EP0000933B1 - Hydrophobe Polyurethanschaumstoffe, Verfahren zu deren Herstellung und Verwendung zur Absorption von Öl und gegebenenfalls halogenhaltigen, hydrophoben Verbindungen aus Wasser - Google Patents

Hydrophobe Polyurethanschaumstoffe, Verfahren zu deren Herstellung und Verwendung zur Absorption von Öl und gegebenenfalls halogenhaltigen, hydrophoben Verbindungen aus Wasser Download PDF

Info

Publication number
EP0000933B1
EP0000933B1 EP78100702A EP78100702A EP0000933B1 EP 0000933 B1 EP0000933 B1 EP 0000933B1 EP 78100702 A EP78100702 A EP 78100702A EP 78100702 A EP78100702 A EP 78100702A EP 0000933 B1 EP0000933 B1 EP 0000933B1
Authority
EP
European Patent Office
Prior art keywords
compounds
water
polyurethane foams
hydrophobic
polyhydroxy compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100702A
Other languages
English (en)
French (fr)
Other versions
EP0000933A1 (de
Inventor
Wolfgang Dr. Jarre
Rolf Dr. Wurmb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0000933A1 publication Critical patent/EP0000933A1/de
Application granted granted Critical
Publication of EP0000933B1 publication Critical patent/EP0000933B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/681Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of solid materials for removing an oily layer on water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/281Monocarboxylic acid compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/3823Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing -N-C=O groups
    • C08G18/3825Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing -N-C=O groups containing amide groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S521/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S521/905Hydrophilic or hydrophobic cellular product

Definitions

  • the invention relates to polyurethane foams with densities of 5 to 26.5 g / liter which, owing to their hydrophobic character and their content of closed and open cells, are particularly suitable for the absorption of oil and, if appropriate, halogen-containing, hydrophobic compounds in water.
  • polyurethane foams from polyisocyanates, polyhydroxy compounds, optionally chain extenders, auxiliaries and additives is known from numerous patent and literature publications. For example, we would like to refer to the monographs by JH Saunders and KC Frisch, High Polymers, Volume XVI "Polyurethanes" Part I and II (Interscience Publishers, New York), and R. Vieweg and A. Höchtlen, Kunststoff-Hanbuch, Volume VII , Polyurethane, Carl Hanser Verlag, Kunststoff.
  • open-cell foams made of polyurethanes, urea-formaldehyde condensates, polystyrene, cellulose acetate and others for oil absorption from water surfaces.
  • open-cell foams made of polyurethanes, urea-formaldehyde condensates, polystyrene, cellulose acetate and others for oil absorption from water surfaces.
  • US Pat. No. 3,779,908 a dispersion of crude oil in water is allowed to flee through a flexible, open-cell foam for oil absorption.
  • Oleophilic semi-hard to hard foams are further distributed according to US Pat. No. 3,886,067 on oil-containing water surfaces and, after oil absorption on the foam, collected and removed again.
  • the object of the present invention was to develop polyurethane foams which do not have these disadvantages.
  • the polyurethane foams should be quickly produced on site from polyurethane systems that are space-saving in liquid form and therefore inexpensive to transport.
  • polyurethane foams are particularly suitable for absorbing oil and halogen-containing hydrophobic solvents from water if they are hydrophobic and at the same time have closed and open cells in certain proportions.
  • hydrophobic polyurethane foams according to the invention are made both by the prepolymer process and preferably by the one-shot process from organic polyisocyanates, polyhydroxy compounds, blowing agents, catalysts, optionally chain extenders, auxiliaries and additives with the additional use of lipophilic compounds, preferably based on fatty acids and / or Fatty acid derivatives, advantageously produced on site.
  • Linear and / or branched hydroxyl-containing polyethers having molecular weights of from about 300 to about 10,000, preferably from about 1,000 to about 6,000 and hydroxyl numbers from about 700 to about 20, preferably from 200 to 40, are expediently used as the polyhydroxy compounds.
  • the hydroxyl-containing polyethers are prepared by reacting one or more, optionally substituted, alkylene oxides having 2 to 4 carbon atoms in the alkylene radical with a starter molecule which contains at least two active hydrogen atoms bonded.
  • alkylene oxides are: tetrahydrofuran, 1,2- and 2,3-butylene oxide and preferably propylene oxide. Mixtures of propylene oxide and ethylene oxide with an ethylene oxide content, preferably less than 20% by weight, based on the total weight of the mixture, can also be used.
  • the alkylene oxides can be used individually, alternately in succession or as mixtures.
  • starter molecules are: water, aliphatic and aromatic dicarboxylic acids, such as adipic acid and terephthalic acid, and preferably dihydric and polyhydric alcohols, such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1-hexanediol , 6, glycerin, trimethylolpropane, 2,4,6-hexanetriol, pentaerythritol, sorbitol and sucrose.
  • dihydric and polyhydric alcohols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1-hexanediol , 6, glycerin, trimethylolpropane, 2,4,6-hexanetriol, pentaerythritol, sorbitol and sucrose.
  • the polyhydroxy compounds used are preferably di- and tri-functional hydroxyl-containing polypropylene oxides with molecular weights of 2,000 to 6,000.
  • Suitable lipophilic compounds are, for example, optionally substituted, saturated and / or unsaturated aliphatic fatty acids with 10 to 25, preferably 12 to 20 carbon atoms in the molecule and their derivatives, preferably their esters with 2 to 20 carbon atoms in the alcohol radical and amides. Lipophilic fatty acid esters and amides which contain isocyanate-reactive groups and are thus incorporated into the polyurethane foam structure are particularly preferred.
  • Examples include: fatty acids such as capric, lauric, myristic, palmitic, stearic, arachinic, lignoceric, palmitic, oleic, ricinoleic, linoleic and linolenic acids; Fatty acid esters, such as castor oil, tall oil and adducts of the fatty acid and propylene and / or ethylene oxides and fatty acid amides, such as oleic acid mono- and diethanolamide, ricinoleic mono- and diethanolamide and their N, N-dialkylamides, such as ricinoleic acid dimethylaminopropylamide.
  • fatty acids such as capric, lauric, myristic, palmitic, stearic, arachinic, lignoceric, palmitic, oleic, ricinoleic, linoleic and linolenic acids
  • Fatty acid esters such as castor oil, tall oil and
  • polyhydroxy compounds and lipophilic compounds are used in molar proportions from 1: 3 to 1:20, preferably from 1: 6 to 1:15 and in particular from about 1:10 to produce the hydrophobic polyurethane foams according to the invention.
  • chain extenders in addition to the higher molecular weight polyhydroxy compounds.
  • the chain extenders have molecular weights less than 300, preferably from 80 to 200, and preferably have two active hydrogen atoms.
  • the polyurethane foams according to the invention are preferably produced without the use of chain extenders.
  • Water is used as the blowing agent, which reacts with isocyanate groups to form carbon dioxide. If the hydrophobic polyurethane foams according to the invention are produced by the prepolymer process, it has proven to be advantageous to foam the prepolymer having NCO end groups under water, that is to say in the presence of a large excess of water.
  • the quantitative ratio of water molecule to NCO group of the prepolymer can accordingly be as large as desired, but the value should not be less than about 5: 1. For example, molar ratios of water to NCO group in the prepolymer from 8: 1 to 1,000: 1 and larger have proven successful.
  • hydrophobic polyurethane foams according to the invention are produced by the one-shot process, it may be advantageous, depending on the type of polyhydroxy compounds and lipophilic compounds used, to mix the water used as blowing agent with a solubilizer.
  • Suitable solubilizers are all organic solvents with boiling points of 20 ° to 110 ° C., preferably 30 ° to 70 ° C., which are infinitely miscible with water and inert to isocyanate groups under the reaction conditions. Examples include acetone, methyl ethyl ketone, dioxane and tetrahydrofuran; acetone is preferably used.
  • the water is mixed with the solubilizer in such amounts that the weight ratio of water to solubilizer is 1: 1 to 10: 1, preferably 2: 1 to 4: 1.
  • the polyurethane foams according to the invention can be produced directly on site in the water. In these cases it has proven advantageous to accelerate the reaction between the polyhydroxy compounds, the water, optionally chain extenders and the lipophilic compounds, provided that these Zerewitinoff contain active groups bound in the molecule, and the highly reactive catalysts known to the organic polyisocanates, for example tertiary ones Amines, such as dimethylbenzylamine, N-methyl- or N-ethylmorpholine, dimethylpiperazine, 1,2-dimethylimidazole, 1-azabicyclo (3,3,0) octane and preferably triethylene diamine and metal salts such as tin dioctoate , Lead octoate and tin diethylhexoate and preferably tin (II) salts and dibutyltin dilaurate, and preferably mixtures of tertiary amines and organic tin salts.
  • Amines such as dimethylbenzylamine,
  • the amount to be used is determined empirically depending on the reactivity of the chosen catalyst or the catalyst mixture determined by constitution. If the polyurethane foams according to the invention are produced on site by the one shot process, the catalysts and amounts must be selected such that the starting times at reaction temperatures from 0 ° to 35 ° C. are approximately 2 to 10 seconds, preferably 2 to 5 seconds.
  • the start time (creamtime) is the time of the trouble-free pourability of the foamable mixture, ie the time available from mixing to the start of a visible reac tion, in which mixing of the starting materials, discharge from the mixing element and spraying of the reaction mass must be carried out.
  • polyurethane block foams are produced from the starting components mentioned above using conventional catalysts for the production of block foam, which as such are spread out on the oil-containing water surface, can be collected and pressed out after the absorption of oil, or can be comminuted and used as a filling material for absorption columns can.
  • Auxiliaries and additives can also be incorporated into the reaction mixture. Examples include stabilizers, hydrolysis protection agents, pore regulators and surface-active substances.
  • surface-active substances are considered which serve to support the homogenization of the starting materials and, if appropriate, are also suitable for regulating the cell structure of the foams.
  • examples include siloxane-oxyalkylene copolymers and other organopolysiloxanes, oxyethylated alkylphenols, oxyethylated fatty alcohols, paraffin oils, castor oil or castor oil esters and Turkish red oil, which are used in amounts of 0.2 to 6 parts by weight per 100 parts by weight of polyisocyanate.
  • the polyurethane foams according to the invention can be produced by the prepolymer and preferably by the one-shot process.
  • a mixture of polyhydroxy compound, lipophilic compound, water and optionally chain extender with the organic polyisocyanate in the presence of auxiliaries and additives is usually used at temperatures from 0 ° to 35 °, preferably 15 ° to 25 ° ° C implemented in such amounts that the ratio of Zerewitinoff active hydrogen atoms of the polyhydroxy compounds, lipophilic compounds and optionally chain extenders to the NCO group of the polyisocyanate is 0.7 to 1.3: 1, preferably approximately 1: 1, and the ratio of all Zerewitinoff active hydrogen atoms bonded to polyhydroxy compound, lipophilic compound, optionally chain extender and water to the NCO group of the polyisocyanate is approximately 1.3 to 5: 1, preferably 1.5 to 3: 1.
  • the starting components can be fed in individually and mixed intensively in the mixing chamber.
  • hydrophobic polyurethane foams according to the invention on water and the separation of those containing 01 and / or halogen; Polyurethane foams impregnated with hydrophobic solvents from the water surface are made with the aid of known devices which are expediently installed on ships or in aircraft. ,
  • the prepolymers containing NCO groups are advantageously atomized under water
  • Suitable polymer solvents are preferably those which are readily miscible with the prepolymer containing NCO groups and the oil to be absorbed, for example methylene chloride, toluene, cyclohexane, hexane and others
  • the foamable prepolymer mixture is expanded with simultaneous foaming by the carbon dioxide formed during the reaction of the prepolymers containing NCO groups with water, and the expanding and already expanded material rises to the surface of the water d absorbs the overlying oil or solvent layer from below.
  • the polyurethanes impregnated with oil and optionally halogen-containing, hydrophobic solvents can then be separated from the water surface using known methods.
  • the prepolymers containing NCO groups the polyisocyanates and mixtures of polyhydroxy compounds and lipophilic compounds mentioned above are reacted in the presence of any auxiliaries and additives in amounts such that the ratio of NCO groups to total hydroxyl of the mixture is 50: 1 to 2: 1, preferably 15: 1 to 5: 1.
  • hydrophobic polyurethane foams according to the invention have a high absorption capacity for.
  • Oil for example crude, heating and diesel oil and for halogen if necessary containing hydrophobic compounds, for example solvents such as hexane, benzene, toluene, aniline, chloroform, carbon tetrachloride, dichloroethane and hexachiorcyclopentadiene.
  • the prepolymer solution containing NCO groups is then atomized under water.
  • the specific weight of the prepolymer containing NCO groups is 1.3546 g / cm 3 without solvent.
  • the density of the prepolymer solution can be varied from 0.922 to 1.333 g / cm 3 by mixing the prepolymer with organic solvents.
  • the tests show the very high oil absorption capacity of the foams according to the invention in comparison to conventional rigid and flexible foams.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

