.
  • This cord is detonated by the detonation of a booster explosive, which in turn is detonated by a detonating cord positioned transversely outside and adjacent to the closed end of the shell containing the booster explosive.
  • the detonator of this invention can be adapted to be actuated by any low-energy detonating cord, it is preferred that cords having a core explosive loading of less than about 1 gram per meter be used for this purpose, inasmuch as it is more difficult with heavier cords to maintain the sealed character of the detonator until after the delay charge has burned, a condition that is required if the predetermined delay timing is to be attained. Also, the type of cord described in the aforementioned Belgian patent is preferred because it would not be desensitized should its cut end come into contact with water, as could occur in field assembly.
  • compositions selected for the various charges in the detonator are not critical to the present invention, provided that the selected compositions function in the specified manner.
  • the composition selected to be used as the ignition charge has to be one which is ignitible by percussion, i.e., by the sudden impact of the expanding shell 10 while the charge is held within the rigid capsule 6; reliably propagates the initiation stimulus from the detonating cord to the delay charge 5; and is substantially gasless when it decomposes, to prevent rupture of the surrounding capsule.
  • Preferred ignition compositions consist essentially, by weight, of at least about 86% red lead (lead tetroxide), about from 1 to 2.5% boron, and up to about 11% lead azide, lead styphnate, or a mixture thereof. Certain of these compositions are described in U.S. Patent 3,306,201, the disclosure of which is incorporated herein by reference. More sensitive ignition compositions may be required in detonators to be used with detonating cords having smaller core loadings than in those used with cords having larger loadings.
  • the exothermic-burning composition used as the delay charge can be any of the gasless exothermic- reacting mixtures of solid oxidizing and reducing agents that burn at a constant rate and that are commonly used in ventless-delay detonators. Examples of such mixtures are boron-red lead, boron-red lead- dibasic lead phosphite, aluminum-cupric oxide, magnesium-barium peroxide-selenium, and silicon-red lead.
  • the delay charge may be present in the bore of a metal carrier, e.g., of lead, as is shown in FIG. 1, or it may be a simple layer adjacent to capsule 6 and the priming charge. The delay period is dependent upon the length or depth of the delay charge as well as its degree of compaction and confinement; and therefore this charge usually will be compacted in a heavy-walled carrier tube.
  • the priming charge can be any heat-sensitive detonating explosive composition which is readily initiated by the burning of the delay composition, e.g., lead azide, mercury fulminate, diazodinitrophenol, or'a similar composition.
  • the composition used for the base charge can be any of the conventional base charges, e.g., PETN, cyclotrimethylenetrinitramine, cyclotetramethylene- tetranitramine, lead azide, picryl sulfone, nitromannite, TNT, and the like. This charge can be loose or compacted.
  • the proper functioning of the detonator of this invention depends on (a) the expansion of shell 10 by the pressure pulse resulting from the detonation of a low-energy detonating cord located in the cavity of shell 10; and, in turn, (b) on the ignition of ignition charge 11 as a result of the sudden compression caused by this expansion.
  • the presence of the ignition charge in the annular spacing between the side walls of the expansion shell 10 and the capsule 6 is a means of assuring the ignition of the ignition charge should cord 21 fail to be seated against the closed end of shell 10.
  • the thickness of the ignition charge (wall spacing) should be at least 0.2 mm.
  • the wall thickness of the shell adjacent to the ignition charge can be increased (to the extent that shell expansion is not severely compromised) as a preventive measure against shell collapse.
  • the outer diameter of expansion shell 10 is not critical provided that the annular spacing around it is sufficiently large to accommodate the required amount of ignition charge. If a single outer diameter of shell 10 is not suitable to accommodate a given size sleeve 14 and grommet 12, as well as the selected thickness of the annular portion of the ignition charge, the diameter of shell 10 can be varied along the length of the shell, as shown in FIG. 1.
  • expansion shell 10 has to be deformable by the pressure pulse produced by the detonation of a low-energy detonating cord, it preferably is made of a metal such as aluminum or brass, and preferably has a wall thickness no greater than about 0.8 mm in the region adjacent to the ignition charge.
  • the presence of the ignition charge in the spacing between the walls of the expansion shell 10 and the capsule 6 permits the detonator to be fired even when the end of cord 21 is not seated against the closed end of shell 10. Because the cord is easily pushed into cavity 13 until it reaches the closed end of shell 10, however, the cord/detonator assembly usually, and preferably, will have the cord end touching the shell end.
  • the plane that passes through the end of the cord within cavity 13 normal to the cord axis passes also through the ignition charge.
  • At least about a 2.5-mm end-portion of the cord preferably will be surrounded by the ignition charge whether the cord end touches the shell bottom or there is a gap between the two.
  • ignition charge surrounding at least a 2.5 mm end-portion of the cord the presence of foreign matter such as gritty particles in the gap between the cord end and the expansion shell bottom does not deleteriously affect the functioning of the detonator, a feature which is of great importance in a field-assembled detonator where foreign matter could enter cavity 13 before cord 21 is inserted.
  • the detonator will also function properly if there is an axial separation between the cord end and the ignition charge boundary, preferably a separation of no greater than about 2.5 mm.
  • the position of sleeve 14 controls the proper positioning of the cord.
  • the length of sleeve 14 is selected so that the axial distance between the plane normal to the sleeve's axis in which its inner end (prongs 15) lies and the plane in which the boundary 16 of ignition charge 11 lies does not permit the axial spacing between the cord end and the charge boundary to exceed about 2.5 mm when the cord is just gripped by prongs 15 without further insertion.
  • the axial distance between the prong ends and the charge boundary were no greater than about 5.5 mm, and if the cord were to be inserted into cavity 13 only to the extent that it were gripped by the prongs near the end of the cord without further pushing of the cord into the cavity, which action, practically speaking, would normally cause the cord to extend at least about 3 mm beyond the prongs, it would be impossible for the axial spacing between the cord end and the charge boundary to be more than about 2.5 mm.
  • the axial distance between the prong ends and the bottom of shell 10 were no greater than about 8 mm, the axial spacing between the cord end and the bottom of shell 10 could not exceed about 5 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Air Bags (AREA)
  • Automotive Seat Belt Assembly (AREA)
  • Pulse Circuits (AREA)
EP80300544A 1979-02-26 1980-02-25 Non-electric delay detonator and assembly of a detonating cord and a delay detonator Withdrawn EP0015697A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1528879A 1979-02-26 1979-02-26
US15288 1979-02-26