  • Die Erfindung betrifft Polyurethanschaumstoffe mit Dichten von 5 bis 26,5 g/Liter, die aufgrund ihres hydrophoben Charakters und ihres Gehalts an geschlossenen und offenen Zellen vorzüglich zur Absorption von Öl und gegebenenfalls halogenhaltigen, hydrophoben Verbindungen in Gewässern geeignet sind.
  • Die Herstellung von Polyurethanschaumstoffen aus Polyisocyanaten, Polyhydroxyverbindungen, gegebenenfalls Kettenverlängerungsmitteln, Hilfs- und Zusatzstoffen ist aus zahlreichen Patent- und Literaturveröffentlichungen bekannt. Verweisen möchten wir beispielsweise auf die Monographien von J. H. Saunders und K. C. Frisch, High Polymers, Band XVI "Polyurethanes" Teil I und II (Verlag Interscience Publishers, New York), und R. Vieweg und A. Höchtlen, Kunststoff-Hanbuch, Band VII, Polyurethane, Carl Hanser Verlag, München.
  • Es ist ferner vorgeschlagen worden, zur Ölabsorption von Wasseroberflächen offenzellige Schaumstoffe aus Polyurethanen, Harnstoff-Formaldehydkondensaten, Polystyrol, Celluloseacetat u.a. zu verwenden. Nach Angaben der US-PS 3 779 908 läßt man zur Ölabsorption eine Dispersion von Rohöl in Wasser durch einen flexiblen, offenzelligen Schaumstoff fleißen. Oleophile halbharte bis harte Schaumstoffe werden ferner gemäß US-PS 3 886 067 auf ölhaltigen Wasseroberflächen verteilt und nach erfolgter Ölabsorption an den Schaumstoff wieder gesammelt und entfernt.
  • Nachteilig an den beschriebenen Verfahren ist, daß sie auf offener See, insbesondere bei rauhem Seegang, nicht angewandt werden können, der Transport der voluminösen Schaumstoffpartikel an den Einsatzort kostspielig ist und die Ölaufnahme gering ist, da offenzellige Schaumstoffpartikel in Wasser rasch absinken und geschlossenzellige eine zu geringe Oberfläche aufweisen.
  • Aufgabe der vorliegenden Erfindung war es, Polyurethanschaumstoffe zu entwickeln, die diese Nachteile nicht aufweisen. Die Polyurethanschaumstoffe sollten am Einsatzort aus Polyurethansystemen, die in flüssiger Form raumsparend und daher preisgünstig transportabel sind, schnell hergestellt werden.
  • Überraschenderweise wurde gefunden, daß Polyurethanschaumstoffe zur Absorption von Öl und halogenhaltigen hydrophoben Lösungsmitteln aus Wasser besonders dann geeignet sind, wenn sie hydrophob sind und gleichzeitig geschlossene und offene Zellen in bestimmten Verhältnissen besitzen.
  • Gegenstand der vorliegenden Erfindung sind somit hydrophobe Polyurethaneschaumstoffe zur Absorption von Öl und/oder gegebenenfalls halogenhaltigen, hydrophoben Verbindungen aus Wasser, hergestellt durch Umsetzung von organischen Polyisocyanaten mit Polyhydroxyverbindungen in Gegenwart von Wasser als Treibmittel und Katalysatoren sowie gegebenenfalls lipophilen Verbindungen, Kettenverlängerungsmitteln, Hilfsmitteln und Zusatzstoffen, die dadurch gekennzeichnet sind, daß die hydrophoben Polyurethanschaumstoffe
    • a) eine Dichte von 5 bis 26,5 g/Liter, vorzugsweise 6,8 bis 18 g/Liter besitzen,
    • b) die Zahl der geschlossenen Zellen 3 bis 3096, vorzugsweise 10 bis 20% und der offenen Zellen 97 bis 70%, vorzugsweise 90 bis 80%, bezogen auf die Gesamtzahl an Zellen, beträgt und
    • c) als Polyhydroxyverbindungen lineare und/oder verzweigte hydroxylgruppenhaltige Polyether mit Molekulargewichten von 300 bis 10000 verwendet werden, die durch Polymerisation von Tetrahydrofuran, 1,2- und 2,3-Butylenoxid, Propylenoxid oder Mischungen aus Propylenoxid und Ethylenoxid mit einem Ethylenoxidgehalt von kleiner als 20 Gew.-%, bezogen auf das Gesamtgewicht der Mischung, erhalten werden.
  • Die erfindungsgemäßen hydrophoben Polyurethanschaumstoffe werden sowohl nach dem Präpolymerverfahren als auch vorzugsweise nach dem one shot-Verfahren aus organischen Polyisocyanaten, Polyhydroxyverbindungen, Treibmitteln, Katalysatoren, gegebenenfalls Kettenverlängerungsmitteln, Hilfs- und Zusatzmitteln unter zusätzlicher Mitverwendung von lipophilen Verbindungen, vorzugsweise auf Basis von Fettsäuren und/oder Fettsäurederivaten, vorteilhafterweise am Einsatzort, hergestellt.
  • Zu den zur Herstellung der hydrophoben Polyurethanschaumstoffe verwendbaren Aufbaukomponenten ist folgendes auszuführen:
    • Als organische Polyisocyanate kommen vorzugsweise aromatische Di- und Polyisocyanate in Frage. Im einzelnen seien z.B. genannt: 2,4- und 2,6-Toluylen-diisocyanat, 2,4'-, 4,4'- und 2,2'-Diphenylmethan-diisocyanat sowie deren Isomerengemische und Mischungen aus Toluylendiisocyanaten und Diphenylmethandiisocyanaten. Vorzugsweise verwendet werden jedoch technische Mischungen aus Diphenylmethan-diisocyanaten und Polyphenylpolymethylen-Polyisocyanaten (Roh-MDJ).
  • Als Polyhydroxyverbindungen werden zweckmäßigerweise lineare und/oder verzweigte hydroxylgruppenhaltige Polyäther mit Molekulargewichten von ungefähr 300 bis ungefähr 10 000, vorzugsweise von ungefähr 1 000 bis ungefähr 6 000 und Hydroxylzahlen von ungefähr 700 bis ungefähr 20, vorzugsweise von 200 bis 40 verwendet. Die hydroxylgruppenhaltigen Polyäther werden durch Umsetzung von einem oder mehreren, gegebenenfalls substituierten Alkylenoxiden mit 2 bis 4 Kohlenstoffatomen im Alkylenrest mit einem Startermolekül, das mindestens zwei aktive Wasserstoffatome gebunden enhält, hergestellt. Als Alkylenoxide seien beispielhaft genannt: Tetrahydrofuran, 1,2-und 2,3-Butylenoxid und vorzugsweise Propylenoxid. Verwendet werden können ferner Mischungen aus Propylenoxid und Äthylenoxid mit einem Äthyienoxidgehait vorzugsweise kleiner als 20 Gew.%, bezogen auf das Gesamtgewicht der Mischung. Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischungen verwendet werden.
  • Als Startermoleküle kommen beispielsweise in Betracht: Wasser, aliphatische und aromatische Dicarbonsäuren, wie Adipinsäure und Terephthalsäure und vorzugsweise zwei- und mehrwertige Alkohole, wie Äthylenglykol, Propandiol-1,2, Propandiol-1,3, Butandiol-1,4, Hexandiol-1,6, Glycerin, Trimethylolpropan, Hexantriol-2,4,6, Pentaerythrit, Sorbit und Saccharose.
  • Als Polyhydroxyverbindungen werden vorzugsweise di- und tri-funktionelle hydroxylgruppenhaltige Polypropylenoxide mit Molekulargewichten von 2 000 bis 6 000 verwendet.
  • Geeignete lipophile Verbindungen sind beispielsweise gegebenenfalls substituierte, gesättigte und/oder ungesättigte aliphatische Fettsäuren mit 10 bis 25, vorzugsweise 12 bis 20 Kohlenstoffatomen im Molekül sowie deren Derivate, vorzugsweise deren Ester mit 2 bis 20 Kohlenstoffatomen im Alkoholrest und Amide. Besonders bevorzugt sind solche lipophilen Fettsäureester und -amide, die mit Isocyanat reagierende Gruppen gebunden enthalten und so ins Polyurethanschaumstoffgerüst eingebaut werden. Im einzelnen seien beispielhaft genannt: Fettsäuren, wie Caprin-, Laurin-, Myristin-, Palmitin-, Stearin-, Arachin-, Lignocerin-, Palmitin-, Öl-, Ricinolein-, Linolsäure und Linolensäure; Fettsäureester, wie Ricinusöl, Tallöl und Addukte aus den genannten Fettsäure und Propylen- und/oder Äthylenoxide und Fettsäureamide, wie Ölsäuremono- und -diäthanolamid, Ricinolsäuremono- und - diäthanolamid sowie deren N,N-Dialkylamide, wie Ricinolsäure-dimethylaminopropylamid.
  • Zur Herstellung der erfindungsgemäßen hydrophoben Polyurethanschaumstoffe werden die obengenannten Polyhydroxyverbindungen und lipophilen Verbindungen in molaren Mengenverhältnissen von 1:3 bis 1:20, vorzugsweise von 1:6 bis 1:15 und insbesondere von ungefähr 1:10 verwendet.
  • Gegebenenfalls kann es zweckmäßig sein, neben den höhermolekularen Polyhydroxyverbindungen zusätzlich Kettenverlängerungsmittel zu verwenden. Die Kettenverlängerungsmittel besitzen Molekulargewichte kleiner als 300, vorzugsweise von 80 bis 200, und weisen vorzugsweise zwei aktive Wasserstoffatome auf. In Betracht kommen beispielsweise aliphatische und/oder aromatische Diole mit 2 bis 14, vorzugsweise 4 bis 10 Kohlenstoffatomen, wie Äthylenglykol, Propandiol, Decandiol-1,10 und vorzugsweise Butandiol-1,4, Hexandiol-1,6 und Bis-(2-hydroxyäthyl)-hydrochinon. Die erfindungsgemäßen Polyurethanschaumstoffe werden jedoch vorzugsweise ohne Mitverwendung von Kettenverlängerungsmitteln hergestellt.
  • Als Treibmittel wird Wasser verwendet, das mit Isocyanatgruppen unter Bildung von Kohlendioxid reagiert. Werden die erfindungsgemäßen hydrophoben Polyurethanschaumstoffe nach dem Präpolymerverfahren hergestellt, so hat es sich als vorteilhaft erwiesen, das NCO-Endgruppen aufweisende Präpolymere unter Wasser, das heißt in Gegenwart eines großen Wasserüberschusses zu verschäumen. Das Mengenverhältnis von Wassermolekül zu NCO-Gruppe des Präpolymeren kann demnach beliebig groß sein, wobei der Wert von ungefähr 5:1 jedoch zweckmäßigerweise nicht unterschritten werden sollte. Gut bewährt haben sich beispielsweise molare Mengenverhältnisse von Wasser zu NCO-Gruppe im Präpolymeren von 8:1 bis 1 000:1 und größer.
  • Werden die erfindungsgemäßen hydrophoben Polyurethanschaumstoffe jedoch nach dem one shot-Verfahren hergestellt, so kann es je nach Art der verwendeten Polyhydroxyverbindungen und lipophilen Verbindungen gegebenenfalls vorteilhaft sein, das als Treibmittel dienende Wasser mit einem Lösungsvermittler zu vermischen. Als Lösungsvermittler sind alle organischen Lösungsmittel mit Siedepunkten von 20° bis 110°C, vorzugsweise 30° bis 70°C geeignet, die unbegrenzt mit Wasser mischbar und unter den Reaktionsbedingungen gegenüber Isocyanatgruppen inert sind. Genannt seien beispielsweise Aceton, Methyläthylketon, Dioxan und Tetrahydrofuran, vorzugsweise verwendet wird Aceton. Das Wasser wird hierzu mit dem Lösungsvermittler in solchen Mengen gemischt, daß das Gewichtsverhältnis von Wasser zu Lösungsvermittler 1:1 bis 10:1, vorzugsweise 2:1 bis 4:1 beträgt.
  • Die erfindungsgemäßen Polyurethanschaumstoffe können direkt vor Ort in den Gewässern hergestellt werden. In diesen Fällen hat es sich als vorteilhaft erwiesen, der Reaktionsmischung zur Beschleunigung der Umsetzung zwischen den Polyhydroxyverbindungen, dem Wasser, gegebenenfalls Kettenverlängerungsmitteln und den lipophilen Verbindungen, sofern diese Zerewitinoff aktive Gruppen im Molekül gebunden enthalten, und den organischen Polyisocanaten bekannte hochreaktive Katalysatoren, beispielsweise tertiäre Amine, wie Dimethylbenzylamin, N-Methyl- bzw. N-Äthylmorpholin, Dimethylpiperazin, 1,2-Dimethylimidazol, 1-Aza-bicyclo-(3,3,0)-octan und vorzugsweise Triäthylen-diamin und Metallsalze, wie Zinn-dioctoat, Bleioctoat und Zinn-diäthylhexoat und vorzugsweise Zinn-IIsalze und Dibutylzinndilaurat sowie vorzugsweise Mischungen aus tertiären Aminen und organischen Zinnsalzen hinzuzufügen. Zur Erzielung von verschäumungstechnisch günstigen Reaktionszeiten wird in Abhängigkeit von der durch Konstitution bestimmten Reaktivität des gewählten Katalysators bzw. des Katalysatorgemisches die einzusetzende Menge empirisch ermittelt. Werden die erfindungsgemäßen Polyurethanschaumstoffe nach dem one shot-Verfahren vor Ort hergestellt, so müssen die Katalysatoren und -mengen so ausgewählt werden, daß die Startzeiten bei Reaktionstemperaturen von 0° bis 35°C ungefähr 2 bis 10 Sekunden, vorzugsweise 2 bis 5 Sekunden betragen. Als Startzeit (creamtime) ist hierbei die Zeit der störungsfreien Vergießbarkeit der schaumfähigen Mischung zu verstehen, d.h. der zur Verfügung stehende Zeitabschnitt vom Vermischen bis zum Beginn einer sichtbaren Reaktion, in welchem Vermischen der Ausgangstoffe, Austrag aus dem Mischorgan und Versprühen der Reaktionsmasse durchgeführt werden müssen.
  • Nach einer anderen Verfahrensvariante werden aus den obengenannten Ausgangskomponenten unter Verwendung von üblichen Katalysatoren zur Blockschaumherstellung Polyurethan-Blockschaumstoffe hergestellt, die als solche auf der ölhaltigen Wasseroberfläche ausgebreitet, nach der Absorption von Öl eingesammelt und ausgepreßt werden können oder die zerkleinert und als Füllmaterial für Absorptionssäulen Anwendung finden können.
  • Der Reaktionsmischung können auch noch Hilfsmittel und Zusatzstoffe einverleibt werden. Genannt seien beispielsweise Stablisatoren, Hydrolysenschutzmittel, Porenregler und oberflächenaktive Stoffe.
  • In Betracht kommen beispielsweise oberflächenaktive Substanzen, welche zur Unterstützung der Homogenisierung der Ausgangsstoffe dienen und gegebenenfalls auch geeignet sind, die Zellstruktur der Schaumstoffe zu regulieren. Genannt seien beispielhaft Siloxan-Oxyalkylen-Mischpolymerisate und andere Organopolysiloxane, oxäthylierte Alkylphenole, oxäthylierte Fettalkohole, Paraffinöle, Rizinusöl- bzw. Rizinolsäureester und Türkischrotöl, die in Mengen von 0,2 bis 6 Gewichtsteilen pro 100 Gewichtsteile Polyisocyanat angewandt werden.
  • Nähere Angaben über die obenganannten üblichen Zusatz- und Hilfstoffe sind der Fachliteratur, beispielsweise der Monographie von Saunders und Frisch "High Polymers" Band XVI, "Polyurethanes", Teil 1 und 2, 1967 zu entnehmen.
  • Wie bereits dargelegt wurde, können die erfindungsgemäßen Polyurethanschaumstoffe nach dem Präpolymer- und vorzugsweise nach dem one shot-Verfahren hergestellt werden.
  • Erfolgt die Polyurethanschaumstoffherstellung nach dem one shot-Verfahren, so wird üblicherweise eine Mischung aus Polyhydroxyverbindung, lipophiler Verbindung, Wasser und gegebenenfalls Kettenverlängerungsmittel mit dem organischen Polyisocyanat in Gegenwart von Hilfs-und Zusatzstoffen bei Temperaturen von 0° bis 35°, vorzugsweise 15° bis 25°C in solchen Mengen zur Umsetzung gebracht, daß das Verhältnis von Zerewitinoff aktiven Wasserstoffatomen der Polyhydroxyverbindungen, lipophilen Verbindungen und gegebenenfalls Kettenverlängerungsmitteln zu NCO-Gruppe des Polyisocyanats 0,7 bis 1,3:1, vorzugsweise ungefähr 1:1 beträgt und das Verhältnis sämtlicher Zerewitinoff aktiver Wasserstoffatome-gebunden an Polyhydroxyverbindung, lipophile Verbindung, gegebenenfalls Kettenverlängerungsmittel und Wasser zu NCO-Gruppe des Polyisocyanats ungefähr 1,3 bis 5:1, vorzugsweise von 1,5 bis 3:1 ist. Bei Verwendung einer Misch--kammer mit mehreren Zulaufdüsen können die Ausgangskomponenten einzeln zugeführt und in der Mischkammer intensiv vermischt werden. Als besonders zweckmäßig hat es sich jedoch erwiesen, nach dem Zweikomponenten-Verfahren zu arbeiten und die Mischung aus Polyhydroxyverbindung, lipophiler Verbindung, gegebenenfalls Kettenverlängerungsmittel und Wasser sowie Katalysatoren, Hilfsmitteln und Zusatzstoffen zu der Komponente A zu vereinigen und als Komponente B die organischen Polyisocyanate zu verwenden. Vorteilhaft ist hierbei nicht nur, daß die Komponenten A und B getrennt beschränkte Zeit gelagert und raumsparend transportiert werden können, sondern vorteilhaft ist insbesondere, daß die Komponenten zur Herstellung der Polyurethanschaumstoffe vor Ort nur intensiv gemischt werden müssen. Die Verteilung der erfindungsgemäßen hydrophoben Polyurethanschaumstoffe auf Gewässern sowie die Abtrennung der mit 01 und/oder halogenhaltigen; hydrophoben Lösungsmitteln getränkten Polyurethanschaumstoffe von der Wasseroberfläche erfolgt mit Hilfe bekannter Vorrichtungen, die zweckmäßigerweise auf Schiffen oder in Flugzeugen installiert sind. ,
  • Werden die Polyurethanschaumstoffe nach dem Präpolymerverfahren 1--rgestellt, so werden die NCO-Gruppen aufweisende Präpolymeren, vorzugsweise in Form von (ösungen in organischen Lösungsmitteln, vorteilhafterweise unter Wasser verdüst. Durch Variation des Lösungsmittels kann das Sink-, Steigoder Schwebeverhalten über die Dichte der Präpolymerlösung in gewissen Grenzen variiert werden. Als geeignete Lösungsmittel kommen vorzugsweise solche in Betracht, die mit dem NCO-Gruppen aufweisenden Präpolymeren und dem zu absorbierenden Öl gut mischbar sind. Genannt seien beispielsweise Methylenchlorid, Toluol, Cylclohexan, Hexan u.a. Durch Wahl des Katalysators kann der Zeitpunkt der Umsetzung zu Polyurethanen beeinflußt werden. Durch das bei der Reaktion der NCO-Gruppen haltigen Präpolymeren mit Wasser gebildete Kohlendioxid wird die schaumfähige Präpolymermischung unter gleichzeitigem Aufschäumen aufgetrieben. Das expandierende und bereits expandierte Material steigt an die Wasseröberfläche und absorbiert von unten die aufliegende Öl- bzw. Lösungsmittelschicht. Die mit Öl und gegebenenfalls halogenhaltigen, hydrophoben Lösungsmittel getränkten Polyurethane können danach mit bekannten Methoden von der Wasseroberfläche abgetrennt werden. Zur Herstellung der NCO-Gruppen haltigen Präpolymeren werden die bereits genannten Polyisocyanate und Mischungen aus Polyhydroxyverbindungen und lipophilen Verbindungen in Gegenwart von gegebenenfalls Hilfs- und Zusatzstoffen in solchen Mengen zur Umsetzung gebracht, daß das Verhältnis von NCO-Gruppen zu Gesamthydroxyl der Mischung 50:1 bis 2:1, vorzugsweise 15:1 bis 5:1 beträgt.
  • Die erfindungsgemäßen hydrophoben Polyurethanschaumstoffe besitzen aufgrund ihres chemischen Aufbaus, ihrer Dichte und des Verhältnisses von offenen zu geschlossenen Zellen ein hohes Absorptionsvermögen für. Öl, beispielsweise Roh-, Heiz- und Dieselöl sowie für gegebenenfalls halogenhaltige hydrophobe Verbindungen, beispielsweise Lösungsmittel wie Hexan, Benzol, Toluol, Anilin, Chloroform, Tetrachlorkohlenstoff, Dichloräthan und Hexachiorcyclopentadien.
  • Die in den Beispielen genannten Teile beziehen sich auf das Gewicht.
  • Beispiel 1
  • Zur Herstellung des Polyurethanschaumstoffes wird eine Mischung aus
    Figure imgb0001
    • bei Raumtemperatur mit
    • 200 Teilen einer Mischung aus Diphenylmethan-diisocyanaten und Polyphenyl-polymethylen-polyisocyanaten (Roh-MDJ)
    • zur Reaktion gebracht.
    Vergleichsbeispiel A Eine Mischung aus
  • Figure imgb0002
    werden bei Raumtemperatur mit
    • 118 Teilen Toluylendiisocyanat