Publications (1)

Publication Number Publication Date
EP0015697A1 true EP0015697A1 (en) 1980-09-17

Family

ID=21770560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80300544A Withdrawn EP0015697A1 (en) 1979-02-26 1980-02-25 Non-electric delay detonator and assembly of a detonating cord and a delay detonator

Country Status (16)

Country Link
EP (1) EP0015697A1 (no)
JP (1) JPS55116698A (no)
KR (1) KR830001834A (no)
AU (1) AU5581180A (no)
BR (1) BR8001018A (no)
CA (1) CA1150104A (no)
ES (1) ES8103369A1 (no)
GB (1) GB2044415A (no)
GR (1) GR67214B (no)
MA (1) MA18742A1 (no)
NO (1) NO800516L (no)
OA (1) OA06478A (no)
PL (1) PL222219A1 (no)
PT (1) PT70865B (no)
ZA (1) ZA80340B (no)
ZM (1) ZM2380A1 (no)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2594823A1 (fr) * 1986-02-24 1987-08-28 Ruggieri Dispositif de liaison entre une meche de mise a feu d'un produit pyrotechnique et un inflammateur
EP0253955A1 (de) * 1986-04-26 1988-01-27 Dynamit Nobel Aktiengesellschaft Sprengzeitzünder
EP0339847A2 (en) * 1988-04-29 1989-11-02 Aeci Limited A detonator
EP0468838A1 (fr) * 1990-07-27 1992-01-29 Giat Industries Societe Anonyme Système d'allumage pour une composition pyrotechnique
EP0482969A2 (en) * 1990-09-24 1992-04-29 Schlumberger Limited Perforating gun using a bubble activated detonator
EP0616683A1 (en) * 1991-12-09 1994-09-28 Olin Corporation Extended charge cartridge assembly
KR100730257B1 (ko) * 2000-09-06 2007-06-20 가부시키가이샤 히타치세이사쿠쇼 개인 인증 장치
RU2684530C1 (ru) * 2017-12-12 2019-04-09 Александр Анатольевич Потапов Капсюль-детонатор кд конус
CN114353610A (zh) * 2021-12-21 2022-04-15 湖北工业大学 一种水平或缓倾斜盲炮孔孔内分段装药的结构及施工方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ227628A (en) * 1988-02-08 1991-06-25 Aeci Ltd Explosives detonator made from two hollow portions fitting together spigot/socket fashion
SE507621C2 (sv) * 1991-02-18 1998-06-29 Nitro Nobel Ab Kopplingsblock för tändanordningar