    umgesetzt. Vergleichsbeispiel B
  • Man verfährt analog den Angaben von Vergleichsbeispiel A, verwendet jedoch anstelle von Rizinusöl 20 Teil Tallöl
  • Vergleichsbeispiel C
  • Man verfährt analog den Angaben von Vergleichsbeispiel B, verwendet jedoch anstelle von Toluylendiisocyanat 200 Teile Roh-MDJ.
  • Beispiel 2 bis 5
  • Zur Herstellung von Polyurethanschaumstoffen werden Mischungen aus den in Tabelle 1 zusammengefaßten Komponenten bei Raumtemperatur (25°C) mit
    • 200 Teilen einer Mischung aus Diphenylmethan-diisocyanaten und Polyphenyl-polymethylen-polyisocyanaten (Roh-MDJ)

    umgesetzt.
  • Die erhaltenen Kenndaten und das Ölaufnahmevermögen der Schaumstoffe gemäß Beispiele 2 bis 5 und Vergleichsbeispiel A bis C sind in Tabelle 2 zusammengefaßt.
    Figure imgb0003
    Figure imgb0004
  • Beispiel 6
    • 25 Teil einer Mischung, bestehend aus
    • 21,7 Teilen eines trifunktionellen Polypropylenoxids mit einer OH-Zahl von 400 (Lupranol 3130 der BASF AG)
    • 21,7 Teilen eines Umsetzungsproduktes aus Ölsäure und Diäthanolamin (Luprintan HDF der BASF AG)
    • 1,3 Teilen eines silikonhaltigen Stabilisators (DC 190 der Dow Corning) und
    • 0,5-2 Teilen eines Aminkatalysators (Niax A1 der Union Carbide)

    werden mit 25 bis 75 Teilen eines organischen Lösungsmittels verdünnt und anschließend mit 100 Teilen Roh-MDJ zu einem Isocyanatgruppen haltigen Präpolymeren umgesetzt.
  • Die NCO-Gruppen haltige Präpolymerlösung wird anschließend unter Wasser verdüst.
  • Die Art und Menge der organischen Lösungsmittel sowie die verwendeten Katalysatorkonzentrationen sind in Tabelle 3 zusammengefaßt.
  • Das spezifische Gewicht des NCO-Gruppen haltigen Präpolymeren beträgt lösungsmittelfrei 1,3546 g/cm3.
  • Wie Tabelle 3 zeigt, kann durch Mischen des Präpolymeren mit organischen Lösungsmitteln die Dichte der Präpolymerlösung von 0,922 bis 1,333 g/cm3 variiert werden.
    Figure imgb0005
  • Beispiel 7 bis 19 und Vergleichsbeispiele D und E
  • Analog den Angaben von Beispiel 1 werden aus den in Tabelle 4 zusammengefaßten Ausgangskomponenten erfindungsgemäße Polyurethanschaumstoffe und gemäß Tabelle 5 zum Stand der Technik gehörende Vergleichsprodukte hergestellt.
  • Als Katalysator zur Herstellung der erfindungsgemäßen Schaumstoffe wird eine Mischung aus
    • 4 Teilen Dimethyläthanolamin,
    • 3 Teilen Triäthylen-diamin (ODabco 33LV der Firma Houdry Process) und
    • 2 Teilen eines Aminkatalysators (@Niax A 1 der Union Carbide Corp.)