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB197309A (en) * 1922-05-02 1923-11-08 Air Liquide Improvements in or relating to blasting cartridges
DE442119C (de) * 1924-12-14 1927-03-21 Johann Krannichfeldt Zuendschnuranzuender
US1810000A (en) * 1921-06-07 1931-06-16 John H Woodberry Booster
US2796024A (en) * 1955-02-16 1957-06-18 Frank H Swaim Detonator mounting clip
FR1266290A (fr) * 1959-09-03 1961-07-07 Montedison Spa Amorces électriques à retardement pour milieux grisouteux
DE1153307B (de) * 1961-09-22 1963-08-22 Dynamit Nobel Ag Sprengschnurverbinder
US3106892A (en) * 1961-12-27 1963-10-15 Du Pont Initiator
GB982364A (en) * 1962-11-13 1965-02-03 Canadian Ind Improvements in or relating to a blasting assembly
DE1771518A1 (de) * 1968-06-04 1971-12-23 Dynamit Nobel Ag Verzoegerungssprengkapsel fuer Sprengschnur geringer Brisanz
US3776135A (en) * 1972-06-29 1973-12-04 Hercules Inc Non-electric blasting cap assembly
US3945322A (en) * 1974-04-05 1976-03-23 The United States Of America As Represented By The Secretary Of The Navy Through-bulkhead explosion initiation
BE863290A (fr) * 1977-01-26 1978-07-25 Du Pont Cordeau detonant de raccordement, ainsi que procede et appareil pour la fabrication de ce cordeau

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1810000A (en) * 1921-06-07 1931-06-16 John H Woodberry Booster
GB197309A (en) * 1922-05-02 1923-11-08 Air Liquide Improvements in or relating to blasting cartridges
DE442119C (de) * 1924-12-14 1927-03-21 Johann Krannichfeldt Zuendschnuranzuender
US2796024A (en) * 1955-02-16 1957-06-18 Frank H Swaim Detonator mounting clip
FR1266290A (fr) * 1959-09-03 1961-07-07 Montedison Spa Amorces électriques à retardement pour milieux grisouteux
DE1153307B (de) * 1961-09-22 1963-08-22 Dynamit Nobel Ag Sprengschnurverbinder
US3106892A (en) * 1961-12-27 1963-10-15 Du Pont Initiator
GB982364A (en) * 1962-11-13 1965-02-03 Canadian Ind Improvements in or relating to a blasting assembly
DE1771518A1 (de) * 1968-06-04 1971-12-23 Dynamit Nobel Ag Verzoegerungssprengkapsel fuer Sprengschnur geringer Brisanz
US3776135A (en) * 1972-06-29 1973-12-04 Hercules Inc Non-electric blasting cap assembly
US3945322A (en) * 1974-04-05 1976-03-23 The United States Of America As Represented By The Secretary Of The Navy Through-bulkhead explosion initiation
BE863290A (fr) * 1977-01-26 1978-07-25 Du Pont Cordeau detonant de raccordement, ainsi que procede et appareil pour la fabrication de ce cordeau