    verwendet.
    Figure imgb0006
    Figure imgb0007
    Abkürzungen:
  • Figure imgb0008
  • Das Ölaufnahmevermögen der erfindungsgemäß hergestellten Schaumstoffe und Vergleichschaumstoffe wurde auf folgende Weise ermittelt:
    • Eine Wasseroberfläche von 1200 cm2 wurde mit 250 g der in Tabelle 6 genannten unpolaren Flüssigkeiten überschichtet. Auf die verunreinigte Oberfläche wurde eine 5 mm dicke Schaumstoffplatte 15 Minuten aufgelegt. Die Ölaufnahme wurde durch Auswiegen der Schaumplatte als das Vielfache des Schaumstoffgev thts nach folgender Gleichung bestimmt:
      Figure imgb0009
  • Die erhaltenen Ölaufnahmefaktoren sind in Tabelle 6 zusammengefaßt.
    Figure imgb0010
  • Die Versuche zeigen das sehr hohe Ölaufnahmevermögen der erfindungsgemäßen Schaumstoffe im Vergleich zu konventionellen Hart- und Weichschaumstoffen.
  • Säulentrennung: Eine Glas-Säule wurde mit Schaumstoffschnitzeln gefüllt und mit einer Mischung aus Wasser und unpolaren Flüssigkeiten bis zur Sättigung der Schaumstoffschnitzel beschickt. Die erhaltenen Ölaufnahmefaktoren sind in Tabelle 7 zusammengefaßt.
    Figure imgb0011

Claims (3)

1. Hydrophobe Polyurethanschaumstoffe zur Absorption von Öl und/oder gegebenenfalls halogenhaltigen, hydrophoben Verbindungen aus Wasser, hergestellt durch Umsetzung von organischen Polyisocyanaten mit Polyhydroxyverbindungen in Gegenwart von Wasser als Treibmittel und Katalysatoren sowie gegebenenfalls lipophilen Verbindungen, Kettenverlängerungsmitteln, Hilfsmitteln und Zusatzstoffen, dadurch gekennzeichnet, daß die hydrophoben Polyurethanschaumstoffe
a) eine Dichte von 5 bis 26,5 g/Liter besitzen,
b) die Zahl der geschlossenen Zellen 3 bis 30% und der offenen Zellen 97 bis 70%, bezogen auf die Gesamtzahl an Zellen, beträgt und
c) als Polyhydroxyverbindungen lineare und/oder verzweigte hydroxylgruppenhaltige Polyether mit Molekulargewichten von 300 bis 10000 verwendet werden, die durch Polymerisation von Tetrahydrofuran, 1,2- und 2,3-Butylenoxid, Propylenoxid oder Mischungen aus Propylenoxid und Ethylenoxid mit einem Ethylenoxidgehalt von kleiner als 20 Gew.-% bezogen auf das Gesamtgewicht der Mischung, erhalten werden.
2. Hydrophobe Polyurethanschaumstoffe nach Anspruch 1, dadurch gekennzeichnet, daß man
c) als Polyhydroxyverbindungen di- bis trifunktionelle hydroxylgruppenhaltige Polypropylenoxide mit Molekulargewichten von 2000 bis 6000, verwendet.
3. Hydrophobe Polyurethanschaumstoffe nach Anspruch 1, hergestellt nach dem one-shot-Verfahren in Gegenwart von lipophilen Verbindungen, dadurch gekennzeichnet, daß sie
a) eine Dichte von 6,8 bis 18 g/Liter besitzen, wobei
d) als lipophile Verbindungen gegebenenfalls substituierte, gesättigte und/oder ungesättigte aliphatische Fettsäuren mit 10 bis 25 Kohlenstoffatomen sowie deren Ester mit 2 bis 20 Kohlenstoffatomen im Alkoholrest und Amide verwendet werden mit der Maßgabe,
e) daß das molare Mengenverhältnis von Polyhydroxyverbindungen zu lipophilen Verbindungen 1 :3 bis 1:20 ist und
f) die Ausgangskomponenten in solchen Mengen zur Reaktion gebracht werden, daß
i) das Verhältnis sämtlicher Zerewitinoff-aktiver Wasserstoffatome, gebunden an Polyhydroxyverbindungen, Wasser, lipophile Verbindungen und gegebenenfalls Kettenverlängerungsmittel zu NCO-Gruppen der Polyisocyanate 1,3 bis 5:1 beträgt und
ii) das Verhältnis von Zerewitinoff aktiven Wasserstoffatomen gebunden an Polyhydroxyverbindungen, lipophile Verbindungen und gegebenenfals Kettenverlängerungsmittel zu NCO-Gruppen der Polyisocyanate 0,7 bis 1,3:1 ist.
EP78100702A 1977-08-25 1978-08-18 Hydrophobe Polyurethanschaumstoffe, Verfahren zu deren Herstellung und Verwendung zur Absorption von Öl und gegebenenfalls halogenhaltigen, hydrophoben Verbindungen aus Wasser Expired EP0000933B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2738268 1977-08-25
DE19772738268 DE2738268A1 (de) 1977-08-25 1977-08-25 Hydrophobe polyurethanschaumstoffe zur oelabsorption

Publications (2)

Publication Number Publication Date
EP0000933A1 EP0000933A1 (de) 1979-03-07
EP0000933B1 true EP0000933B1 (de) 1983-03-30

Family

ID=6017233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100702A Expired EP0000933B1 (de) 1977-08-25 1978-08-18 Hydrophobe Polyurethanschaumstoffe, Verfahren zu deren Herstellung und Verwendung zur Absorption von Öl und gegebenenfalls halogenhaltigen, hydrophoben Verbindungen aus Wasser

Country Status (4)

Country Link
US (1) US4237237A (de)
EP (1) EP0000933B1 (de)
JP (1) JPS5450099A (de)
DE (2) DE2738268A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759080B2 (en) 1999-09-17 2004-07-06 3M Innovative Properties Company Process for making foams by photopolymerization of emulsions
US7138436B2 (en) 2001-06-13 2006-11-21 3M Innovative Properties Company Uncrosslinked foams made from emulsions

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2901335A1 (de) * 1979-01-15 1980-07-31 Basf Ag Verfahren zur abtrennung von hydrophoben organischen fluessigkeiten aus wasser
US4310424A (en) * 1980-07-23 1982-01-12 Champion International Corporation Apparatus and method for removing suspended solids from a stream
NZ199916A (en) * 1981-03-11 1985-07-12 Unilever Plc Low density polymeric block material for use as carrier for included liquids
US4764282A (en) * 1986-09-26 1988-08-16 The Uniroyal Goodrich Tire Company Disposal of toxic and polymeric wastes
DE3711416A1 (de) * 1987-04-04 1988-05-19 Stuermer & Schuele Ohg Verfahren zur reinigung von wasser und vorrichtung dafuer
DE3718856A1 (de) * 1987-06-05 1988-12-22 Heinz Schnieders Wasser-aufbereitungsanlage fuer mit umweltschaedlichen, organischen substanzen, wie z.b. chlorierten kohlenwasserstoffen, verunreinigtes wasser
US4929359A (en) * 1988-01-26 1990-05-29 The United States Of America As Represented By The United States Department Of Energy Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction
US5074709A (en) * 1990-01-29 1991-12-24 Stensland Gary E Device and method for containing fluid spills
US5114272A (en) * 1990-07-02 1992-05-19 Brunhoff Frederic P Detachable boom and method for its use
US5248436A (en) * 1991-02-25 1993-09-28 Kovaletz Mark P Method for dispensing a fluidic media for treatment of waterborne spilled petroleum
US5507949A (en) * 1992-03-20 1996-04-16 Monsanto Company Supported liquid membrane and separation process employing same
ES2121981T3 (es) * 1992-03-20 1998-12-16 Monsanto Co Extraccion de compuestos organicos de soluciones acuosas.
US6764603B2 (en) 1992-08-07 2004-07-20 Akzo Nobel Nv Material for extracting hydrophobic components dissolved in water
MX9304854A (es) * 1992-08-11 1994-02-28 Monsanto Co Polimero polianfifilico solido, novedoso, que tiene uso en un procedimiento de separacion.
US5527834A (en) * 1994-11-30 1996-06-18 Inoac Corporation Waterproof plastic foam
GB2324798B (en) * 1997-05-01 1999-08-18 Ici Plc Open celled cellular polyurethane products
AU8728798A (en) * 1997-07-23 1999-02-16 Huntsman Ici Chemicals Llc Foam for absorbing hydrophobic liquids
US6100363A (en) * 1998-03-13 2000-08-08 Basf Corporation Energy absorbing elastomers
DE19928676A1 (de) 1999-06-23 2000-12-28 Basf Ag Polyisocyanat-Polyadditionsprodukte
US6353037B1 (en) 2000-07-12 2002-03-05 3M Innovative Properties Company Foams containing functionalized metal oxide nanoparticles and methods of making same
US6747068B2 (en) 2001-02-15 2004-06-08 Wm. T. Burnett & Co. Hydrophobic polyurethane foam
US20030013777A1 (en) * 2001-05-01 2003-01-16 James Thornsberry Closed-cell thermosetting plastic foams & methods of producing thereof using acetone and water as blowing agents
US7169318B1 (en) * 2003-03-18 2007-01-30 Hall Richard H Imbibed organic liquids, especially halogenated organics
DE102004013827A1 (de) * 2004-03-16 2005-10-06 Bulling, Walter Verfahren zum Herstellen eines Elementes aus weichelastischem PU-Schaumkunststoff und danach hergestelltes Element
WO2005113659A2 (en) * 2004-05-13 2005-12-01 Smart, Robert, P. Poly (p-pheneylene 2-6 benzobisoxazole) foams
WO2007104623A1 (en) * 2006-03-14 2007-09-20 Huntsman International Llc Composition made from a diisocyanate and a monoamine and process for preparing it
DE102007020910A1 (de) 2007-04-27 2008-11-06 Erich Kumpf Verfahren zum Herstellen eines Formstücks aus weichelastischem PU-Schaumkunststoff und danach hergestelltes Formstück zur Absorption von Kontaminationsstoffen im Wasser
US8313527B2 (en) 2007-11-05 2012-11-20 Allergan, Inc. Soft prosthesis shell texturing method
BRPI0917988A2 (pt) * 2008-08-13 2015-11-17 Allergan Inc revestimento suave de prótese preenchida com superfícies de fixação distintas
US9050184B2 (en) 2008-08-13 2015-06-09 Allergan, Inc. Dual plane breast implant
US8506627B2 (en) 2008-08-13 2013-08-13 Allergan, Inc. Soft filled prosthesis shell with discrete fixation surfaces
DE102009000578A1 (de) * 2009-02-03 2010-08-12 Alexander Noskow Polyurethansorbens zur Entfernung von Kohlenwasserstoffen und Verfahren zur Reinigung von mit Kohlenwasserstoffen verunreinigten wässrigen Umgebungen und festen Oberflächen, welches das Polyurethansorbens verwendet
US20110093069A1 (en) 2009-10-16 2011-04-21 Allergan, Inc. Implants and methdos for manufacturing same
US8889751B2 (en) 2010-09-28 2014-11-18 Allergan, Inc. Porous materials, methods of making and uses
US9044897B2 (en) 2010-09-28 2015-06-02 Allergan, Inc. Porous materials, methods of making and uses
US8877822B2 (en) 2010-09-28 2014-11-04 Allergan, Inc. Porogen compositions, methods of making and uses
US9205577B2 (en) 2010-02-05 2015-12-08 Allergan, Inc. Porogen compositions, methods of making and uses
US9138309B2 (en) 2010-02-05 2015-09-22 Allergan, Inc. Porous materials, methods of making and uses
US11202853B2 (en) 2010-05-11 2021-12-21 Allergan, Inc. Porogen compositions, methods of making and uses
US9023908B2 (en) 2010-05-27 2015-05-05 Basf Se Oil-absorbent polyurethane sponges with good mechanical properties
EP2390275A1 (de) 2010-05-27 2011-11-30 Basf Se Ölaufnehmende Polyurethanschwämme mit guten mechanischen Eigenschaften
US9115580B2 (en) 2010-08-20 2015-08-25 Baker Hughes Incorporated Cellular pump
WO2012024600A1 (en) * 2010-08-20 2012-02-23 Allergan, Inc. Implantable materials
US8616272B2 (en) 2010-08-20 2013-12-31 Baker Hughes Incorporated Downhole water-oil separation arrangement and method
DE102011007479A1 (de) * 2011-04-15 2012-10-18 Evonik Goldschmidt Gmbh Zusammensetzung, enthaltend spezielle Amide und organomodifizierte Siloxane, geeignet zur Herstellung von Polyurethanschäumen
BRPI1103089A2 (pt) * 2011-06-02 2012-07-10 Laurencio Cuevas Perlaza material absorvente para emprego na remoção de efluentes oleosos e processo para produção de material absorvente para emprego na remoção de efluentes oleosos
US8801782B2 (en) 2011-12-15 2014-08-12 Allergan, Inc. Surgical methods for breast reconstruction or augmentation
CN102786647B (zh) * 2012-06-01 2014-05-07 江苏瑞丰科技实业有限公司 一种可生物降解聚氨酯吸油材料及其制备方法
EP2677030A1 (de) 2012-06-21 2013-12-25 Latvijas Valsts Koksnes kimijas instituts Starre und flexible Polyurethanschäume als aus Holzrohmaterialien gewonnener Verbundstoff zur Verwendung bei der Immobilisierung von ligninolytische Enzyme produzierenden Mikroorganismen
AU2013359158B2 (en) 2012-12-13 2018-08-02 Allergan, Inc. Device and method for making a variable surface breast implant
US9724669B2 (en) 2013-02-14 2017-08-08 The Research Foundation For The State University Of New York Modified hydrophobic sponges
WO2015066665A2 (en) 2013-11-04 2015-05-07 The Research Foundation For The State University Of New York Modified hydrophobic sponges
US10092392B2 (en) 2014-05-16 2018-10-09 Allergan, Inc. Textured breast implant and methods of making same
US9539086B2 (en) 2014-05-16 2017-01-10 Allergan, Inc. Soft filled prosthesis shell with variable texture
CN104163934A (zh) * 2014-07-29 2014-11-26 江苏大学 一种多孔疏水亲油海绵的制备方法
CA3045033A1 (en) * 2016-11-29 2018-06-07 Salvatore A. Diloreto Spray foam building insulation for exterior applications
CN107892759A (zh) * 2017-10-19 2018-04-10 苏州无为环境科技有限公司 一种脂肪酸修饰的超疏水聚氨酯泡沫吸油材料的制备方法
CN108192322A (zh) * 2017-12-04 2018-06-22 张芸 一种疏水亲油型聚氨酯海绵的制备方法
CN108587122A (zh) * 2018-03-23 2018-09-28 长沙小新新能源科技有限公司 一种高吸油高回弹海绵及其制备方法
WO2021150174A1 (en) * 2020-01-20 2021-07-29 Özerden Plasti̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Low density polyurethane foam using functionalized castor oil