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2594823A1 (fr) * 1986-02-24 1987-08-28 Ruggieri Dispositif de liaison entre une meche de mise a feu d'un produit pyrotechnique et un inflammateur
EP0240375A1 (fr) * 1986-02-24 1987-10-07 Ruggieri Dispositif de liaison entre une mèche de mise à feu d'un produit pyrotecnique et un inflammateur
US4825764A (en) * 1986-02-24 1989-05-02 Ruggieri Connecting device between a firing fuse of a pyrotechnic product and an igniter
EP0253955A1 (de) * 1986-04-26 1988-01-27 Dynamit Nobel Aktiengesellschaft Sprengzeitzünder
EP0339847A2 (en) * 1988-04-29 1989-11-02 Aeci Limited A detonator
EP0339847A3 (en) * 1988-04-29 1990-09-05 Aeci Limited A detonator
EP0468838A1 (fr) * 1990-07-27 1992-01-29 Giat Industries Societe Anonyme Système d'allumage pour une composition pyrotechnique
FR2665254A1 (fr) * 1990-07-27 1992-01-31 Giat Ind Sa Systeme d'allumage pour une composition pyrotechnique.
EP0482969A2 (en) * 1990-09-24 1992-04-29 Schlumberger Limited Perforating gun using a bubble activated detonator
EP0482969A3 (en) * 1990-09-24 1992-08-05 Schlumberger Limited Perforating gun using a bubble activated detonator
EP0616683A1 (en) * 1991-12-09 1994-09-28 Olin Corporation Extended charge cartridge assembly
EP0616683A4 (en) * 1991-12-09 1995-08-02 Olin Corp CARTRIDGE WITH ADDITIONAL LOAD.
KR100730257B1 (ko) * 2000-09-06 2007-06-20 가부시키가이샤 히타치세이사쿠쇼 개인 인증 장치
RU2684530C1 (ru) * 2017-12-12 2019-04-09 Александр Анатольевич Потапов Капсюль-детонатор кд конус
CN114353610A (zh) * 2021-12-21 2022-04-15 湖北工业大学 一种水平或缓倾斜盲炮孔孔内分段装药的结构及施工方法
CN114353610B (zh) * 2021-12-21 2023-04-25 湖北工业大学 一种水平或缓倾斜盲炮孔孔内分段装药的结构及施工方法

Also Published As

Publication number Publication date
ZA80340B (en) 1981-03-25
JPS55116698A (en) 1980-09-08
KR830001834A (ko) 1983-05-19
OA06478A (fr) 1981-07-31
NO800516L (no) 1980-08-27
BR8001018A (pt) 1980-10-29
CA1150104A (en) 1983-07-19
MA18742A1 (fr) 1980-10-01
GR67214B (no) 1981-06-24
ZM2380A1 (en) 1981-07-21
PL222219A1 (no) 1981-01-30
PT70865A (en) 1980-03-01
GB2044415A (en) 1980-10-15
AU5581180A (en) 1980-09-11
PT70865B (en) 1981-06-30
ES488912A0 (es) 1981-02-16
ES8103369A1 (es) 1981-02-16

Similar Documents

Publication Publication Date Title
US4335652A (en) Non-electric delay detonator
CA1150106A (en) Field-connected explosive booster for propagating a detonation in connected detonating cord assemblies containing low-energy detonating cord
US4424747A (en) Non-electric blasting assembly
EP0063942B1 (en) Delay detonator
RU2203260C2 (ru) Детонаторы, имеющие вводы со многими линиями
US4290366A (en) Energy transmission device
US4722279A (en) Non-electric detonators without a percussion element
US4132171A (en) Apparatus for detonating an explosive charge
EP0083165B1 (en) Non-electric blasting assembly
US3306201A (en) Explosive composition and waterhammer-resistant delay device containing same
US7188566B2 (en) Non-electric detonator
EP0015697A1 (en) Non-electric delay detonator and assembly of a detonating cord and a delay detonator
CA1123662A (en) Connector device for use between detonating cord and icendiary fusecord
US4299167A (en) Nonelectric delay initiator
US4369708A (en) Delay blasting cap
US4799428A (en) Explosive primer unit for instantaneous initiation by low-energy detonating cord
CA1282639C (en) Explosive delay detonator
GB1586496A (en) Explosives initiation assembly and system
US5024158A (en) Multi-directional initiator for explosives
US3122097A (en) Non-electric initiating assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT SE

17P Request for examination filed

Effective date: 19801119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19820426

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRYAN, PAUL