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE960855C (de) * 1954-08-20 1957-03-28 Bayer Ag Verfahren zur Herstellung von Urethan-Gruppen enthaltenden Schaumstoffen
US3165483A (en) * 1961-02-23 1965-01-12 Mobay Chemical Corp Skeletal polyurethane foam and method of making same
US3505250A (en) * 1966-09-08 1970-04-07 Mobay Chemical Corp Polyurethane plastics
US3476933A (en) * 1966-10-21 1969-11-04 Westinghouse Electric Corp Large-celled polyurethane foam
US3487927A (en) 1967-10-02 1970-01-06 Standard Oil Co Method and apparatus for separating water and oil
US3567663A (en) * 1968-01-05 1971-03-02 Scott Paper Co Low permeability polyurethane foam and process for the manufacture thereof
DE1944679A1 (de) * 1969-09-03 1971-03-04 Collo Rheincollodium Koeln Gmb Verfahren und Einrichtungen zur Beseitigung von OElverschmutzungen od.dgl.
US3679058A (en) * 1970-01-27 1972-07-25 Millard F Smith Oil collection boom
US3886067A (en) * 1970-02-03 1975-05-27 Salvatore W Miranda Process for controlling oil slicks
US3617551A (en) * 1970-03-18 1971-11-02 Standard Oil Co Apparatus and process for purifying oil-contaminated water
US3681237A (en) * 1971-03-26 1972-08-01 Membrionics Corp Oil spillage control process
GB1319747A (en) 1971-04-06 1973-06-06 Monsanto Res Corp Porous resinous bodies
CA996037A (en) * 1972-02-22 1976-08-31 John Jay Plastic foam filter
US3779908A (en) * 1972-03-17 1973-12-18 Continental Oil Co Coalescence of water and oleophilic liquid dispersions by passage through a permeable, oleophilic liquid equilibrated, foam of polyurethane
AT313206B (de) * 1972-03-20 1974-02-11 Peter Jakubek Dipl Ing Dr Tech Verfahren zum Reinigen von mit spezifisch leichteren Flüssigkeiten verunreinigten Flüssigkeiten sowie Vorrichtung zur Durchführung des Verfahrens
US3959191A (en) * 1973-01-11 1976-05-25 W. R. Grace & Co. Novel hydrophobic polyurethane foams
US3953406A (en) * 1973-01-26 1976-04-27 California Institute Of Technology Water-insoluble, swellable polyurethanes
US3888766A (en) * 1973-03-09 1975-06-10 Uniroyal Inc Oil sorption material
US3917528A (en) * 1973-05-29 1975-11-04 Sorbent Sciences Corp Foraminous composition for removal of oleophilic material from the surface of water
US3884848A (en) * 1973-11-14 1975-05-20 Tenneco Chem Manufacture of membrane-free nonlustrous polyurethane foam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759080B2 (en) 1999-09-17 2004-07-06 3M Innovative Properties Company Process for making foams by photopolymerization of emulsions
US7138436B2 (en) 2001-06-13 2006-11-21 3M Innovative Properties Company Uncrosslinked foams made from emulsions

Also Published As

Publication number Publication date
EP0000933A1 (de) 1979-03-07
DE2862213D1 (en) 1983-05-05
JPS5450099A (en) 1979-04-19
US4237237A (en) 1980-12-02
DE2738268A1 (de) 1979-03-08

Similar Documents

Publication Publication Date Title
EP0000933B1 (de) Hydrophobe Polyurethanschaumstoffe, Verfahren zu deren Herstellung und Verwendung zur Absorption von Öl und gegebenenfalls halogenhaltigen, hydrophoben Verbindungen aus Wasser
EP0296449B1 (de) Verfahren zur Herstellung von kalthärtenden Polyurethan-Weichformschaumstoffen
EP0013412B1 (de) Verfahren zur Abtrennung von hydrophoben organischen Flüssigkeiten aus Wasser
DE4303556C1 (de) Harte Polyurethane oder Polyurethanschaumstoffe
DE2542217C2 (de) Fester Polyurethanschaumstoff und Verfahren zu seiner Herstellung
DE3818769A1 (de) Fluessige polyisocyanatmischungen, ein verfahren zu ihrer herstellung und ihre verwendung zur herstellung von polyurethan-weichschaumstoffen
WO1995014730A1 (de) Verfahren zur herstellung von harten polyurethanschaumstoffen
DE2711735C2 (de)
EP0004879B1 (de) Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen unter Verwendung einer urethanmodifizierten Mischung aus Diphenylmethan-diisocyanaten und Polyphenyl-polymethylen-polyisocyanaten mit einem Diphenylmethan-diisocyanat-Isomerengehalt von 55 bis 85 Gewichtsprozent als Polyisocyanat
EP0004617B1 (de) Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen mit hoher Trag- und Stossabsorptionsfähigkeit auf Basis von Roh-MDI mit einem Diphenylmethan-diisocyanatgehalt von 55 bis 85 Gew.% und Polyesterolen
EP0624619B1 (de) Harte hydrophobe Polyurethane
DE69010982T2 (de) Polyurethan-Weichschaumstoffe sowie Verfahren zu deren Herstellung.
DE2644956A1 (de) Ternaere gemische und deren verwendung
EP0550901B1 (de) Flüssige, helle Polyisocyanatgemische, ein Verfahren zu ihrer Herstellung und ihre Verwendung bei der Herstellung von hellen, harten Polyurethan-Schaumstoffen
DE1078322B (de) Verfahren zur Herstellung von Urethangruppen enthaltenden Schaumstoffen
DE1924302A1 (de) Verfahren zur Herstellung von Urethangruppen und Biuretgruppen aufweisenden Kunststoffen
EP0099531A2 (de) Stabile Wasserglaslösungen, Verfahren zu deren Herstellung und Verwendung für Organosilikatschaumstoffe sowie ein Herstellungs-verfahren hierfür
DE3200111C2 (de)
EP0903360B1 (de) Hydrophile Polyester-Polyurethan-Schaumstoffe, ein Verfahren zu deren Herstellung und deren Verwendung als feuchtigkeitsaufnehmende Werkstoffe
DE2032174A1 (de) Verfahren zur Herstellung von flammfesten, Urethangruppen aufweisenden Hartschaumstoffen
DE10111823A1 (de) Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen
EP0625997B1 (de) Aminocarbonat-verbindungen und deren anwendung als katalysatoren
EP0358075B1 (de) Verfahren zur Herstellung von heisshärtenden Polyurethan-Weichformschaumstoffen
EP0017948B1 (de) Verfahren zur Herstellung von Polyurethanschaumstoffen
DE2542218C2 (de) Fester Polyurethanschaumstoff und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB

REF Corresponds to:

Ref document number: 2862213

Country of ref document: DE

Date of ref document: 19830505

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840719

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840720

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840930

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19880831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880901

BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 19880831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890428

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT