DK149795B - PARTY PYROLYZED POLYMER PARTICLES AND PROCEDURES FOR THEIR PREPARATION - Google Patents

PARTY PYROLYZED POLYMER PARTICLES AND PROCEDURES FOR THEIR PREPARATION Download PDF

Info

Publication number
DK149795B
DK149795B DK064676AA DK64676A DK149795B DK 149795 B DK149795 B DK 149795B DK 064676A A DK064676A A DK 064676AA DK 64676 A DK64676 A DK 64676A DK 149795 B DK149795 B DK 149795B
Authority
DK
Denmark
Prior art keywords
approx
carbon
particles
partially pyrolyzed
particles according
Prior art date
Application number
DK064676AA
Other languages
Danish (da)
Other versions
DK149795C (en
DK64676A (en
Inventor
Laurence Ivan Peterson
James Watson Neely
Steven Lee Rock
Carl Joseph Kollman
Robert Kunin
Original Assignee
Rohm & Haas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/652,019 external-priority patent/US4040990A/en
Priority claimed from US05/654,323 external-priority patent/US4064043A/en
Priority claimed from US05/654,265 external-priority patent/US4063912A/en
Priority claimed from US05/654,261 external-priority patent/US4064042A/en
Application filed by Rohm & Haas filed Critical Rohm & Haas
Publication of DK64676A publication Critical patent/DK64676A/en
Priority to DK356678A priority Critical patent/DK156265C/en
Publication of DK149795B publication Critical patent/DK149795B/en
Application granted granted Critical
Publication of DK149795C publication Critical patent/DK149795C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/82Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

i 140795in 140795

Den foreliggende opfindelse angår delvist pyrolyserede partikler af en makroporøs syntetisk polymer, hvilke partikler har egenskaber, som er egnede til brug ved adsorption, molekylsigt-ning og/eller katalyse, og har stor modstandsdygtighed over for knusning og partikelafstødning, samt en fremgangsmåde til fremstilling af de delvist pyrolyserede partikler.The present invention relates to partially pyrolyzed particles of a macroporous synthetic polymer, which have properties suitable for use in adsorption, molecular sieving and / or catalysis, and have high resistance to crushing and particle repellency, as well as to a process for the preparation of the partially pyrolyzed particles.

De delvist pyrolyserede partikler kan anvendes til fjernelse af urenheder såsom svovlforbindelser, monomere og andre industrielle kontaminanter eller forureninger fra gasser, og til rensning af forureningsholdige væskestrømme såsom fjernelse af phenol-forbindelser fra spildevandsstrømme og barbituater fra blod. De kan endvidere benyttes som adsorptionsmidler til vinylchloridfjernel se, blodrensning, phenolgenvinding og, når metaller inkorporeres, specielt til brug som katalytiske midler til industrielle og laboratoriemæssige fremgangsmåder.The partially pyrolyzed particles can be used to remove impurities such as sulfur compounds, monomers and other industrial contaminants or gases contaminants, and to purify contaminated liquid streams such as removal of phenol compounds from wastewater streams and blood barbiturates. They can also be used as adsorbents for vinyl chloride removal, blood purification, phenol recovery and, when metals are incorporated, especially for use as catalytic agents for industrial and laboratory processes.

Det mest almindeligt anvendte adsorptionsmiddel er idag aktiveret carbon. Til fremstillingen af aktiveret carbon til industrielt formål anvendes et bredt spektrum af carbonholdige udgangsmaterialer såsom antracit og bituminøst kul, koks, carboniserede flager, tørv, etc. Sådanne materialers egnethed afhænger af et lavt askeindhold og tilgængelighed i en ensartet og ikke skiftende kvalitet.The most commonly used adsorbent today is activated carbon. For the manufacture of activated carbon for industrial purposes, a wide range of carbonaceous starting materials such as anthracite and bituminous coal, coke, carbonized flakes, peat, etc., are used.

Fremgangsmåderne til aktivering kan betragtes som tilhørende to kategorier. Den første kategori omfatter "kemiske aktiveringsfremgangsmåder", hvorved de carbonholdige materialer, eller af og til de forkullede materialer,imprægneres med et eller flere aktiverende midler såsom zinkchlorid, alkalicarbonater, sulfater, bisulfater, svovl- eller phosphorsyre, hvorefter de pyrolyseres (carboniseres). Virkningen af disse materialer synes at være, at de bevirker dehydro-genering med højt udbytte af carbon uden følgeskab af tjæreagtige materialer. Den anden kategori omfatter fremgangsmåder kendt som "varmebehandling", hvorved forkullede materialer opvarmes til temperaturer mellem 350 og 1000°C i nærværelse af C02, N2, 02, HC1, Cl2, H20 og andre gasser. En del af det forkullede materiale brændes, da overfladearealet og "aktiviteten" af carbonet forøges. Ved hjælp af omhyggelig kontrol af aktiveringsparametre er producenter idag i 2 149795 stand til at fremstille produkter med stort overfladeareal (800-2000 m /g) i et bredt område af ensartede partikelstørrelser.The activation methods can be considered as belonging to two categories. The first category includes "chemical activation methods" whereby the carbonaceous materials, or sometimes the charred materials, are impregnated with one or more activating agents such as zinc chloride, alkali carbonates, sulfates, bisulfates, sulfuric or phosphoric acids, and then pyrolyzed (carbonized). The effect of these materials appears to be to cause high dehydrogenation of carbon without the consequence of tar-like materials. The second category includes methods known as "heat treatment" whereby charred materials are heated to temperatures between 350 and 1000 ° C in the presence of CO 2, N 2, O 2, HCl, Cl 2, H 2 O and other gases. Part of the charred material burns as the surface area and "activity" of the carbon increase. With careful control of activation parameters, manufacturers are today able to produce products with large surface area (800-2000 m / g) in a wide range of uniform particle sizes.

Fremstilling af aktiveret carbon ved de ovenfor beskrevne fremgangsmåder giver materialer med de højest opnåelige carbonkapacite-ter for et bredt spektrum af adsorbater i både flydende fase og gasfase. Disse materialer har imidlertid følgende ulemper: a) vanskelig og bekostelig termisk regenerering b) høje regenereringstab på 10%/cyklus c) skørhed af partiklerne af -aktivt carbon d) mangel på kontrol med udgangsmaterialer.Preparation of activated carbon by the methods described above provides materials with the highest achievable carbon capacities for a wide range of both liquid phase and gas phase adsorbates. However, these materials have the following disadvantages: a) difficult and expensive thermal regeneration b) high regeneration losses of 10% / cycle c) brittleness of the particles of inactive carbon d) lack of control of starting materials.

Adsorptionsmidlerne fremstillet ifølge opfindelsen ved hjælp af pyrolyse af syntetiske organiske polymere er fortrinsvis kugleformede partikler, da denne form besidder en høj grad af strukturel integritet. De brækker ikke let i stykker eller afstøder støvpartikler,som det er tilfældet med aktivt carbon. Fordi de således ikke er skøre, er det regenerative tab hyppigt lavere,end hvad der er sædvanligt for aktivt carbon.The adsorbents prepared according to the invention by means of pyrolysis of synthetic organic polymers are preferably spherical particles, since this form has a high degree of structural integrity. They do not break easily or repel dust particles, as is the case with activated carbon. Thus, because they are not brittle, the regenerative loss is frequently lower than what is usual for activated carbon.

Pyrolyse af syntetiske organiske polymere tillader ydermere en meget højere grad af kontrol med udgangsmaterialerne og dermed med slutproduktet, end det er muligt med naturligt forekommende råmaterialer, som anvendes til fremstilling af aktiverede carbontyper.Furthermore, pyrolysis of synthetic organic polymers allows a much higher degree of control of the starting materials and thus of the final product than is possible with naturally occurring raw materials used in the production of activated carbon types.

- Inkorporering af ønskelige elementer og funktionelle grupper til forbedring af adsorptionsevnen over for specifikke adsorbater gennemføres let. Kontrol af den gennemsnitlige porestørrelse og porestørrelsefordelingen gennemføres meget lettere med veldefinerede syntetiske udgangsmaterialer. Denne forøgede kontrol tillader fremstilling af adsorptionsmidler, som er udformet med henblik på specifikke adsorbater og med adsorptionskapaciteter, som er langt større, end hvad der er muligt med aktiverede carbontyper.- Incorporation of desirable elements and functional groups to improve the adsorbability to specific adsorbates is easily accomplished. Controlling the average pore size and pore size distribution is much easier with well-defined synthetic starting materials. This increased control permits the production of adsorbents designed for specific adsorbates and with adsorption capacities far greater than is possible with activated carbon types.

Den foreliggende opfindelse tilvejebringer delvist pyrolyserede partikler, fortrinsvis i form af perler eller kugler, som er fremstillet ved kontrolleret dekomponering af en syntetisk polymer med specifik initialporøsitet.The present invention provides partially pyrolyzed particles, preferably in the form of beads or beads, produced by controlled decomposition of a synthetic polymer with specific initial porosity.

149795 3149795 3

De delvist pyrolyserede partikler ifølge opfindelsen er således ejendommelige ved, at de er dannet ved kontrolleret termisk nedbrydning af en makroporøs syntetisk polymer, som indeholder en carbonfikserende gruppe, dvs. en gruppe, der tillader polymeren at forkulle uden at smelte, og som er afledt af en eller flere ethy-lenisk umættede monomere eller monomere, som kan kondenseres til frembringelse af makroporøsé polymere, eller blandinger deraf, hvilke delvist pyrolyserede partikler har (a) et carbonindhbld på i det mindste 85 vægt-%, (b) en multimodal porefordeling med makroporer af størrelse i området fra ca. 50 Å til ca. 100.000 Å i gennemsnitlig porediameter, og (c) et carbon-til-hydrogen atomforhold på mellem ca. 1,5:1 og ca. 20:1.Thus, the partially pyrolyzed particles of the invention are characterized in that they are formed by controlled thermal decomposition of a macroporous synthetic polymer containing a carbon-fixing group, i.e. a group which allows the polymer to char without melting, and which is derived from one or more ethylenically unsaturated monomers or monomers which can be condensed to produce macroporous polymers, or mixtures thereof, which have partially pyrolyzed particles (a) carbon content of at least 85 wt.%; (b) a multimodal pore distribution with macropores of size ranging from ca. 50 Å to approx. 100,000 Å in average pore diameter, and (c) a carbon-to-hydrogen atomic ratio of about 1.5: 1 and approx. 20: 1.

Opfindelsen tilvejebringer desuden en fremgangsmåde til fremstilling af sådanne delvist pyrolyserede partikler, hvilken fremgangsmåde er ejendommelig ved, at en makroporøs syntetisk polymer, som indeholder en carbonfikserende gruppe, dvs. en gruppe, der tillader polymeren at forkulle uden at smelte, og som er afledt af en eller flere ethylenisk umættede monomere eller monomere, som kan kondenseres til frembringelse af makroporøsé polymere eller blandinger deraf, nedbrydes termisk ved en temperatur mellem ca. 300UC og ca. 900°C i en inert gasformig atmosfære, som eventuelt indeholder en aktiverende gas, i et tidsrum, som er tilstrækkeligt til fra den syntetiske polymer at afdrive en mængde flygtige komponenter under dannelse af partikler, som har (a) et carbonindhold på i det mindste 85 vægt-%, (b) en multimodal porefordeling med makroporer af størrelse i området fra ca. 50 Å til ca. 100.000 Å i gennemsnitlig porediameter, og (c) et carbon-til-hydrogen atomforhold på mellem ca. 1,5:1 og ca. 20:1, hvorefter partiklerne afkøles i den inerte atmosfære til en temperatur, som er tilstrækkelig lav til, at oxidation i luft ikke indtræffer.The invention further provides a process for preparing such partially pyrolyzed particles, which is characterized in that a macroporous synthetic polymer containing a carbon fixing group, i.e. a group which allows the polymer to char without melting, and which is derived from one or more ethylenically unsaturated monomers or monomers condensable to produce macroporous polymers or mixtures thereof, thermally decomposes at a temperature between about 300UC and approx. 900 ° C in an inert gaseous atmosphere, optionally containing an activating gas, for a period sufficient to evaporate from the synthetic polymer an amount of volatile components to form particles having (a) a carbon content of at least (B) a multimodal pore distribution with macropores of size ranging from ca. 50 Å to approx. 100,000 Å in average pore diameter, and (c) a carbon-to-hydrogen atomic ratio of about 1.5: 1 and approx. 20: 1, after which the particles are cooled in the inert atmosphere to a temperature sufficiently low that oxidation in air does not occur.

I en foretrukket udførelsesform frembringes de pyrolyserede partikler ved termisk dekomponering af makroporøsé ionbytningsharpikser, som indeholder en makroporestruktur.In a preferred embodiment, the pyrolyzed particles are produced by thermal decomposition of macroporous ion exchange resins containing a macropore structure.

Pyrolyse omfatter i almindelighed, at udgangspolymeren underkastes kontrollerede temperaturer i kontrollerede tidsrum under visse 4 149795 omgivelsesbetingelser. Det primære formål med pyrolyse er termisk nedbrydning under effektiv fjernelse af de frembragte flygtige produkter .Pyrolysis generally comprises subjecting the starting polymer to controlled temperatures for controlled periods of time under certain ambient conditions. The primary purpose of pyrolysis is thermal decomposition during efficient removal of the volatile products produced.

Maksimumtemperaturerne kan variere fra ca. 300°C til op til ca. 900°C, afhængigt af polymeren, som skal behandles, og den ønskede sammensætning af de færdige pyrolyserede partikler. Højere temperatur, f.eks. 700°C og derover, resulterer i vidtgående nedbrydning af polymeren med dannelse af porer af molekylsigtestørrelse i produktet.The maximum temperatures can range from approx. 300 ° C up to approx. 900 ° C, depending on the polymer to be treated and the desired composition of the finished pyrolyzed particles. Higher temperature, e.g. 700 ° C and above, results in widespread degradation of the polymer with formation of molecular sieve pores in the product.

Det er højst ønskeligt, at termisk dekomponering (alternativt betegnet "pyrolyse" eller "varmebehandling") gennemføres i en inert atmosfære i form af f.eks. argon, neon, helium, nitrogen eller lignende, under anvendelse af perler af makroporøs syntetisk polymer substitueret med en carbonfikserende gruppe, som tillader polymeren at forkulle uden at smelte, således at den makroporøse struktur bevares, og et højt udbytte af carbon frembringes. Blandt de egnede carbonfikserende grupper er sulfonat, carboxyl, amin, halogen, oxygen, sulfonatsalte, carboxylatsalte og kvaternære ammoniumsalte. Disse grupper indføres i udgangspolymeren ved hjælp af velkendte konventionelle teknikker, såsom de omsætninger, der anvendes til at gøre polymere funktionelle til fremstilling af ionbytningsharpikser. Carbonfikserende grupper kan også frembringes ved opsugning af en reaktiv præ-kursor derfor i porerne af den makroporøse polymer, som derefterf eller under opvarmning, kemisk binder carbonfikserende grupper til polymeren. Eksempler på disse sidste reaktive prækursorer omfatter svovlsyre, oxidationsmidler, salpetersyre, Lewis syrer, acrylsyre og lignende.It is highly desirable that thermal decomposition (alternatively termed "pyrolysis" or "heat treatment") is carried out in an inert atmosphere in the form of e.g. argon, neon, helium, nitrogen or the like, using beads of macroporous synthetic polymer substituted with a carbon-fixing group which allows the polymer to char without melting so that the macroporous structure is preserved and a high yield of carbon is produced. Suitable carbon-fixing groups are sulfonate, carboxyl, amine, halogen, oxygen, sulfonate salts, carboxylate salts and quaternary ammonium salts. These groups are introduced into the starting polymer by well-known conventional techniques, such as the reactions used to render polymers functional in the production of ion exchange resins. Carbon fixing groups can also be generated by aspirating a reactive precursor, therefore, into the pores of the macroporous polymer, which then or during heating chemically binds carbon fixing groups to the polymer. Examples of these last reactive precursors include sulfuric acid, oxidizing agents, nitric acid, Lewis acids, acrylic acid and the like.

Temperaturer, som er passende for udøvelse af fremgangsmåden ifølge opfindelsen, ligger i området fra ca. 300°C til ca. 900°C, skønt højere temperaturer kan være egnede, afhængigt af polymeren, som skal behandles, og den ønskede sammensætning af det færdige pyrolyserede produkt. Ved temperaturer over ca. 700°C nedbrydes udgangspolymeren vidtgående under dannelse af porer af molekylsigtestørrelse i produktet, dvs. en gennemsnitlig porediameter på ca. 4 - 6 Å, hvorved en foretrukket klasse af adsorptionsmidler 5 149795 ifølge opfindelsen frembringes. Ved lavere temperaturer ligger de termisk dannede porer sædvanligvis i området fra ca. 6 Å til så højt som 50 Å i gennemsnitlig porediameter. Området mellem ca.Temperatures suitable for practicing the method of the invention are in the range of approx. 300 ° C to approx. 900 ° C, although higher temperatures may be suitable, depending on the polymer to be treated and the desired composition of the final pyrolyzed product. At temperatures above approx. 700 ° C, the starting polymer is extensively decomposed to form pores of molecular sieve size in the product, i.e. an average pore diameter of approx. 4 to 6 Å, thereby producing a preferred class of adsorbents according to the invention. At lower temperatures, the thermally formed pores are usually in the range of from ca. 6 Å to as high as 50 Å in average pore diameter. The area between approx.

400°C og 800°C er et foretrukket område for pyrolysetemperaturer.400 ° C and 800 ° C is a preferred range for pyrolysis temperatures.

Som det senere vil blive forklaret mere fuldstændigt, er temperaturkontrol væsentlig for, at det ønskede produkts sammensætning, overfladeareal, porestruktur og andre fysiske karakteristika kan frembringes. Varigheden af den termiske behandling er relativt uvæsentlig, forudsat at en minimumsindvirkningstid af den forhøjede temperatur overholdes.As will be more fully explained later, temperature control is essential for the composition, surface area, pore structure and other physical characteristics of the desired product to be produced. The duration of the thermal treatment is relatively insignificant, provided that a minimum impact time of the elevated temperature is observed.

Ved kontrol af betingelserne for den termiske dekomponering, og i særdeleshed af temperaturen, fikseres grundstofsammensætningen, og særligt vigtigt carbon-til-hydrogen atomforholdet (C/H) i de færdigfremstillede partikler på den ønskede sammensætning. Kontrolleret varmebehandling giver partikler, som med hensyn til værdien af C/H forholdet er en mellemting mellem aktiveret carbon og de kendte polymer-adsorptionsmidler.In controlling the conditions of the thermal decomposition, and in particular of the temperature, the elemental composition, and particularly important the carbon-to-hydrogen atomic ratio (C / H) of the finished particles, is fixed to the desired composition. Controlled heat treatment produces particles which, in terms of the value of the C / H ratio, are an intermediate between activated carbon and the known polymer adsorbents.

Den efterfølgende tabel illustrerer virkningen af maksimum-pyrolysetemperatur på C/H forholdet af slutproduktet under anvendelse af makroporøse funktionaliserede polymere som udgangsmaterialer.The following table illustrates the effect of maximum pyrolysis temperature on the C / H ratio of the final product using macroporous functionalized polymers as starting materials.

TABEL ITABLE I

Udgangsmateriale- Maksimum pyrolyse- C/H forhold i sammensætning temperatur_ produkt_ (1) Styren/divinyl-benzen copolymer-adsorptionsmiddel (kontrol) 1 (2) Styren/divinyl-benzen ionbytningsharpiks med sulfon-syre-funktionalitet (H+ form) 400 C 1,66 (3) Samme som (2) 500°C 2,20 (4) Samme som (2) 600°C 2,85 (5) Samme som (2) 800°C 9,00 (6) Aktiveret carbon ubetydelig mængde hydrogen 6 149795Starting material- Maximum pyrolysis C / H ratio in composition temperature_ product_ (1) Styrene / divinyl-benzene copolymer adsorbent (control) 1 (2) Styrene / divinyl-benzene ion exchange resin with sulfonic acid functionality (H + form) 400 C 1 , 66 (3) Same as (2) 500 ° C 2.20 (4) Same as (2) 600 ° C 2.85 (5) Same as (2) 800 ° C 9.00 (6) Activated carbon negligible amount of hydrogen 6

Et bredt spektrum af pyrolyserede harpikser kan fremstilles ved, at porøsiteten og/eller den kemiske sammensætning af udgangspolymeren varieres, og også ved at betingelserne for den termiske dekomponering varieres. De pyrolyserede harpikser ifølge opfindelsen har i almindelighed et carbon-til-hydrogen forhold på 1,5:1 til 20:1, fortrinsvis 2,0:1 til 10:1, hvorimod aktiveret carbon sædvanligvis har et C/H forhold, som er meget højere, i det mindste større end 30:1 (Carbon and Graphite Handbook, Charles L. Mantell, Interscience Publishers, N.Y. 1968, side 198). Produktpartiklerne indeholder i det mindste 85 vægt% carbon, idet resten i det væsentlige udgøres af hydrogen, alkalimetaller, jordalkalimetaller, nitrogen, oxygen, svovl, chlor, etc. hidrørende fra polymeren eller den funktionelle gruppe (carbonfikserende gruppe), som er indeholdt deri, og hydrogen, oxygen, svovl, nitrogen, alkalimetaller, overgangsmetaller, jordalkalimetaller og andre grundstoffer, som er indført i polymerporerne som komponenter i et fyldstof (kan tjene som en katalysator og/eller carbonfikserende gruppe eller have et hvilket som helst andet funktionelt formål).A wide range of pyrolyzed resins can be prepared by varying the porosity and / or the chemical composition of the starting polymer and also by varying the conditions of the thermal decomposition. The pyrolyzed resins of the invention generally have a carbon-to-hydrogen ratio of 1.5: 1 to 20: 1, preferably 2.0: 1 to 10: 1, whereas activated carbon usually has a C / H ratio which is much higher, at least greater than 30: 1 (Carbon and Graphite Handbook, Charles L. Mantell, Interscience Publishers, NY 1968, page 198). The product particles contain at least 85% by weight of carbon, the remainder being essentially hydrogen, alkali metals, alkaline earth metals, nitrogen, oxygen, sulfur, chlorine, etc., derived from the polymer or functional group (carbon fixing group) contained therein. and hydrogen, oxygen, sulfur, nitrogen, alkali metals, transition metals, alkaline earth metals, and other elements introduced into the polymer pores as components of a filler (may serve as a catalyst and / or carbon fixing group or have any other functional purpose).

Slutproduktets porestruktur s;kal indeholde i det mindste to forskellige sæt af porer med forskellig gennemsnitlig størrelse, dvs. multimodal porefordeling. De større porer hidrører fra det makroporøse harpiksagtige udgangsmateriale, som fortrinsvis indeholder makro-porer i området fra ca. 50 til ca. 100.000 Ångstrøm i gennemsnitlig kritisk dimension. De mindre porer har som tidligere nævnt i almindelighed størrelser i området fra ca. 4 til ca. 50 Å, stort set afhængende af maksimumtemperaturen under pyrolysen. Denne multi-modale porefordeling må betragtes som en hidtil ukendt og væsentlig egenskab ved materialet ifølge opfindelsen.The pore structure of the final product must contain at least two different sets of pores of different average sizes, viz. multimodal pore distribution. The larger pores are derived from the macroporous resinous starting material, which preferably contains macropores in the range of from about. 50 to approx. 100,000 Angstroms in average critical dimension. The smaller pores, as mentioned earlier, generally have sizes in the range of approx. 4 to approx. 50 Å, largely depending on the maximum temperature during the pyrolysis. This multi-modal pore distribution must be considered as a novel and essential property of the material of the invention.

De pyrolyserede polymere ifølge opfindelsen har et relativt stort overfladeareal, som skyldes makroporøsiteten af udgangsmaterialet og de mindre porer, som er udviklet under pyrolyse. Overfladearealet, målt ved N9-adsorption, ligger i almindelighed mellem ca. 50 og 2 ^ 1500 m /g. Af dette vil makroporerne normalt bidrage med ca. 6 til 2 2 ca. 700 m /g, fortrinsvis 6 - 200 m /g, bestemt ved kviksølvadsorptionsteknikken, mens det resterende hidrører fra den termiske behand- 7 149795 ling. Porefri polymere, såsom harpikser af "gel"-typen, som er blevet underkastet termisk behandling i den kendte teknik (jfr. f.eks. østtysk patentskrift nr. 27.022 og nr. 63.768) har ikke de store porer, som er væsentlige for adsorptionsmidlerne ifølge opfindelsen, lige så lidt som de udviser samme effektivitet som de pyrolyserede polymere beskrevet heri. Den efterfølgende tabel illustrerer makro-porøsitetens virkning på produktsammensætningen:The pyrolyzed polymers of the invention have a relatively large surface area due to the macroporosity of the starting material and the smaller pores developed during pyrolysis. The surface area, as measured by N9 adsorption, is generally between ca. 50 and 2 ^ 1500 m / g. Of this, the macropores will usually contribute approx. 6 to 2 2 approx. 700 m / g, preferably 6 - 200 m / g, as determined by the mercury adsorption technique, while the remainder derives from the thermal treatment. Pore-free polymers, such as "gel" resins which have been subjected to thermal treatment in the prior art (cf., for example, East German Patent No. 27,022 and No. 63,768) do not have the large pores that are essential for the adsorbents. according to the invention, as little as they exhibit the same efficiency as the pyrolyzed polymers described herein. The following table illustrates the effect of macroporosity on the product composition:

•Tabel II• Table II

Adsorptionsmidler fremstillet ud fra sulfonerede styren/divinylbenzen copolymere* med varierende makroporøsitet_____Adsorbents prepared from sulfonated styrene / divinylbenzene copolymers * with varying macroporosity _____

Efter _Før pyrolyse_ pyrolyseAfter _Before pyrolysis_ pyrolysis

Prøve Polymer- % Gennemsnit- Overflade- Overflade- nr. type DVB lig porestør- areal areal _ _ _ relse Å_____ (m2/g) _ 1 ikke-porøs 8 0 0 32 2 makroporøs 20 300 45 338 3 " 50 ca.100 130 267 4 " 80 50 570 570 5 " 6 ^ 20.000 6 360 * Alle copolymere sulfoneredes til i det mindste.Sample Polymer% Average- Surface- Surface No. type DVB equal pore size area area _ _ _ size Å _____ (m2 / g) _ 1 non-porous 8 0 0 32 2 macroporous 20 300 45 338 3 "50 approx. 130 267 4 "80 50 570 570 5" 6 ^ 20,000 6 360 * All copolymers were sulfonated to at least.

90% af teoretisk maksimalværdi og opvarmedes i· inert atmosfære til 800°C.90% of theoretical maximum value and heated in an inert atmosphere to 800 ° C.

Som det kan ses af dataene i tabel II, står det endelige overfladeareal ikke altid i direkte relation til porøsiteten af udgangsmaterialet. Overfladearealet af de makroporøse polymere, der anvendes som udgangsmateriale,varierer med en faktor på næsten 100, mens de varmebehandlede harpikser kun adskiller sig fra hinanden med en faktor på ca. 2. Den ikke-porøse "gel"-harpiks har et overfladeareal, som ligger et godt stykke under området for udgangsmaterialerne ifølge opfindelsen, og den giver et produkt, som har et overfladeareal væsentligt under de varmebehandlede makroporøse harpiksers.As can be seen from the data in Table II, the final surface area is not always directly related to the porosity of the starting material. The surface area of the macroporous polymers used as starting material varies by a factor of nearly 100, whereas the heat-treated resins differ only by a factor of approx. 2. The non-porous "gel" resin has a surface area well below the range of the starting materials of the invention and provides a product having a surface area substantially below the heat-treated macroporous resins.

8 1497958 149795

Pyrolysens varighed afhænger af det tidsrum, som er nødvendigt til fjernelse af de flygtige komponenter fra den pågældende polymer og den valgte fremgangsmådes varmeoverførselskarakteristika. Pyro-lySen sker i almindelighed meget hurtigt, når varmeoverførslen sker hurtigt, f.eks. i en ovn, hvor et tyndt lag materiale pyrolyseres, eller i et fluidiseret leje. For at forhindre den pyrolyserede polymer i at brænde reduceres polymerens temperatur sædvanligvis til ikke mere end 400°C, fortrinsvis ikke mere end 300°C, før det pyrolyserede materiale udsættes for luft. Den mest Ønskede gennemførelse af fremgangsmåden omfatter hurtig opvarmning til maksimumtemperaturen, fastholdelse af temperaturen på maksimet i et kort tidsrum (af størrelsesordenen 0-20 minutter) efterfulgt af hurtig reduktion af temperaturen til stuetemperatur før udtagning af prøven. Produkter ifølge opfindelsen er blevet fremstillet ved denne foretrukne fremgangsmåde ved opvarmning til 800°C og afkøling i et tidsrum på 20 - 30 minutter. Også længere perioder ved de forhøjede temperaturer er tilfredsstillende, da der ikke synes at indtræffe yderligere de-komponering, medmindre temperaturen forøges.The duration of the pyrolysis depends on the amount of time needed to remove the volatile components from the polymer concerned and the heat transfer characteristics of the selected process. Generally, the pyro-light occurs very quickly when the heat transfer occurs rapidly, e.g. in an oven where a thin layer of material is pyrolyzed, or in a fluidized bed. In order to prevent the pyrolyzed polymer from burning, the temperature of the polymer is usually reduced to no more than 400 ° C, preferably no more than 300 ° C, before the pyrolyzed material is exposed to air. The most desirable implementation of the method involves rapid heating to the maximum temperature, maintaining the temperature at the maximum for a short period of time (of the order of 0-20 minutes), followed by rapid reduction of the temperature to room temperature before sampling. Products of the invention have been prepared by this preferred method of heating to 800 ° C and cooling for a period of 20-30 minutes. Also, longer periods at the elevated temperatures are satisfactory, as no further decomposition appears to occur unless the temperature is increased.

Små mængder af aktiverende gasser såsom CO2, SO^, O2, H20 eller kombinationer deraf har en tendens til at reagere med polymeren under pyrolysen og forøge overfladearealet af det færdige materiale derved. Det er valgfrit at anvende sådanne gasser, og de kan anvendes til opnåelse af specielle karakteristika af adsorptionsmidlerne.Small amounts of activating gases such as CO 2, SO 2, O 2, H 2 O or combinations thereof tend to react with the polymer during the pyrolysis and thereby increase the surface area of the finished material. Such gases are optional and may be used to obtain special characteristics of the adsorbents.

De polymere, der kan anvendes som udgangsmaterialer til fremstilling af de pyrolyserede harpikser ifølge opfindelsen, omfatter makro-porøse homopolymere eller copolymere af én eller flere raonoethylenisk eller polyethylenisk umættede monomere eller monomere, som kan være omsat ved kondensation til frembringelse af makroporøse polymere og copolymere. De makroporøse harpikser, der anvendes som prekursorer ved dannelsen af de makroporøse varmebehandlede polymere, kræves ikke i sig selv beskyttet som nye materialer. Et hvilket som helst af de kendte materialer af denne type, som har en passende carbon-fikserende gruppe, er egnet. De foretrukne monomere er sådanne alifatiske og aromatiske materialer, som er ethylenisk umættede.The polymers which can be used as starting materials for the preparation of the pyrolyzed resins of the invention include macroporous homopolymers or copolymers of one or more raoethylenic or polyethylenically unsaturated monomers or monomers which may be reacted by condensation to produce macroporous polymers and copolymers. The macroporous resins used as precursors in the formation of the macroporous heat-treated polymers are not inherently protected as novel materials. Any of the known materials of this type which have a suitable carbon fixing group are suitable. The preferred monomers are such aliphatic and aromatic materials which are ethylenically unsaturated.

Som eksempler på passende monoethylenisk umættede monomere, som 9 149795 kan anvendes til fremstilling af den granulære makroporøse harpiks, kan nævnes: styren, methylacrylat, ethylacrylat, propylacrylat, isopropylacrylat, butylacrylat, tert-butylacrylat, ethylhexylacrylat, cyclohexylacrylat, isobornylacrylat, benzylacrylat, phenylacrylat, alkylphenylacrylat, ethoxymethylacrylat, ethoxyethylacrylat, ethoxy-propylacrylat, propoxymethylacrylat, propoxyethylacrylat, propoxy-propylacrylat, ethoxyphenylacrylat, ethoxybenzylacrylat, ethoxycyclo-hexylacrylat og de tilsvarende estere af methacrylsyre, ethylen, propylen, isobutylen, diisobutylen, styren, vinyltoluen, vinylchlorid, vinylacetat, vinylidenchlorid, acrylonitril, methacrylonitril, acryl-amid, methacrylamid, diacetoneacrylamid, vinylestere, inklusive vinylacetat, vinylpropionat, vinylbutyrat, vinyllaurat, vinylketoner, inklusive vinylmethylketon, vinylethylketon, vinylisopropylketon, vinyl-n-butylketon, vinylhexylketon, vinyloctylketon, methylisopro-penylketon, vinylaldehyder inklusive acrolein, methacrolein, croton-aldehyd, vinylethere inklusive vinylmethylether, vinylethylether, vinylpropylether, vinylisobutylether, vinylidenforbindelser inklusive vinylidenchlorid,“bromid og “bromchlorid, estere af acryl-syre og methacrylsyre såsom methyl-, ethyl-, 2-chlorethyl-, propyl-, isopropyl-, n-butyl-, isobutyl-, t-butyl-, sec-butyl-, amyl-, hexyl-, glycidyl-, ethoxyethyl-, cyclohexyl-, octyl-, 2-ethylhexyl-, decyl-, dodecyl-, hexadecyl- og octadecylestrene af disse syrer, hydroxy-alky lmethacrylater og -acrylater såsom hydroxyethylmethacrylat og hydroxypropylmethacrylat, også de tilsvarende neutrale halvsyre-halvestere af de umættede dicarboxylsyrer inklusive itakonsyre, citraconsyre, aconitsyre, fumarsyre og maleinsyre, substituerede acrylamider, såsom N-monoalkyl, -Ν,Ν-dialkyl- og N-dialkylamino-alkylacrylamider eller -methacrylamider, hvor alkylgrupperne kan have fra 1 til 18 carbonatomer, såsom methyl-, ethyl-, isopropyl-, butyl-, hexyl-, cyclohexyl-, octyl-, dodecyl-, hexadecyl- og octa-decylaminoalkylestere af acryl- eller methacrylsyre, såsom β-dimethylaminoethyl-, β-diethylaminoethyl- eller 6-dimethylaminohexylacrylater og -methacrylater, alkylthioethyl-methacrylater og -acrylater, såsom ethylthioethylmethacrylat, vinyl-pyridiner, såsom 2-vinylpyridin, 4-vinylpyridin, 2-methyl-5-vinyl- 10 149795 pyridin, osv. Et difunktionelt methacrylat såsom ethylenglycol-dimethacrylat eller trimethylolpropandimethacrylat kan også være copolymeriseret med de førnævnte polyfunktionelle methacrylater.Examples of suitable monoethylenically unsaturated monomers which can be used to prepare the granular macroporous resin include: styrene, methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, tert-butyl acrylate, ethyl hexyl acrylate, cyclohexyl acrylate, cyclohexyl alkylphenyl, alkyl, alkylphenyl, alkyl, alkylphenyl, alkyl, acrylonitrile, methacrylonitrile, acrylic amide, methacrylamide, diacetone acrylamide, vinyl esters, including vinyl acetate, vinyl propionate, vinyl butyrate, vinyl laurate, vinyl ketones, including vinyl methyl ketone, vinyl ethyl ketone, vinyl isopropyl ketone, vinyl ketone, vinyl ketone, vinyl ketone on, methylisopropyl ketone, vinyl aldehydes including acrolein, methacrolein, croton aldehyde, vinyl ethers including vinyl methyl ether, vinyl ethyl ether, vinylpropyl ether, vinyl isobutyl ether, vinylidene compounds including vinylidene chloride, "bromide and acrylic acid", 2-chloroethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, sec-butyl, amyl, hexyl, glycidyl, ethoxyethyl, cyclohexyl, octyl, 2-ethylhexyl -, decyl, dodecyl, hexadecyl and octadecyl esters of these acids, hydroxyalkylmethacrylates and acrylates such as hydroxyethylmethacrylate and hydroxypropylmethacrylate, including the corresponding neutral half-acid half-esters of the unsaturated dicarboxylic acid, itaconic acid, including itaconic acid, substituted acrylamides such as N-monoalkyl, -Ν, Ν-dialkyl and N-dialkylamino-alkyl acrylamides or methacrylamides, wherein the alkyl groups may have from 1 to 18 carbon atoms such as methyl, ethyl, isop ropyl, butyl, hexyl, cyclohexyl, octyl, dodecyl, hexadecyl and octa-decylaminoalkyl esters of acrylic or methacrylic acid such as β-dimethylaminoethyl, β-diethylaminoethyl or 6-dimethylaminohexyl acrylates and methacrylates methacrylates and acrylates such as ethylthioethyl methacrylate, vinyl pyridines such as 2-vinylpyridine, 4-vinylpyridine, 2-methyl-5-vinylpyridine, etc. A difunctional methacrylate such as ethylene glycol dimethacrylate or trimethylol propane dimethacrylate may also be aforementioned polyfunctional methacrylates.

Når det drejer sig om copolymere, som indeholder ethylthioethyl-methacrylat, kan produkterne om ønsket oxideres til det tilsvarende sulfoxid eller sulfon.In the case of copolymers containing ethylthioethyl methacrylate, the products may, if desired, be oxidized to the corresponding sulfoxide or sulfone.

Polyethylenisk umættede monomere, som sædvanligvis virker,som om de kun indeholder én sådan umættet gruppe, såsom isopren, butadien og chloropren, kan anvendes som del af den monoethylenisk umættede kategori.Polyethylenically unsaturated monomers, which usually act as though they contain only one such unsaturated group, such as isoprene, butadiene and chloroprene, can be used as part of the monoethylenically unsaturated category.

Som eksempler på polyethylenisk umættede forbindelser kan nævnes: divinylbenzen, divinylpyridin, divinylnaphthaiener, diallylphthalat, ethylenglycoldiacrylat, ethylenglycoldimethacrylat, divinylsulfon, polyvinyl- eller polyallylethere af glycol, af glycerol, af pentaerythri-tol, af monothio- eller dithioderivater af glycoler og af resorcinol, divinylketon, divinylsulfid, allylacrylat, diallylmaleat, diallyl-fumarat, diallylsuccinat, diallylcarbonat, diallylmalonat, diallyl-oxalat, diallyladipat, diallylsebacat, divinylsebacat, diallyltartrat, diallylsilikat, triallyltricarballylat, triallylaconitat, triallyl-citrat, triallylphosphat, N,Ν'-methylendiacrylamid, N,N'-methylen-dimethacrylamid, N,Ν'-ethylendiacrylamid, trivinylnaphthaiener og polyvinylanthracener.Examples of polyethylenically unsaturated compounds include: divinylbenzene, divinylpyridine, divinylnaphthane, diallyl phthalate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, divinylsulfone, polyvinyl or polyallyl ether of glycol, glycerol, glycerol, penta ,, divinyl sulphide, allyl acrylate, diallyl maleate, diallyl fumarate, diallylsuccinate, diallyl carbonate, diallyl malonate, diallyl oxalate, diallyladipate, diallylsebacate, divinylsebacate, diallyltartrate, diallylsilicate, triallylate N'-methylene dimethacrylamide, N, Ν'-ethylene diacrylamide, trivinyl naphtha, and polyvinyl anthracenes.

Aromatiske ethylenisk umættede molekyler såsom styren, vinyl-pyridin, vinylnaphthalen, vinyltoluen, phenylacrylat og vinylxylener er en foretrukken klasse af monomere af denne type.Aromatic ethylenically unsaturated molecules such as styrene, vinyl pyridine, vinyl naphthalene, vinyl toluene, phenyl acrylate and vinyl xylenes are a preferred class of monomers of this type.

Som eksempler på foretrukne polyethylenisk umættede forbindelser kan nævnes: divinylpyridin, divinylnaphthalen, divinylbenzen, tri-vinylbenzen, alkyldivinylbenzener med fra 1 til 4 alkylgrupper på 1 til 2 carbonatomer som substituenter i benzenkernen, og alkyltriviny lbenzener med 1 til 3 alkylgrupper på 1 til 2 carbonatomer som substituenter i benzenkernen. Ud over de homopolymere og copolymere af disse poly(vinyl)benzenmonomere kan en eller flere af dem være copolymeriseret med op til 98% (på basis af vægten af den totale . monomerblanding) af (1) monoethylenisk umættede monomere eller (2) polyethylenisk umættede monomere forskellige fra de netop define- 11 149795 rede poly(vinyl)benzener, eller (3) en blanding af (1) og (2). Som eksempler på de alkylsubstituerede di- og trivinylbenzener kan nævnes de forskellige vinyltoluener, divinylenex, divinylethylbenzen, 1,4-divinyl-2,3,5,6-tetramethylbenzen, 1,3,5 trivinyl-2,4,6-trimethylbenz-en, l,4-divinyl,2,3,6-triethylbenzen, 1,2,4-trivinyl -3,5 - diethyl-benzen, 1,3,5-trivinyl-2-methylbenzen.Examples of preferred polyethylenically unsaturated compounds are: divinylpyridine, divinylnaphthalene, divinylbenzene, trivinylbenzene, alkyl divinylbenzenes having from 1 to 4 alkyl groups of 1 to 2 carbon atoms as substituents in the benzene nucleus, and alkyltrivinylbenzenes of 1 to 2 alkyl groups as substituents in the benzene nucleus. In addition to the homopolymers and copolymers of these poly (vinyl) benzene monomers, one or more of them may be copolymerized up to 98% (by weight of the total monomer mixture) of (1) monoethylenically unsaturated monomers or (2) polyethylenically unsaturated monomers different from the poly (vinyl) benzenes just defined, or (3) a mixture of (1) and (2). Examples of the alkyl-substituted di- and trivinylbenzenes include the various vinyltoluene, divinylenex, divinylethylbenzene, 1,4-divinyl-2,3,5,6-tetramethylbenzene, 1,3,5 trivinyl-2,4,6-trimethylbenzene. and, 1,4-divinyl, 2,3,6-triethylbenzene, 1,2,4-trivinyl -3,5-diethylbenzene, 1,3,5-trivinyl-2-methylbenzene.

Copolymere af styren, divinylbenzen og ethylvinylbenzen er særlig foretrukne.Copolymers of styrene, divinylbenzene and ethylvinylbenzene are particularly preferred.

Som eksempler på egnede kondensationsmonomere kan nævnes: (a) alifatiske divalente syrer såsom maleinsyre, fumarsyre, itakonsyre, 1,1-cyclobutandicarboxylsyre , etc.; (b) alifatiske diaminer såsom piperazin, 2-methylpiperazin, cis, cis-bis (4-aminocyclohexyl)methan, metaxylylendiamin, etc.; (c) glycoler såsom diethylenglycol, tri-ethylenglycol, 1,2-butandiol, neopentylglucol etc.; (d) bischlor-formiater såsom cis- og trans-1,4-cyclohexylbischlorformiat, 2,2,2,4-tetramethyl-13-cyclobutylbischlorformiat og bischlorformiater, etherglycoler som nævnt ovenfor, etc.; (e) hydroxysyrer såsom salicylsyre, m- og p-hydroxybenzoesyre og lactoner afledt deraf såsom propiolactonerne, valerolactonerne, caprolactonerne, etc.; (f) diiso-cyanater såsom cis- og trans-cyclopropan-1,2-diisocyanat, cis- og trans-cyclobutan-l-2-diisocyanat, etc.; (g) aromatiske divalente syrer og deres derivater (estrene, anhydriderne og syrechloriderne) såsom phthalsyre, phthalanhydrid, terephthalsyre, isophthalsyre, dimethylphthalat, etc.; (h) aromatiske diaminer såsom benzidin, 4,4'-methylendiamin, bis(4-aminophenyl)ether, etc.; (i) bisphenoler såsom bisphenol A, bisphenol C, bisphenol F, phenolphthaleinresorcinol, etc.; (j) bisphenol-bis(chlorformiater) såsom bisphenol A-bis(chlor-formiat), 4,4'-dihydroxybenzophenon-bis(chlorformiat), etc.; (k) carbonyl- og thiocarbonylforbindelser såsom formaldehyd, acetaldehyd, thioacetone, acetone, etc.; (1) phenol og derivater såsom phenol, alkylphenoler, etc.; samt andre kondensationsmonomere og blandinger af de foranstående.Examples of suitable condensation monomers include: (a) aliphatic divalent acids such as maleic acid, fumaric acid, itaconic acid, 1,1-cyclobutanedicarboxylic acid, etc .; (b) aliphatic diamines such as piperazine, 2-methylpiperazine, cis, cis-bis (4-aminocyclohexyl) methane, methaxylylenediamine, etc .; (c) glycols such as diethylene glycol, triethylene glycol, 1,2-butanediol, neopentylglucol, etc .; (d) bischloroformates such as cis- and trans-1,4-cyclohexyl bischloroformate, 2,2,2,4-tetramethyl-13-cyclobutylbichloroformate and bischloroformates, ether glycols as mentioned above, etc .; (e) hydroxy acids such as salicylic acid, m- and p-hydroxybenzoic acid and lactones derived therefrom such as the propiolactones, valerolactones, caprolactones, etc .; (f) diisocyanates such as cis and trans-cyclopropane-1,2-diisocyanate, cis and trans-cyclobutane-1-2-diisocyanate, etc .; (g) aromatic divalent acids and their derivatives (the esters, anhydrides and acid chlorides) such as phthalic acid, phthalic anhydride, terephthalic acid, isophthalic acid, dimethyl phthalate, etc .; (h) aromatic diamines such as benzidine, 4,4'-methylenediamine, bis (4-aminophenyl) ether, etc .; (i) bisphenols such as bisphenol A, bisphenol C, bisphenol F, phenolphthalein resorcinol, etc .; (j) bisphenol bis (chloroformates) such as bisphenol A-bis (chloroformate), 4,4'-dihydroxybenzophenone bis (chloroformate), etc .; (k) carbonyl and thiocarbonyl compounds such as formaldehyde, acetaldehyde, thioacetone, acetone, etc .; (1) phenol and derivatives such as phenol, alkylphenols, etc .; as well as other condensation monomers and mixtures of the foregoing.

Ionbytningsharpikser fremstillet ud fra aromatiske og/eller alifatiske monomere udgør en foretrukken klasse af udgangspolymere til fremstilling af porøse adsorptionsmidler. Ionbytningsharpiksen 12 149795 kan også indeholde en funktionel gruppe i form af kation, anion, stærk base, svag base, sulfonsyre, carboxylsyre, oxygenholdig gruppe, halogen og blandinger deraf. Sådanne ionbytningsharpikser kan ydermere eventuelt indeholde et oxidationsmiddel, en reaktiv substans, svovlsyre, salpetersyre, acrylsyre eller lignende, som i det mindste delvis udfylder polymerens makroporer før varmebehandling.Ion exchange resins prepared from aromatic and / or aliphatic monomers constitute a preferred class of starting polymers for the production of porous adsorbents. The ion exchange resin 12 may also contain a functional group in the form of cation, anion, strong base, weak base, sulfonic acid, carboxylic acid, oxygen-containing group, halogen and mixtures thereof. Further, such ion exchange resins may optionally contain an oxidizing agent, a reactive substance, sulfuric acid, nitric acid, acrylic acid or the like, which at least partially fills the macropores of the polymer before heat treatment.

Den syntetiske polymer kan imprægneres med et fyldstof såsom "carbon black", trækul, bentjære, savsmuld eller andet carbonholdigt materiale forud for pyrolysen. Sådanne fyldstoffer udgør en økonomisk carbonkilde, som kan tilsættes i mængder på op til ca. 90 vægt% af polymeren.The synthetic polymer can be impregnated with a filler such as "carbon black", charcoal, bone tar, sawdust or other carbonaceous material prior to pyrolysis. Such fillers constitute an economical carbon source which can be added in amounts up to approx. 90% by weight of the polymer.

Udgangspolymerene kan, når de er ionbytningsharpikser, eventuelt indeholde forskellige metaller, som i atomar form er fordelt deri på ionpladserne. Disse metaller kan omfatte jern, kobber, sølv, nikkel, mangan, palladium, kobolt, titan, zirconium, natrium, kalium, calcium, zink, cadmium, ruthenium og uran. Ved anvendelse af ionbytningsmekanismen er det muligt for fagmanden at kontrollere såvel mængden af metal, som må inkorporeres, som fordelingen.The starting polymers, when they are ion exchange resins, may optionally contain various metals which are atomically distributed therein at the ion sites. These metals may include iron, copper, silver, nickel, manganese, palladium, cobalt, titanium, zirconium, sodium, potassium, calcium, zinc, cadmium, ruthenium and uranium. By using the ion exchange mechanism, it is possible for the person skilled in the art to control both the amount of metal to be incorporated and the distribution.

Skønt inkorporeringen af metaller i harpikserne primært sker for at fremme deres evne til at tjene som katalytiske midler, kan nyttige adsorptionsmidler også indeholde metal.Although the incorporation of metals into the resins primarily occurs to promote their ability to serve as catalytic agents, useful adsorbents may also contain metal.

Syntetiske polymere, ionbytningsharpikser, hvad enten disse er i syre-, base- eller metalsaltform, er kommercielt tilgængelige.Synthetic polymers, ion exchange resins, whether in acid, base or metal salt form, are commercially available.

De ifølge opfindelsen frembragte partikler kan anvendes ved en adsorptionsfremgangsmåde til adskillelse af komponenter fra et gasformigt eller flydende medium, som omfatter, at mediet bringes i kontakt med partikler af en pyrolyseret syntetisk polymer.The particles produced according to the invention can be used in an adsorption process for separating components from a gaseous or liquid medium which comprises contacting the medium with particles of a pyrolyzed synthetic polymer.

Det har f.eks. vist sig, at en styrendivinylbenzen-baseret stærkt sur ionbytningsharpiks, som er pyrolyseret ud fra en hvilken som helst af formerne hydrogen, jern (III), kobber (II), sølv (I) eller calcium (II) kan formindske koncentrationen af vinylchlorid i luft, fortrinsvis tør luft, fra en initialkoncentration på 2 ppm - 300.000 ppm til et niveau på mindre end 1 ppm ved strømningshastigheder på 1 søjlevolumen pr. time til 600 søjlevolumen pr. minut, fortrinsvis 10 - 200 søjlevolumen pr. minut.It has e.g. found that a styrene divinylbenzene-based highly acidic ion exchange resin pyrolyzed from any of the forms hydrogen, iron (III), copper (II), silver (I) or calcium (II) can decrease the concentration of vinyl chloride in air, preferably dry air, from an initial concentration of 2 ppm - 300,000 ppm to a level of less than 1 ppm at flow rates of 1 column volume per to 600 column volume per hour. per minute, preferably 10 - 200 column volume per minute. minute.

13 149795 I sammenligning med aktiveret carbon udviser de delvist pyro-lyserede partikler ifølge opfindelsen anvendt som adsorptionsmiddel fordele såsom lavere adsorptionsvarme, mindre polymerisation af adsorberede monomere på overfladen, mindre behov for regenereringsmiddel på grund af diffusionskinetik, mindre tab af kapacitet ved multicirkulering og mindre lækage før gennembrud. Lignende egenskaber er blevet iagttaget, når andre urenheder såsom SO2 og H2S fjernes. Adsorptionsmidlerne ifølge opfindelsen er særligt nyttige inden for luftforureningsbekæmpelsesområdet til fjernelse af komponenter såsom svovlholdige molekyler, halogenerede car-bonhydrider, organiske syrer, aldehyder, alkoholer, ketoner, alkaner, aminer, ammoniak, acrylonitril, aromater, oliedampe, halogener, opløsningsmidler, monomere, organiske nedbrydningsprodukter, hydrogencyanid, carbonmonoxid og kviksølvdampe.13 149795 Compared to activated carbon, the partially pyrolyzed particles of the invention used as adsorbent exhibit advantages such as lower adsorption heat, less polymerization of adsorbed monomers on the surface, less need for regeneration due to diffusion kinetics, less loss of multicycle capacity and less leakage before breakthrough. Similar properties have been observed when other impurities such as SO2 and H2S are removed. The adsorbents of the invention are particularly useful in the air pollution control field for removing components such as sulfur-containing molecules, halogenated hydrocarbons, organic acids, aldehydes, alcohols, ketones, alkanes, amines, ammonia, acrylonitrile, aromatics, oil vapors, halogens, decomposition products, hydrogen cyanide, carbon monoxide and mercury vapors.

Af specifikke chlorerede carbonhydrider kan nævnes s 1,2,3,4,10,10-hexachlor-l,4,4a,5,8,8a-hexahydro-l,4-endo-exo-5, 8-dimethannaphthalen, 2-chlor-4-ethylamino-6-isopropylamino-s-triazin, polychlorb icyclopentadieni somere, isomere af benzenhexachlorid, 60% octochlor-4,7-methantetrahydroindan, 1.1- dichlor-2,2-bis-(p-ethylphenyl)ethan, 1.1.1- trichlor-2,2-bis-(p-chlorphenyl)ethan, dichlordiphenyldichlorethylen, 1.1- bis-(p-chlorphenyl)-2,2,2-trichlorethanol, 2.2- dichlorvinyldimethylphosphat, 1.2.3.4.10, 10-hexachlor-6, 7-epoxy-l,4,4a,5,6,7-dimethan-naphthalen, 1.2.3.4.10, 10-hexachlor-6, 7-epoxy-l,4,4a,5,6,7,8,8a-octahydro- 1,4-endo-endo-5,8-dimethannaphthalen, 74% 1,4,5,6,7,8,8a-heptachlor-32,4,7a-tetrahydro-4,7-methaninden, 1,2,3,4,5,6-hexachlorcyclohexan 2.2- bis(p-methoxyphenyl)-1,1,1-trichlorethan, chloreret kamfen med 67-69% chlor.Of specific chlorinated hydrocarbons there may be mentioned 1,2,3,4,10,10-hexachloro-1,4,4a, 5,8,8a-hexahydro-1,4-endo-exo-5,8-dimethannaphthalene, 2 -chloro-4-ethylamino-6-isopropylamino-s-triazine, polychlorobicyclopentadieni summers, isomers of benzene hexachloride, 60% octochloro-4,7-methanetetrahydroindane, 1,1-dichloro-2,2-bis- (p-ethylphenyl) ethane, 1.1.1-Trichloro-2,2-bis (p-chlorophenyl) ethane, dichlorodiphenyl dichlorethylene, 1.1-bis- (p-chlorophenyl) -2,2,2-trichloroethanol, 2.2-dichlorovinyldimethyl phosphate, 1.2.3.4.10, 10 -hexachlor-6,7-epoxy-1,4,4a, 5,6,7-dimethane-naphthalene, 1.2.3.4.10, 10-hexachloro-6,7-epoxy-1,4,4a, 5,6 7,8,8a-octahydro-1,4-endo-endo-5,8-dimethane naphthalene, 74% 1,4,5,6,7,8,8a-heptachloro-32,4,7a-tetrahydro-4 , 7-methanindene, 1,2,3,4,5,6-hexachlorocyclohexane 2.2-bis (p-methoxyphenyl) -1,1,1-trichloroethane, chlorinated camphen with 67-69% chlorine.

14 14979514 149795

Som andre komponenter, som kan adsorberes fra væsker ved hjælp af adsorptionsmidlerne ifølge opfindelsen, kan nævnes chlorerede phe-noler, nitrophenoler, overfladeaktive midler såsom detergenter, emulgatorer, dispergerings- og befugtningsmidler, carbonhydrider såsom toluen og benzen, spildprodukter fra organiske og uorganiske farvestoffer, farvestoffer fra sukkerarter, olier og fedtstoffer, vellugtende estere og monomere.Other components which can be adsorbed from liquids by the adsorbents of the invention include chlorinated phenols, nitrophenols, surfactants such as detergents, emulsifiers, dispersants and wetting agents, hydrocarbons such as toluene and benzene, waste products from organic and inorganic dyes. dyes from sugars, oils and fats, scented esters and monomers.

Adsorptionsmidlerne kan regenereres, når kapaciteten er opbrugt. Det specielle regenereringsmiddel, som vil være mest egnet, afhænger af naturen af det adsorberede materiale, men regenereringsmidlerne omfatter i almindelighed saltvand, opløsningsmidler, varmt vand, syrer og damp. Adsorptionsmidlernes evne til at kunne termisk regenereres udgør en særlig fordel.The adsorbents can be regenerated when the capacity is used up. The particular regenerant which will be most suitable depends on the nature of the adsorbed material, but the regenerants generally comprise saline, solvents, hot water, acids and vapors. The ability of the adsorbents to be thermally regenerated represents a particular advantage.

Adsorptionsmidler uden aktiveringAdsorbents without activation

Opfindelsen tilvejebringer overlegne adsorptionsmidler, som ikke har behov for "aktivering", som det er almindeligt i forbindelse med mange carbonholdige adsorptionsmidler betegnet "aktivt carbon". Adsorptionsmidler, som har egenskaber, som både er bedre end og forskellige fra alle andre adsorptionsmidlers egenskaber, fremstilles direkte i ét trin ved varmebehandling af polymere som beskrevet ovenfor. Aktivering med reaktive gasser er en valgfri proces, som af og til er Ønskelig af hensyn til modifikation af adsorptionsegenskaber, men det er ikke nogen nødvendig del af opfindelsen. Som det vises i tabel III og IV nedenfor, influeres adsorptionsegenskaberne markant af maksimumtemperaturen, som harpiksen udsættes for. Som vist i tabel III, frembringer en temperatur på 500°C et adsorptionsmiddel, som er optimalt til fjernelse af chloroform fra vand.The invention provides superior adsorbents which do not need "activation", as is commonly associated with many carbonaceous adsorbents termed "active carbon". Adsorbents having properties better than and different from all other adsorbents are produced directly in one step by heat treatment of polymers as described above. Reactive gas activation is an optional process which is sometimes desirable for modification of adsorption properties, but it is not a necessary part of the invention. As shown in Tables III and IV below, the adsorption properties are significantly influenced by the maximum temperature to which the resin is exposed. As shown in Table III, a temperature of 500 ° C produces an adsorbent which is optimal for removing chloroform from water.

Harpikser, som er varmebehandlet ved 800°C er i stand til selektivt at adsorbere molekyler efter størrelse (se tabel IV). 800°C-eksemplet er endnu mere effektivt med hensyn til hexan-selektivitet over for carbontetrachlorid end vist i tabel IV, da næsten alt CCl^ adsorberes på overfladen af makroporerne og ikke i mikroporerne. Den tilsyneladende bedre selektivitet af den kommercielle carbon-molekylsigte (eksempel 5) skyldes sandsynligvis meget mindre overfladeareal i makroporerne. Harpiksen, som er varmebehandlet ved 500°C (nr. 1 i tabel IV) udviser meget mindre selektivitet over for de to molekyler med forskellig størrelse og understreger således den vigtige indflydelse, som maksimumtemperaturen under varmebehandlingen har på adsorptionsegenskaberne.Resins heat-treated at 800 ° C are capable of selectively adsorbing molecules by size (see Table IV). The 800 ° C example is even more effective with respect to hexane selectivity to carbon tetrachloride than shown in Table IV, since almost all CCl4 is adsorbed on the surface of the macropores and not in the micropores. The apparently better selectivity of the commercial carbon molecular sieve (Example 5) is probably due to much less surface area in the macropores. The resin, which is heat treated at 500 ° C (# 1 in Table IV), exhibits much less selectivity to the two molecules of different sizes and thus emphasizes the important influence that the maximum temperature during the heat treatment has on the adsorption properties.

149795 15149795 15

Tabel IIITable III

Vandig chloroform ligevægtskapaciteter for forskellige adsorptionsmidler_Aqueous chloroform equilibrium capacities for various adsorbents_

Alle adsorptionsmidler i ligevægt med 2 ppm CHCl^ 1 afioniseret vand ved stuetemperatur.All adsorbents equilibrated with 2 ppm CHCl3 deionized water at room temperature.

Nr. Prøve Ligevægtskapacitet _ _ 1. PPJ5_ 1 * S/DVB polymert adsorptions- 6,0 mg/g tørt adsorp- middel tionsmiddel 2 Pittsburgh granulært aktiveret carbon 10,2 3 Sulfoneret S/DVB hagpiks pyrolyseret til 800°C 21 4 Samme som nr. 3/ men oxygen- ætset 28 5 Samme som nr. 3 pyrolyseret til 500°C 45No. Sample Equilibrium capacity _ _ 1. PPJ5_ 1 * S / DVB polymer adsorbent 6.0 mg / g dry adsorbent 2 Pittsburgh granular activated carbon 10.2 3 Sulfonated S / DVB shotgun pyrolyzed to 800 ° C 21 4 Same as no 3 / but oxygen etched 28 5 Same as No. 3 pyrolyzed to 500 ° C 45

* S/DVB = copolymer af styren og divinylbenzen Tabel IV* S / DVB = copolymer of styrene and divinylbenzene Table IV

Molekylsigtningsbestemmelse via ligevægtsdampoptagelseMolecular screening determination via equilibrium vapor uptake

Kapacitet (ul/g)Capacity (µl / g)

Nr. Prøve CCl^ Hexan 2 1 Sulfoneret S/DVB pyrolyseret til 500°C 12,1 13,6 2 Samme som nr. 1,pyrolyseret til 800°C 3,4 15,7 3 Pittsburgh aktiveret carbon 41,0 40,9 4 Samme som nr. 2,oxygen-ætset 17,6 22,7 5 Carbonmolekylsigte fra TakedaNo. Sample CCl ^ Hexane 2 1 Sulfonated S / DVB pyrolyzed to 500 ° C 12.1 13.6 2 Same as No. 1, pyrolyzed to 800 ° C 3.4 15.7 3 Pittsburgh activated carbon 41.0 40.9 4 Same as No. 2, oxygen-etched 17.6 22.7 5 Carbon Molecule Sieve from Takeda

Chemical Industries 0,50 12,1Chemical Industries 0.50 12.1

Effektiv minimumstørrelse 6,1 Å 2Effective minimum size 6.1 Å 2

Effektiv minimumstørrelse 4,3 ÅEffective minimum size 4.3 Å

Den foreliggende opfindelse illustreres yderligere ved de efterfølgende eksempler.The present invention is further illustrated by the following examples.

16 14979516 149795

Eksempel 1Example 1

En prøve på 40 g af "Amberlite 200” (registreret varemærke tilhørende Rohm and Haas Company for en styren/DVB sulfonsyre-ionbytnings-harpiks) i Na+-formen (49,15% fast stof) anbragtes i et filterrør og udvaskedes med 200 cm^ afioniseret vand. 20 g FeClg-GE^O opløstes i ca. 1 liter afioniseret vand og ledtes gennem harpiksprøven på kolonneagtig måde i løbet af ca. 4 timer. Ensartet og fuldstændig opfyldning kunne iagttages visuelt. Prøven udvaskedes dernæst med 1 liter afioniseret vand,underkastedes sugning i 5 minutter og lufttørredes i 18 timer.A 40 g sample of "Amberlite 200" (registered trademark of Rohm and Haas Company for a styrene / DVB sulfonic acid ion exchange resin) in the Na + form (49.15% solids) was placed in a filter tube and washed with 200 cm 20 g of FeClg-GE 2 O was dissolved in about 1 liter of deionized water and passed through the resin sample in a column-like manner over about 4 hours. Uniform and complete filling could be observed visually. The sample was then washed with 1 liter of deionized water. , was subjected to suction for 5 minutes and air-dried for 18 hours.

10 g af denne prøve pyrolyseredes dernæst sammen med talrige andre prøver i en ovn, som var udstyret til indledning af 7 liter argongas pr. minut. Prøvens temperatur hævedes til 706°C i løbet af 6 timer under trinvise forøgelser på ca. 110°C hver time. Prøven holdtes ved maksimumtemperaturen i en halv time. Dernæst blev strømmen til ovnen afbrudt, og ovnen med indhold tillodes at afkøle uforstyrret til stuetemperatur under kontinuert argongennemstrømning i løbet af de næste 16 timer. Udbyttet af fast materiale efter pyro-lyse var 43%. De fysiske karakteristika af denne prøve er anført i tabel V sammen med data for prøverne B til G og I til K, som fremstilledes på samme måde.10 g of this sample was then pyrolyzed together with numerous other samples in an oven equipped to initiate 7 liters of argon gas per hectare. minute. The temperature of the sample was raised to 706 ° C over 6 hours with incremental increases of approx. 110 ° C every hour. The sample was kept at the maximum temperature for half an hour. Next, the furnace power was interrupted and the furnace with contents allowed to cool undisturbed to room temperature during continuous argon flow over the next 16 hours. The yield of solid after pyrolysis was 43%. The physical characteristics of this sample are given in Table V together with data for samples B to G and I to K, which were prepared in the same way.

Eksempel 2Example 2

Teknikken i eksempel 1 modificeres derved, at 250 g "Amberlite 200" på hydrogenform (opnået ved konvertering af natriumformen med saltsyre) pyrolyseres ved kontinuert hævning af temperaturen til 760°C i løbet af 6 timer. Prøven tillades dernæst at afkøle i løbet af de næste 12 timer, hvorefter den udviser et overfladeareal på 390 m2/g.The technique of Example 1 is modified by pyrolysing 250 g of "Amberlite 200" in hydrogen form (obtained by converting the sodium form with hydrochloric acid) by continuously raising the temperature to 760 ° C over 6 hours. The sample is then allowed to cool over the next 12 hours, after which it exhibits a surface area of 390 m2 / g.

Fremgangsmådeeksemplerprocess Examples

Adsorption af vinylchlorid 10 cm^ prøve anbringes i en kolonne af rustfrit stål med en indre diameter på 1,69 cm. Søjlehøjden er så 5,05 cm. Under brug af et fortyndingsudstyr med et blandekammer udvikles en gasstrøm på 580 ppm vinylchlorid i luft og ledes gennem kolonnen med en volumetrisk strømningshastighed på 800 ml/min. Kolonnestrømningshastigheden er derfor - 80 søjlevolumener/min. Alle eksperimenter gennemføres ved omgivelsestemperatur og et overtryk på 110 kPa. En delstrøm på 10 ml/min. udtages i 17 149795 α)Φ γ» cm cm γ» cm in σ\ fi >d I ιο ιο od ο w Is οο I ι ϊ>ι C d) Q)m » * ·> * ·» * * in 0) ω Ό g ooohooo η ό ω η υ •ri <d idAdsorption of vinyl chloride 10 cm 2 sample is placed in a stainless steel column having an internal diameter of 1.69 cm. The column height is then 5.05 cm. Using a mixing chamber diluent, a gas flow of 580 ppm vinyl chloride is developed in air and passed through the column at a volumetric flow rate of 800 ml / min. The column flow rate is therefore - 80 column volumes / min. All experiments are carried out at ambient temperature and an excess pressure of 110 kPa. A partial flow of 10 ml / min. is taken out in 17 149795 α) Φ γ »cm cm γ» cm in σ \ fi> d I ιο ιο od ο w Is οο I ι ϊ> ι C d) Q) m »* ·> * ·» * * in 0 ) ω Ό g ooohooo η ό ω η υ • ri <d id

EH η g m CJIEH η g m CJI

r—1 (d (!)r-1 (d (!)

MM

(d a) T3 (d csocn o r·» o vo H cm ^ σ> ι σ> i ro σ\ co(d a) T3 (d csocn o r · »o vo H cm ^ σ> ι σ> i ro σ \ co

1*4 N ιΛ (Μ 'tf Π r-H1 * 4 N ιΛ (Μ 'tf Π r-H

H tn S>\ O gH tn S> \ O g

g N Hg N H

00

Li _j m <i) tu 0) Ό ft (Q oid gsr = ss = s = = sLi _j m <i) tu 0) Ό ft (Q oid gsr = ss = s = = s

>*g S> * g S

i-H W 10i-H W 10

O tn XO tn X

M C WM C W

>i id> i id

ft CTft CT

4) tn » > (1) m m <D >1 m h tjitntntntntntntntntntn H o > 0)M oooooooomHo4) tn »> (1) m m <D> 1 m h tjitntntntntntntntntntn H o> 0) M oooooooomHo

TS >i Hr4Hr4HHr-|inr-CMCMTS> i Hr4Hr4HHr- | inr-CMCM

η S ft cm vo in <U >1 Λ cn £ rd 0) Ό.η S ft cm vo in <U> 1 Λ cn £ rd 0) Ό.

Eh CQ *h M* 00 ό ι ό o o = δEh CQ * h M * 00 ό ι ό o o = δ

o H o o o o Oo H o o o o O

CM >4 CM CM CM CM 1+1CM> 4 CM CM CM CM 1 + 1

0)0)0)0)00)100 + O 4J+J4J4)0+Jft00®0 lr) .H -ri -H CM ·Η H CM CM CM0) 0) 0) 0) 00) 100 + O 4J + J4J4) 0 + Jft00®0 lr) .H -ri -H CM · Η H CM CM CM

i—1 ι—1 r-1 rH ι I Ή ^^MHa)M0)(l><l) = 0) (1)(1)0)0)+)0)+)+)+)04) Q Q O -Q ·Η 43 ·Η ·Η ·Η Ο ‘ri S g g g i—l gi—1 r4 r-1 (Vi ri m S S = = 0) = 0)(1)0)0)(1) <u S -3 -S -9 +* ·Β r-ι eid oid oid oid g g g g ή g id ftftftftrtJofdriJrfJrfiHisti •rl = ft = = = +1 = Μ Η H d) 0) Η Η H Old H old old Old 43 0(d +> Η Η Η H QiH ft ft ft g ft id a) 0) d tn id < S ftftUrfJWUlXlffllfls ® a) > -6) <pquawftowHt3« ft 18 149795 fra afgangsgassen og indføres i en flammeionisationsdetektor til kontinuert vinylchloridanalyse. Også konventionelle Rohm and Haas adsorptionsmidler og en type Calgon aktiveret carbon undersøges. Resultaterne vises nedenfor.i-1 ι-1 r-1 rH ι I Ή ^^ MHa) M0) (l> <l) = 0) (1) (1) 0) 0) +) 0) +) +) +) 04) QQO -Q · 43 · Η · Η · Η Ο 'ri S gggi — l gi — 1 r4 r-1 (Vi ri m SS = = 0) = 0) (1) 0) 0) (1) <u S -3 -S -9 + * · Β r-ι eid oid oid oid gggg ή g id ftftftftrtJofdriJrfJrfiHisti • rl = ft = = = +1 = Μ Η H d) 0) Η Η H Old H old old Old 43 0 (d +> Η Η Η H QiH ft ft ft ft ft ft ft a) 0) d tn id <S ftftUrfJWUlXlffllfls ® a)> -6) <pquawftowHt3 «ft 18 149795 from the exhaust gas and introduced into a flame ionization detector for continuous vinyl chloride analysis. Also, conventional Rohm and Haas adsorbents and a type of Calgon activated carbon are investigated. The results are shown below.

Tabel VITable VI

Adsorption af vinylchlorid i prøve K# H*-form, pyrolyseretAdsorption of vinyl chloride in sample K # H * form, pyrolyzed

Forløbet tid Lækage Momentan (min.) (ppm VCM) % lækage 0 0 0 25 0 0 50 0 0 75 0 0 100 0 0 125 0 0 150 0 0 166 1 0,1 200 34 5,8 225 242 42 250 454 78 275 569 98 300 580 100Elapsed time Leakage Momentary (min.) (Ppm VCM)% leakage 0 0 0 25 0 0 50 0 0 75 0 0 100 0 0 125 0 0 150 0 0 166 1 0.1 200 34 5.8 225 242 42 250 454 78 275 569 98 300 580 100

Tabel VIITable VII

Adsorption af vinylchlorid i prøve B, Fe form, pyrolyseret og udvasket med H2SO4, søjlevolumen - 20 cm3Adsorption of vinyl chloride in sample B, Fe form, pyrolyzed and washed with H2SO4, column volume - 20 cm3

Forløbet tid Lækage Momentan (min.) (ppm) % lækage 0 0 0 25 0 0 50 0 0 75 0 0 100 0 0 109 1 0,2 125 284 49 150 521 90 175 568 98 200 580 100 (II)Elapsed time Leakage Momentary (min) (ppm)% leakage 0 0 0 25 0 0 50 0 0 75 0 0 100 0 0 109 1 0.2 125 284 49 150 521 90 175 568 98 200 580 100 (II)

Tabel VIIITable VIII

19 14979519 149795

Adsorption af vinylchlorid i prøve C, Cu form, pyrolyseretAdsorption of vinyl chloride in sample C, Cu form, pyrolyzed

Forløbet tid Lækage Momentan (min.) (ppm VCM) % lakage 0 0 0 25 0 0 50 0 0 75 0 0 100 0 0 125 0 0 143 1 0,2 150 2 0,4 175 68 12 200 244 42 225 401 69 250 501 86 275 564 97 300 580 100Elapsed time Leakage Momentary (min) (ppm VCM)% leakage 0 0 0 25 0 0 50 0 0 75 0 0 100 0 0 125 0 0 143 1 0.2 150 2 0.4 175 68 12 200 244 42 225 401 69 250 501 86 275 564 97 300 580 100

Tabel IXTable IX

Adsorption af vinylchlorid i prøve A, Fe^111^form, pyrolyseret_Adsorption of vinyl chloride in sample A, Fe ^ 111 ^ form, pyrolyzed_

Forløbet tid Lækage Momentan (min.) (ppm VCM) % lækage 0 0 0 25 0 0 50 0 0 75 0 0 100 0 0 125 2,0 0,3 150 26 4,5 175 112 19 200 303 52 116 1 0,2Elapsed time Leakage Momentary (min) (ppm VCM)% leakage 0 0 0 25 0 0 50 0 0 75 0 0 100 0 0 125 2.0 0.3 150 26 4.5 175 112 19 200 303 52 116 1 0 , 2

Tabel XTable X

Adsorption af vinylchlorid i Pittsburgh PCB 12 x 30 aktiveret carbon_Adsorption of vinyl chloride in Pittsburgh PCB 12 x 30 activated carbon

Forløbet tid Lækage Momentan (min.) (ppm) % lækage 0 0 0 25 0 0 50 0 0 75 0 0 100 0 0 115 0 0 117 1 0,2 200 580 100 3 20 149795Elapsed time Leakage Momentary (min.) (Ppm)% leakage 0 0 0 25 0 0 50 0 0 75 0 0 100 0 0 115 0 0 117 1 0.2 200 580 100 3 20 149795

Yderligere fremgangsmådeeksemplerFurther process examples

Adsorptionen gennemføres med en søjle på 9,5 cm af harpiks J, soiii underkastes en vinylchlorid-indgangsstrøm indeholdende 350 ppitl og med en strømningshastighed på 160 søjlevolumenet pr. minut. Regenerering gennemføres under anvendelse af damp ved 130 - 160°C i 20 minutter efterfulgt af tørring med luft i 10 minutter. Eksperimentet foretages 15 gange for at vise, at der ikke sker kapacitetstab efter talrige cykler. Resultaterne vises i den efterfølgende tabel.The adsorption is carried out with a column of 9.5 cm of resin J, thus subjected to a vinyl chloride input stream containing 350 ppit and at a flow rate of 160 column volume per minute. minute. Regeneration is carried out using steam at 130 - 160 ° C for 20 minutes followed by drying with air for 10 minutes. The experiment is performed 15 times to show that no capacity loss occurs after numerous cycles. The results are shown in the following table.

Tabel XITable XI

Cyklus Tid Volumenkapacitet Vagtkapac itet 1 45 6,9 11,1 3 42 6,4 10,3 5 49 7,5. 12,1 7 45 6,9 11,1 9 45 6,9 11,1 11 37 5,6 9,0 13 40 6,1 9,8 15 45 6,9 11,1 *· Forløbet tid i minutter ved 1 ppm lækage.Cycle Time Volume Capacity Guard Capacity 1 45 6.9 11.1 3 42 6.4 10.3 5 49 7.5. 12.1 7 45 6.9 11.1 9 45 6.9 11.1 11 37 5.6 9.0 13 40 6.1 9.8 15 45 6.9 11.1 * · Elapsed time in minutes at 1 ppm leak.

Resultaterne af sammenlignende eksperimenter med andre kommercielle harpikser og carbontyper vises i den efterfølgende tabel.The results of comparative experiments with other commercial resins and carbon types are shown in the following table.

Tabel XIITable XII

Adsorptionsmiddel Volumenkapacitet Vægtkapacitet ~_ (mg/cm3) _ (mg/g)Adsorbent Volume capacity Weight capacity ~ _ (mg / cm3) _ (mg / g)

Prøve D 14,4 13,5Sample D 14.4 13.5

Prøve F 9,8 13,1Sample F 9.8 13.1

Prøve G 2,9 3,2Sample G 2.9 3.2

Pittsburgh BPL 12 x 30 aktiveret carbon 8,5 17,0Pittsburgh BPL 12 x 30 activated carbon 8.5 17.0

Kreha kugleformet aktiveret carbon 13,9 26,7Kreha spherical activated carbon 13.9 26.7

Prøve 29,2 47,1Sample 29.2 47.1

Prøve 26,6 42,4Sample 26.6 42.4

Pittsburgh,PCB 12 x 30 carbon 7,6 16,8Pittsburgh, PCB 12 x 30 carbon 7.6 16.8

Pittsburgh PCB 12 x 30 carbon (lV) 11,4 25,3 21 149795 (I) - Drift med en indgangskoncentration på 460 ppm ved 160 SV/min.Pittsburgh PCB 12 x 30 Carbon (lV) 11.4 25.3 21 149795 (I) - Operation with an input concentration of 460 ppm at 160 SV / min.

over en 10 cm^ prøve (II) Drift med en indgangskoncentration på 350 ppm ved 160 SV/min. over en 10 cm3 prøve (III) Drift med en indgangskoncentration på 1070 ppm ved 160 SV/min. over en 10 cnr prøve (IV) Drift med en indgangskoncentration på 860 ppm ved 160 SV/min. over en 10 cm3 prøve.over a 10 cm ^ sample (II) Operation with an input concentration of 350 ppm at 160 SV / min. over a 10 cm3 sample (III) Operation with an input concentration of 1070 ppm at 160 SV / min. over a 10 cm sample (IV) Operation with an input concentration of 860 ppm at 160 SV / min. over a 10 cm3 sample.

Det må bemærkes, at prøve H, som er fremstillet ved fremgangsmåden i eksempel 2, er en foretrukket udførelsesform.It should be noted that Sample H prepared by the method of Example 2 is a preferred embodiment.

Prøve J udviser ved sammenligning med PCB 12 x 30 carbon et mindre fald i kapacitet, når den relative fugtighed forøges som vist nedenfor.Sample J, when compared to PCB 12 x 30 carbon, exhibits a slight decrease in capacity as the relative humidity increases as shown below.

33

Relativ fugtighed Volumenkapacitet mq/cmRelative humidity Volume capacity mq / cm

PCB 12 x 30 Prøve JPCB 12 x 30 Sample J

0 11,4 6,4 52 9,6 7,4 60 4,1 4,8 100 — 2,30 11.4 6.4 52 9.6 7.4 60 4.1 4.8 100 - 2.3

Indgangskoncentration - 850 til 1100 ppm Phenoladsorption 3 20 cm af prøve I underkastes en indgangskoncentration på 500 ppm phenol opløst i afioniseret vand. Strømningshastigheden er 4 SV/time. Prøven udviser en lækage på mindre end 1 ppm ved 38 søjlevolumener. Prøvens kapacitet beregnes at være 25,0 mg/g ved en lækage på 3 ppm.Input Concentration - 850 to 1100 ppm Phenol adsorption 3 20 cm of Sample I is subjected to an initial concentration of 500 ppm phenol dissolved in deionized water. The flow rate is 4 SV / hour. The sample exhibits a leakage of less than 1 ppm at 38 column volumes. The capacity of the sample is calculated to be 25.0 mg / g at a leakage of 3 ppm.

"Amberlite XAD-4", som er et kommercielt adsorptionsmiddel, viser, når det anvendes som sammenligning, en kapacitet på 14,4 mg/g ved en lækage på 6 ppm."Amberlite XAD-4", which is a commercial adsorbent, when used by comparison shows a capacity of 14.4 mg / g at a leakage of 6 ppm.

Prøve I regenereres med methanol med en hastighed på 2 SV/time og kræver 5 SV for at være 71% regenereret.Sample I is regenerated with methanol at a rate of 2 SV / hr and requires 5 SV to be 71% regenerated.

Prøve B vurderes med henblik på adsorptionskapacitet over for H2S og SC>2. Resultaterne viser, at der adsorberes signifikante mængder af begge forureningskilder. Lignende målinger for en aktiveret 22 149795 carbontype viser en ubetydelig adsorption af S02 ved 100°C.Sample B is evaluated for adsorption capacity against H2S and SC> 2. The results show that significant amounts of both pollution sources are adsorbed. Similar measurements for an activated carbon type show negligible adsorption of SO 2 at 100 ° C.

Andre syntetiske organiske polymere end ionbytningsharpikser er blevet undersøgt for adsorptionskapacitet. En prøve af poly-acrylonitril tværbundet med 15% divinylbenzen er blevet pyrolyseret under forskellige eksperimentelle betingelser og vurderet med hen-. blik på S02-adsorptionsevne. De eksperimentelle betingelser og resultater er præsenteret i tabel XIII. Endnu en gang adsorberes signifikante mængder af S02. Eksempel N er af særlig interesse, da en oxidation af copolymeren i luft forud for pyrolysen signifikant forøger adsorptionskapaciteten for S02 af det pyrolyserede produkt.Synthetic organic polymers other than ion exchange resins have been investigated for adsorption capacity. A sample of polyacrylonitrile cross-linked with 15% divinylbenzene has been pyrolyzed under various experimental conditions and evaluated with reference to look at SO2 adsorption. The experimental conditions and results are presented in Table XIII. Once again, significant amounts of SO 2 are adsorbed. Example N is of particular interest since an oxidation of the copolymer in air prior to pyrolysis significantly increases the adsorption capacity of SO 2 of the pyrolyzed product.

23 169795 υ ο ο φ| γΗ c23 169795 υ ο ο φ | γΗ c

•HOS•WITH

Η Ο) Οι φ > a Η Φ tiP άΡ tiP ΟΗ Ο) Οι φ> a Η Φ tiP άΡ tiP Ο

Como ο φ οο Ρ- cm ο θ' ·Como ο φ οο Ρ-cm ο θ '·

φ CMφ CM

Μ c , Ο Φ Γ-J ·Η 01Μ c, Ο Φ Γ-J · Η 01

Ti θ' DI Dl -Μ >1 Η \ \ \ Φ Η tJ * Η Η Η Η Ο 3 Ο Ο Ο -Ρ Η § ι -μ s S S β Η οι φ Φ a >, &+> s s s υ μ c ·η Si! U -Η o ο m ο Ο Β.Ti θ 'DI Dl -Μ> 1 Η \ \ \ Φ Η tJ * Η Η Η Η Ο 3 Ο Ο Ο -Ρ Η § ι -μ s SS β Η οι φ Φ a>, & +> sss υ μ c · Η Si! U -Η o ο m ο Β Β.

(0 C Φ CM CM VO Μ 4-1 >. +» ft - ·· *· -Ρ Η ft) Φ Ο Ο Ο Φ Φ Ο gx Λ § a μ ·η Ο -Ρ 4J οι φ I π3 ιη Μ Φ tn Φ Φ ό \ to m Μ (0 CM gi >ι Η S G «φ η m η ι ι Φ a Ο Μ Φ ι ι m O'(0 C Φ CM CM VO Μ 4-1>. + »Ft - ·· * · -Ρ Η ft) Φ Ο Ο Ο Φ Φ gx Λ § a µ · η Ο -Ρ 4J οι φ I π3 ιη Μ N tn Φ Φ to \ to m Μ (0 CM gi> ι Η SG «φ η m η ι ι Φ a Ο Μ Φ ι m O '

Μ Φ Φ "Μ· ti SΜ Φ Φ "Μ · ti S

>1 > Μ »1 C 3 a 0 Φ ·Η Μ C 01 4-1 φ CM ti Φ Ν 2 ·Η C Φ -β> 1> Μ »1 C 3 a 0 Φ · Η Μ C 01 4-1 φ CM ti Φ Ν 2 · Η C Φ -β

(Νφ -Ρ # # ο\° tiP(Νφ -Ρ # # ο \ ° tiP

ΟΛ 4J μ* (Μ ό m ·Ρ CO Η >»·*·* CO Φ Η > Λ <ί Η ® η Ρ C Γΰίησι-Φ » Ρ Η Ο ·Η C CM Φ χ 4-1 > Ο > -Η Ο 1-Η -Ρ t) <*>ΟΛ 4J μ * (Μ ό m · Ρ CO Η> »· * · * CO Φ Η> Λ <ί Η ® η Ρ C Γΰίησι-Φ» Ρ Η Ο · Η C CM Φ χ 4-1> Ο> - Η Ο 1-Η -Ρ t) <*>

φ φ LT) Uφ φ LT) U

Λ +» tip Ο Φ ·η m ».ο ΕηΟΗ a Μ Ρ 5-1 ο ^ Φ Hg φ Φ φ CMm atj ·η φ ε ε ε κ (¾ Q) .p -Ρ ·Η Ή ·Η »—i Μ g · «Ρ ·Ρ -Ρ ο\ο Ή tn tJ χ ο -ρ C-P ·η Φ in m ιη Η ο φ -ρ ε _ -ρ •Η Τ) ti 44Λ + »tip Ο Φ · η m» .ο ΕηΟΗ a Μ Ρ 5-1 ο ^ Φ Hg φ Φ φ CMm atj · η φ ε ε ε κ (¾ Q) .p -Ρ · Η Ή · Η »- i Μ g · «Ρ · Ρ -Ρ ο \ ο Ή tn tJ χ ο -ρ CP · η Φ in m ιη Η ο φ -ρ ε _ -ρ • Η Τ) ti 44

-μ C φ C-µ C φ C

a c ε η Η Λ ο μ c α ο ·η οι ft) ο ti S Φ Φ Φ Ο ti > tn φ φ ε ε ε ο ·ρa c ε η Η Λ ο μ c α ο · η οι ft) ο ti S Φ Φ Φ Ο ti> tn φ φ ε ε ε ο · ρ

<! -Ρ Μ > -ρ ·Η -Η ·Η Ρ·* C<! -Ρ Μ> -ρ · Η -Η · Η Ρ · * C

(0 . +j +J +) > ti Κ ti ίΒ •Η ·Η Φ Η Η Η Φ *Π •ρ ε > Ρ 01 φ +) φ tn a tn ti Η g g Φ φ φ > ε O' -Ρ Φ Ο Ρ c α α ο θ' ο φ •Η · Ο Ο Ο ·Η Ο > μ X ο ο o Hoa Φ ni cm ο cm ο ,q g m m c£> ·η Φ ti c οι -Ρ Φ Φ > θ' > > Η Φ * Φ & Ο > * Ρ cm Μ Ρ & d S £ Λ S a al a * ι 24 149795(0. + j + J +)> ti Κ ti ίΒ • Η · Η Φ Η Η Η Φ * Π • ρ ε> Ρ 01 φ +) φ tn a tn ti Η gg Φ φ φ> ε O '-Ρ Α Ο c α α ο θ 'ο φ • Η · Ο Ο · Η> μ X ο o o Hoa Φ ni cm ο cm ο, qgmmc £> · η Φ ti c οι -Ρ Φ Φ> θ' >> Η Φ * Φ & Ο> * Ρ cm Μ Ρ & d S £ Λ S a al a * ι 24 149795

Modstandsdygtighed over for knusnincrCrush Resistance

Den fysiske integritet af perler af pyrolyserede polymere er større end for andre kugleformede adsorptionsmidler og granulært aktiveret carbon som indikeret i tabel XIV. Bedre modstandsdygtighed over for brud forventes at resultere i en stærkt udstrakt effektiv brugstid i sammenligning med granulært carbon, for hvilket nedslidningstabet kan være stort. At afstødning af partikulært materiale ikke forekommer ved de pyrolyserede polymere tillader også deres brug inden for anvendelsesområder, hvor aktiveret carbon er uacceptabelt, såsom ved blodbehandling.The physical integrity of beads of pyrolyzed polymers is greater than that of other spherical adsorbents and granular activated carbon as indicated in Table XIV. Better resistance to fracture is expected to result in a highly extended effective service life compared to granular carbon, for which the loss of wear can be large. Also, the rejection of particulate matter by the pyrolyzed polymers does not allow their use in applications where activated carbon is unacceptable, such as by blood treatment.

Tabel XIVTable XIV

Knusestyrke af makroporøse pyrolyserede polymere og _andre adsorptionsmidler._>Crushing strength of macroporous pyrolyzed polymers and other adsorbents.

Beskrivelse nr. type Knusestyrke 1 (kg)Description no. Type Crush strength 1 (kg)

Sulfoneret S/DVB 1 400°C 2,3 varmebehandlet 0 cn.o„ .. 0 . 2 under inert at-, 2 mosf ære til an- 3 600°C >3,4 ført temperatur 4 800°c >3,4 2 5 1000°C »3,6 3Sulfonated S / DVB 1 400 ° C 2.3 heat treated 0 c.No. 0. 2 under inert atmosphere, 2 atmospheres to 3,600 ° C> 3.4 brought temperature 4 800 ° C> 3.4 2 5 1000 ° C »3.6 3

Kugleformet aktiveret carbon 6 Kureha 0,93 7 Prøve af ukendt 0,51 japansk oprindelse anvendt ved blodbehandlingseksperimenterSpherical Activated Carbon 6 Kureha 0.93 7 Sample of unknown 0.51 Japanese origin used in blood treatment experiments

Granulært .Granular.

aktiveret carbon 8 Pittsburgh BPL ^0,90 1 Masse, som må anbringes på den øvre af to parallelle plader for at fremkalde brud i partikel mellem pladerne - gennemsnit af i det mindste 10 prøver, oactivated carbon 8 Pittsburgh BPL ^ 0.90 1 Mass, which must be applied to the upper of two parallel plates to cause particle breakage between the plates - average of at least 10 samples, o

Nedre grænse,da i det mindste én partikel ikke blev brudt ved maksimumbelastning på 3,6 kg.Lower limit, since at least one particle was not broken at a maximum load of 3.6 kg.

33

Ingen perler blev brudt ved maksimumbelastning.No beads were broken at maximum load.

44

Da partiklerne har irregulær form, blev eksperimentet afbrudt, når et hjørne var slået af.As the particles have irregular shape, the experiment was interrupted when a corner was knocked off.

25 149795 i) Carbonfikserende grupperI) Carbon fixing groups

Det er blevet vist, at talrige grupper bevirker carbonfiksering under pyrolyse. En partiel liste over grupper og deres effektivitet er anført i tabel XV. Gruppens eksakte kemiske natur er uvæsentlig, da en hvilken som helst gruppe, der tjener til at forhindre forflygti-gelse af carbonet under pyrolysen, er tilfredsstillende for fremgangsmåden .Numerous groups have been shown to effect carbon fixation during pyrolysis. A partial list of groups and their effectiveness is given in Table XV. The exact chemical nature of the group is immaterial, as any group which serves to prevent volatilization of the carbon during pyrolysis is satisfactory for the process.

il) Opsugede carbonfikserende midleril) Absorbed carbon fixing agents

Opfyldning af en makroporøs copolymers porer med en reaktiv substans forud for pyrolysen tjener til at forhindre forflygtigelse af carbonet i copolymeren. I tilfældet, hvor der anvendes svovlsyre, er det blevet vist, at materialet gennemgår en sulfoneringsreaktion under opvarmning, som frembringer en substans lig udgangsmaterialet i prøve 1 i tabel XV. Det større carbonudbytte, der opnås via opsugning frem for præsulfonering, er uventet og viser, at fremgahgs*-måden kan være bedre end andre carbonfikseringsteknikker.Filling the pores of a macroporous copolymer with a reactive substance prior to pyrolysis serves to prevent volatilization of the carbon in the copolymer. In the case where sulfuric acid is used, it has been shown that the material undergoes a sulphonation reaction under heating which produces a substance similar to the starting material of Sample 1 of Table XV. The greater carbon yield obtained via aspiration rather than presulfonation is unexpected and shows that the method of presentation may be better than other carbon fixation techniques.

ili) Imprægnerede polymereili) Impregnated polymers

Imprægnering er eksemplificeret ved nr. 4 i tabel XVI, hvor porerne af en carbon black type indeholdende S/DVB-copolymer opfyldtes med H2S04 og pyrolyseredes. Carbonudbyttet er højere end i det tilsvarende eksperiment (prøve 1), som er gennemført uden tilstedeværelsen af carbon black.Impregnation is exemplified by # 4 in Table XVI where the pores of a carbon black type containing S / DVB copolymer were filled with H 2 SO 4 and pyrolyzed. The carbon yield is higher than in the corresponding experiment (sample 1), which was carried out without the presence of carbon black.

26 14979526 149795

OISLAND

Ή <H <D 0) 0) (O Ό Ό β β β Φ β β βΉ <H <D 0) 0) (O Ό Ό β β β Φ β β β

(Q rH i—i rH(Q rH i — i rH

rH (fl (fl β (fl β β ίβ tf (fl <0 (D -n -n Φ -n Φ fl) *ri -η ·η τη •rt O' Oi O'rH (fl (fl β (fl β β ίβ tf (fl <0 (D -n -n Φ -n Φ fl) * ri -η · η τη • rt O 'Oi O'

H O O OH O O O

O β β a Λ ’ ’O) Λ *rl Λ υ CM Ο 0> ο β α) Ο -Η +) ΙΟ β ► -pi Λ όΡ όΡ 0\0 όΡ ύΡ dP dP dP dP dP tQ (fl Ά ίο m ιό fl o w ci r- vj3 id Ό !> 3 ίι κι ^ Γ' οι tn r- c- β aO β β a Λ '' O) Λ * rl Λ υ CM Ο 0> ο β α) Ο -Η +) ΙΟ β ► -pi Λ όΡ όΡ 0 \ 0 όΡ ύΡ dP dP dP dP dP tQ (fl Ά ίο m ιό fl ow ci r- vj3 id Ό!> 3 ίι κι ^ Γ 'οι tn r- c- β a

Hl d 0Hl d 0

® β S® β S

η η Hη η H

ft A H « 3 Η ·Η -Η H (fl +» θ' O Φ 0i <1ί β Φ β rrt Ή 0l Φ c c (ο a Φ g Λ ft > Η Φ Ρ Η β X Φ Ό g Ρ C0 β > +) Οι Η Αί Φ g·,« φ ·Η Ό Ο Η ·Η /3 Ή (fl·—· (ΰ β η Ρ >> τ* μ 0 φ φ dP dP <3Ρ dP Φ ·Η Η Λ β+) Ο Π Μ Ί1 +> Η >ι >, +) ·. · dP ο\° ·- dP ϋΡ ο\° - dP (Η Λ ft (0 lo^r^n-'^rmor-i Η η οο ί< Φft AH «3 Η · Η -Η H (fl +» θ 'O Φ 0i <1ί β Φ β rrt Ή 0l Φ cc (ο a Φ g Λ ft> Η Φ Ρ Η β X Φ Ό g Ρ C0 β> +) Οι Η Αί Φ g ·, «φ · Η Ό Ο Η · Η / 3 Ή (fl · - · (ΰ β η Ρ >> τ * μ 0 φ φ dP dP <3Ρ dP Φ · Η Η Λ β +) Ο Π Μ Ί1 +> Η> ι>, +) ·. DP ο \ ° · - dP ϋΡ ο \ ° - dP (Η Λ ft (0 lo ^ r ^ n - '^ rmor-i Η η οο ί <Φ

ο r-ijDco^nncMCM in in η nj g-Hο r-ijDco ^ nncMCM in in η nj g-H

•Hfl Ο O• Hfl Ο O

+)3 O to +) rH Ό+) 3 O to +) rH Ό

H I K rHH I K rH

Η Ο X H 0 Η H g Φ Φ H g +1 g Φ ft H (fl Oi >i >d r-H Φ g rH βΟ Ο X H 0 Η H g Φ Φ H g +1 g Φ ft H (fl Oi> i> d r-H Φ g rH β

+> >1 +> ft 4J >0-H+>> 1 +> ft 4J> 0-H

(fl Λ (fl -M H -P ft +1H+) ΠΗ +> I Φ g -P βφβ (fl >t Φ pEJ >1 (fl Φ Η β Η H U Φ φ β X g rH > x+) β+l to® iHUl 10 O' a OOH-H Q OH Ο H (OH ®tQ \-H 0(fl Λ (fl -MH -P ft + 1H +) ΠΗ +> I Φ g -P βφβ (fl> t Φ pEJ> 1 (fl Φ Η β Η HU Φ φ β X g rH> x +) β + l to ® iHUl 10 O 'a OOH-H Q OH Ο H (OH ®tQ \ -H 0

a ΜπΛ 0 Η β \ Λ (fl ΊΗ Ifl *H 0 -PS -P Pa ΜπΛ 0 Η β \ Λ (fl ΊΗ Ifl * H 0 -PS -P P

β Η Η H -p ·Η β H ID rl ΙΟ ΙΟι-Η (fl β O' β +1 H fl (fl il H g H (fl β - (fl Λ > -Η g o -h O' ωΟΟβιβΌΟ+ω+ΟΌΛίβ > Λ β -H to Η Η Φ (fl Η >, 10 Ο Φβ Η Η H −p · Η β H ID rl ΙΟ ΙΟι-Η (fl β O ′ β + 1 H fl {fl i H g H (fl β - (fl Λ> −Η go -h O ′ ωΟΟβιβΌΟ + ω + ΟΌΛίβ> Λ β -H to Η Η Φ (fl Η>, 10 Ο Φ

Dj ιΗ 0) +> fi 10 CQ Ό β Φ χ m μ m > m .η μ « ffl m fi <Ρ. ft -H > > > Q > >ι > > > > >( O ft a Q Q Q \ Q β Q Q Q Q S',0? Η \\\|25\·Η\ \'\X ΦΗ ΗDj ιΗ 0) +> fi 10 CQ Ό β Φ χ m µ m> m .η µ «ffl m fi <Ρ. ft -H>>> Q>> ι>>>>> (O ft a Q Q Q \ Q β Q Q Q Q S ', 0? Η \\\ | 25 \ · Η \ \' \ X ΦΗ Η

to u> ω u> < ω > cn cn w ω jaacDto u> ω u> <ω> cn cn w ω jaacD

m Im I

H CM COH CM CO

27 149795 O) ω27 149795 O) ω

rHrh

φφ

Ό +ι +i +i -PΌ + ι + i + i −P

Η ε Φ Φ Φ Φ ο ρ m ,¾ m in f! O Ρ P P P a) a> iu U fB ffl W tn Λ e S M M Tl •h m ό ·3 ό *3 +» Λ β 3 3 3 3 tnΗ ε Φ Φ Φ Φ ο ρ m, ¾ m in f! O Ρ P P P a) a> iu U fB ffl W tn Λ e S M M Tl • h m ό · 3 ό * 3 + »Λ β 3 3 3 3 tn

>1 i—I> 1 in — I

mm

PP

* 0 i Φ ή* 0 in Φ ή

β -P dP dP dP dPβ -P dP dP dP dP

0·Ρ W rl Η ^ β i > oj (S σ\ Φ0 · Ρ W rl Η ^ β i> oj {S σ \ Φ

Hfl p (Ο Ό >i od w >1 p o β >iHfl p (Ο Ό> i od w> 1 p o β> i

HH

(1) O(1) Oh

Ό 0) CO)Ό 0) CO)

Φ -P HΦ -P H

Ό +J Γ-· H1 β · β >· Ai β Havocs cm i tnaΌ + J Γ- · H1 β · β> · Ai β Havocs cm i tna

Φ difl « >j n OnJΦ difl «> j n OnJ

H fi 3 _ H · τ3 >ί ffl Λ H in > ε i—i o s ω ·Η \ Ο Οι +) Μ Λ -S (U β β β η Μ υ & ιύ a) iw β -Η β <*Ρ V) β >ι Ρ -Ρ ild) to ^ ο tri ηο-ρ ^πε ο i? > β ο ϊρ ρ ω ε> ΧΦέ CO Ρ Ο ΙΝ ο Ό NO Ή Μ ΜΟ η β +) w β η οί φ φ φ >1+ Ο ¢0 β ,Q β tJl 1» ri(N a 00 ΟΌ φ φ β οο Ο ·Ρ Φ σ' ,β ΦH fi 3 _ H · τ3> ί ffl Λ H in> ε i — ios ω · Η \ Ο Οι +) Μ Λ -S (U β β β η Μ υ & ιύ a) iw β -Η β <* Ρ V) β> ι Ρ -Ρ fire) to ^ ο tri ηο-ρ ^ πε ο i? > β ο ϊρ ρ ω ε> ΧΦέ CO Ρ Ο ο ο Ό NO Ή Μ ΜΟ η β +) w β η οί φ φ φ> 1+ Ο ¢ 0 β, Q β tJl 1 »ri (N a 00 ΟΌ φ φ β οο Ο · Ρ Φ σ ', β Φ

E-itn in ο\ ft g < PSE-itn in ο \ ft g <PS

μ a β _ -ho ·%. υ β m , ο β Αί φ -η ο Ο Ό -Ρ Λ Φ β td U Η Φ in β , Λ Ρ ·Η Ο Ρ + W Ρ Φ β > Φ ε CQP3 Μ ΡΟ Ο Φ ε ?ι >> > > Λ £> ΪΡ Η QO QQP β -Η Ο \ \ \ \β Λ 0 Οι COCO IOCQO Η ft Ο ·ρ Ο -Ρ Ρ Φ -Ρ Ό Η β β 3 -Ρ -Ρ (d Φ • Μ Ρ +J © β 3 β ιη ο» Η Ό « Φ 3 Ρ ft ,Η (Ν 00 η* Ρ ft §ο ε IP Η ιη w *µ and β _ -ho ·%. υ β m, ο β Αί φ -η ο Ο Ό -Ρ Λ Φ β td U Η Φ in β, Λ Ρ · Η Ο Ρ + W Ρ Φ β> Φ ε CQP3 Μ ΡΟ Ο ε? ι >>> > Λ £> ΪΡ O QO QQP β -Η Ο \ \ \ \ β Λ 0 Οι COCO IOCQO Η ft Ο · ρ Ο -Ρ Ρ Φ -Ρ Ό Η β β 3 -Ρ -Ρ (d Φ • Μ Ρ + J © β 3 β ιη ο »Η Ό« Φ 3 Ρ ft, Η (Ν 00 η * Ρ ft §ο ε IP Η ιη w *

Eksempel 3 28 149795Example 3 28 149795

Det efterfølgende eksperiment frembragte prøve nr. 1 i tabel XVI.The subsequent experiment produced sample # 1 in Table XVI.

En prøve på 30,79 g af den makroporøse copolymer (20% DVB/S) anbragtes i et kvartsrør med en udvendig diameter på 30 mm, egnet til efterfølgende varmebehandling. Den ene ende af røret blokeredes med kvartsuld, og copolymeren anbragtes oven på kvartsulden med røret holdt vertikalt. Isopropanol, afioniseret vand og 98% I^SO^ (1 liter af hver) hældtes i rækkefølge gennem harpiksen i løbet af en periode på/1,5 time. Overskydende løb af under en 10 minutters pause.A sample of 30.79 g of the macroporous copolymer (20% DVB / S) was placed in a 30 mm outer diameter quartz tube suitable for subsequent heat treatment. One end of the tube was blocked with quartz wool and the copolymer was placed on top of the quartz wool with the tube held vertically. Isopropanol, deionized water and 98% I 2 SO 2 (1 liter of each) were poured sequentially through the resin over a period of / 1.5 hours. Excess runs off during a 10 minute break.

Ca. 5,5 g syre forblev i porerne af harpiksen. Røret anbragtes hori- 3 sontalt i en rørovn, og N2 ledtes gennem røret i en mængde på 4800 cm pr. minut. Under opvarmning udvikledes først hvid røg og dernæst en rødlig stikkende lugtende olie fra prøven. Produktet var sorte, skinnende, fritløbende perler, som groft taget havde samme størrelse som udgangsharpiksen.Ca. 5.5 g of acid remained in the pores of the resin. The tube was placed horizontally in a tube furnace and N2 was passed through the tube in an amount of 4800 cm minute. During heating, white smoke first developed and then a reddish stinging smelling oil from the sample. The product was black, shiny, free-flowing beads, roughly the same size as the starting resin.

Eksempel 4 Følgende eksperiment frembragte prøve 2 i tabel XVI.Example 4 The following experiment produced Sample 2 in Table XVI.

En benzoesyrecopolymer fremstilledes ud fra en chlormethyleret harpiks (20% DVB/S) ved oxidation med salpetersyre. En portion på 20,21 g af den opløsningsmiddelkvældede og vakuumtørrede harpiks anbragtes i et kvartsrør, som i den ene ende var lukket med kvartsuld. Røret holdtes horisontalt i en "Glas-col" varmekappe og opvarmedes gradvis til 800°C i løbet af 200 min. Prøven afkøledes til stuetemperatur i løbet af ca. 120 min. Nitrogen strømmede gennem røret .under opvarmningen med en hastighed på 4800 cm /min. Hvid røg udvikledes fra prøven under opvarmning. Slutproduktet bestod af skinnende metallisk sorte perler.A benzoic acid copolymer was prepared from a chloromethylated resin (20% DVB / S) by oxidation with nitric acid. A portion of 20.21 g of the solvent swollen and vacuum-dried resin was placed in a quartz tube closed at one end with quartz wool. The tube was held horizontally in a "Glass-col" heating jacket and gradually heated to 800 ° C over 200 minutes. The sample was cooled to room temperature over ca. 120 min. Nitrogen flowed through the tube during heating at a rate of 4800 cm / min. White smoke developed from the sample during heating. The end product consisted of shiny metallic black beads.

Typisk multimodal porestørrelsefordeling af de pyrolyserede polymerpartikler illustreres nedenfor i tabel XVII.Typical multimodal pore size distribution of the pyrolyzed polymer particles is illustrated below in Table XVII.

0) IH0) IH

29 149795 ό tJ Η Φ X 3 -Ρ Μ Ο 10λ η Ο) (0 \ ο «10 m η +»ο £ >1 Λ 0)0 η Η ο φ ιη μ ιη η ο ιη ^ Ο £ φ 00 Μ Ο Ο Ο Ο Ο 'S' Η )Η Ο S'"' r^*· η tn -Ηοοοοοοοο ft Ή ft) +» d ρ Φ φ υ ftp m εφ «. ·Η β ρ ο ft ο -μ - Ρ 0)0 ii nftrO ιο <r> •«a* ν η ο οο nj 030 ΟΟΟ Ο Η Η Η g COtQO - ~ ~ ' CM ft 00 ΟΟΟΟΟΟΟΟΟ — B0«29 149795 ό tJ Η Φ X 3 -Ρ Μ Ο 10λ η Ο) (0 \ ο «10 m η +» ο £> 1 Λ 0) 0 η ο ο φ ιη μ ιη η ο ιη ^ Ο £ φ 00 Μ Ο Ο Ο Ο 'S' Η) Η Ο S '"' r ^ * · η tn -Ηοοοοοοο ft Ή ft) +» d ρ Φ φ υ ftp m εφ «. · Η β ρ ο ft ο -μ - Ρ 0) 0 ii nftrO ιο <r> • «a * ν η ο οο nj 030 ΟΟΟ Η Η CO g COtQO - ~ ~ 'CM ft 00 ΟΟΟΟΟΟΟΟΟ - B0«

ό +Jό + J

ο Φ CM Μ —ο Φ CM Μ -

¢1 +) U σ> CM ΙΟ CM 00 CM¢ 1 +) U σ> CM ΙΟ CM 00 CM

<u U) ΦΟ Ο Η Ο Η t-l Ο +1 > Φ Ο ' ' " - - ' •Η Η +JO ΟΟΟΟΟΟΟΟΟ Η Ο ft) 00<u U) ΦΟ Ο Η Ο-t-l Ο +1> Φ Ο '' "- - '• Η Η + JO ΟΟΟΟΟΟΟΟΟ Η Ο ft) 00

Ρ Ρ IΡ Ρ I

Φ >1 CMΦ> 1 cm

Λ & ΟΛ & Ο

VD ^ Γ- cn CMVD ^ Γ- cn CM

s υ ο ο Η Ο Ο α) ο - «.«.·. *.s υ ο ο Η Ο) α) ο - «.«. ·. *.

Ν Ο ΟΟΟΟΟΟ Ο C ο φ ^ ιη Λ w Η \ β £ — η ·η υ ο η ο> — 0 in cm on > ·Η ο Ο Η Ι-) Η >4ΌΦ ο *·*· -*> \ Η 00 ΟΟΟΟΟΟΟΟΟ Η β Φ ^ Φ Φ s Λ Ρ Φ >ιΗΝ Ο ΟΟΟΟΟΟ C ο φ ^ ιη Λ w Η \ β £ - η · η υ ο η ο> - 0 in cm on> · Η ο Ο Η )-) Η> 4ΌΦ ο * · * · - *> \ Η 00 ΟΟΟΟΟΟΟΟΟ Η β Φ ^ Φ Φ s Λ Ρ Φ> ιΗ

En -Ρ 0 Μ ft φ m +J οο η r- φ ·Η Ο Η Ο Η = tjl HO ΟΟΟΟΟΟΟΟΟ β φ Ο •Η Λ cm Ή £ φ 5! •ϋ = Ρ -Μ Ο Φ u_l η φ φ φ οι mm Η >1 Η Φ ΓΗ Φ Ρ Ο Ρ «< Η Ρ Η'-' ΟΟΟΟΟΟ •Q. >,·& ΟΟΟΟΟΟ +) ft +) Φ vooHCMn^rcooo Μ m Ό I *4· I I I I I Λ φ φ φοφ ·Μ··Μ·|ΟΟΟΟθ ' ρ λ:ρρ νο^οοοο 0 X 0 S ν HCMn^r ft ·Η ft ΟAn -Ρ 0 Μ ft φ m + J οο η r- φ · Η Ο Η Ο Η = tjl HO ΟΟΟΟΟΟΟΟΟ β φ Ο • Η Λ cm Ή £ φ 5! • ϋ = Ρ -Μ Ο Φ u_l η φ φ φ οι mm Η> 1 Η Φ ΓΗ Φ Ρ Ο Ρ «<Η Ρ Η'- 'ΟΟΟΟΟΟ • Q. >, · & ΟΟΟΟΟΟ +) ft +) Φ vooHCMn ^ rcooo Μ m Ό I * 4 · IIIII Λ φ φ φοφ · Μ ·· Μ · | ΟΟΟΟθ 'ρ λ: ρρ νο ^ οοοο 0 X 0 S ν HCMn ^ r ft · Η ft Ο

Eksempel 5 30 149795Example 5

Ledningsvand fra en byvandforsyning (Spring House/ Pennsylvania) som var tilsat CHC13 til en koncentration på ca. 1 ppm ledtes under hurtig strømning på 0,535 liter pr. liter pr. minut gennem tre kolonner, som indeholdt pyrolyseret styren/divinylbenzen ("Amberlite 200") pyrolyseret polymer, og som parallelt var forbundet med en fælles kilde. Afgangsstrømmen opsamledes, og CHC13-koncentrationen måltes ved hjælp af GC/EC analyse. Resultaterne, som er anført i tabel XVIII,viser, at 500°C prøven udkonkurrerer kontrol-adsorptionsmidlerne med en bred margin. Por at checke reproducerbarheden af disse resultater undersøgtes en anden portion 500°C harpiks under identiske omstændigheder, og den var signifikant bedre end den første prøve. Den bedste 500° harpiksprøve kan behandle ca. 14 gange så mange søjlevolumener ledningsvand som det granulære aktiverede carbon. Ydeevneforskellen mellem de to 500° pyrolyserede harpiksprøver kan henføres til det signifikant lavere oxygenindhold i den bedste prøve. Mindre oxygen antages at føre til en mere hydrofob overflade, hvorved overfladens tiltrækning over for tungt opløselige organiske forbindelser som chloroform forøges. Det er blevet vist, at både damp og opløsningsmiddel regenererer 500°C harpikserne effektivt. Små kolonner med charge-belastet harpiks behandledes med damp og methanol og udviste derefter samme charge-ligevægtkapacitet som før regenerering. Et andet sæt kolonneeksperimenter gennemførtes efter regenerering af kolonnerne med 5 søjlevolumener methanol. Resultaterne findes i tabel XVIII. Anden cyklus kapaciteterne af den pyrolyserede harpiks (a) og det polymere adsorptionsmiddel er højere end kapaciteterne for den første cyklus, hvilket indikerer, at me-thanolen ud over fuldstændig regenerering fjernede nogle forureninger, som var til stede ved begyndelsen af den første cyklus. Den lavere anden cyklus kapacitet for det aktiverede carbon indikerer ufuldstændig regenerering. Det pyrolyserede materiale regenereres knap så let som“xAD-4" idet det kræver ca. 1 søjlevolumen regenereringsmiddel mere for opnåelse af en ækvivalent regenereringsgrad. Aktiveret carbon regenereres signifikant mindre let, idet kun 62% regenerering opnås efter 5 søjlevolumener methanol (beregnet ud fra forholdet mellem kapaciteterne ved første og anden cyklus).Tap water from an urban water supply (Spring House / Pennsylvania) to which CHC13 was added to a concentration of approx. 1 ppm was conducted under a fast flow of 0.535 liters per liter. liter per liter. per minute through three columns containing pyrolyzed styrene / divinylbenzene ("Amberlite 200") pyrolyzed polymer and connected in parallel to a common source. The effluent was collected and the CHC13 concentration measured by GC / EC analysis. The results listed in Table XVIII show that the 500 ° C sample outperforms the control adsorbents by a wide margin. To check the reproducibility of these results, a second portion of 500 ° C resin was examined under identical conditions and was significantly better than the first sample. The best 500 ° resin sample can treat approx. 14 times as many column volumes of tap water as the granular activated carbon. The performance difference between the two 500 ° pyrolyzed resin samples can be attributed to the significantly lower oxygen content in the best sample. Less oxygen is believed to lead to a more hydrophobic surface, thereby increasing the surface's attraction to heavily soluble organic compounds such as chloroform. Both steam and solvent have been shown to effectively regenerate the 500 ° C resins. Small columns with charge-loaded resin were treated with steam and methanol and then exhibited the same charge equilibrium capacity as before regeneration. A second set of column experiments was performed after regenerating the columns with 5 column volumes of methanol. The results are in Table XVIII. The second cycle capacities of the pyrolyzed resin (a) and the polymeric adsorbent are higher than the capacities of the first cycle, indicating that the methanol, in addition to complete regeneration, removed some contaminants present at the beginning of the first cycle. The lower second cycle capacity of the activated carbon indicates incomplete regeneration. The pyrolyzed material is barely regenerated as readily as "xAD-4", requiring approximately 1 column volume of regenerant more to achieve an equivalent degree of regeneration. Activated carbon is significantly less easily regenerated, with only 62% regeneration achieved after 5 column volumes of methanol (calculated from the ratio of capacities at first and second cycles).

Tabel XVIIITable XVIII

31 14979531 149795

Resultater af kolonnestudier over fjernelse af chloroform _fra ledningsvand._ 1 ppm CHC1, i Spring House ledningsvand, nedadrettet strømning ved 0,535 liter pr. min, pr. 1 ved stuetemperatur_Results of column studies on chloroform removal from tap water. 1 ppm CHC1, in Spring House tap water, downward flow at 0.535 liters per liter. min, per 1 at room temperature_

Cyklus nr. 1; SV ved Kapacitet til 10% lækage 10% IskageCycle # 1; SV at Capacity for 10% leak 10% Ice cake

AdsorptionsmiddelThe adsorbent

Pyrolyseret polymer (500°C) (a) 6.150 12,3 mg/gPyrolyzed polymer (500 ° C) (a) 6.150 12.3 mg / g

Pyrolyseret polymer (500°C) (b) 11.850 24,9 "Filtrasorb 300" (aktiveret carbon) 850 1,8 "XAD-4"(et kommercielt tilgængeligt polymert adsorptionsmiddel) 630 2,2Pyrolyzed polymer (500 ° C) (b) 11,850 24.9 "Filtersorb 300" (activated carbon) 850 1.8 "XAD-4" (a commercially available polymeric adsorbent) 630 2.2

Cyklus nr. 2;Cycle # 2;

AdsorptionsmiddelThe adsorbent

Pyrolyseret polymer (500°C) (a) 8.350 16,8 mg/g "Filtrasorb 300" (aktiveret carbon) 525 1,3 "XAD-4m 1.175 4,0Pyrolyzed polymer (500 ° C) (a) 8,350 16.8 mg / g "Filtrasorb 300" (activated carbon) 525 1.3 "XAD-4m 1.175 4.0

Eksempel 6Example 6

Fire pyrolyserede harpikser, som er repræsentative for forskellige fremstillingsteknikker for styren/DVB-materialer, er blevet vist at have fortræffelige charge-ligevægtkapaciteter for phenol som vist i tabel XIX. De samme harpikser undersøgtes i kolonnebelastnings/re-genereringscykler, og resultaterne præsenteres i tabel XIX. Én prøve (oxygen-ætset) beholder inden for den eksperimentelle usikkerhed sin kolonnekapacitet under alle tre cykler. De andre undersøgte prøver synes at være regenereret ufuldstændigt under de valgte regenereringsbetingelser. Oxygen-ætsning forøger kun charge- og kolonnephenolkapaciteten lidt i sammenligning med den uætsede præ-kursor, men forøger regenererbarheden drastisk. Dannelse af porer i 6-40 Å-området ved ætsning kan forøge diffusionshastigheden inden for partiklerne og derved tillade mere effektiv regenerering.Four pyrolyzed resins representative of various styrene / DVB materials manufacturing techniques have been shown to have excellent phenol charge equilibrium capacities as shown in Table XIX. The same resins were examined in column load / regeneration cycles and the results are presented in Table XIX. One sample (oxygen-etched) retains within the experimental uncertainty its column capacity during all three cycles. The other samples examined appear to be incompletely regenerated under the selected regeneration conditions. Oxygen etching only slightly increases the charge and column phenol capacity in comparison with the etched pre-cursor, but drastically increases the regenerability. Formation of pores in the 6-40 Å range by etching can increase the rate of diffusion within the particles, thereby allowing more efficient regeneration.

32 14979532 149795

Det er interessant, at 500°C prøven, som var fremragende til chloroform-fjernelse, havde en lav kapacitet for phenol. Da der i 800°C prøven fandtes porer med molekylsigtestørrelse og ikke i 500°C materialet, er det sandsynligt, at de mindste porer er de aktive positioner for phenoladsorption.It is interesting that the 500 ° C sample, which was excellent for chloroform removal, had a low capacity for phenol. Since in the 800 ° C sample pores with molecular sieve size and not in the 500 ° C material were found, it is likely that the smallest pores are the active positions for phenol adsorption.

33 149795 • α> a -Μ t n g α> nj ω +J χ +> ·Η (Β <1> Url G ιΰ +J ft ε Μ id ft '»«no m η cm σι cm ho33 149795 • α> a -Μ t n g α> nj ω + J χ +> · Η (Β <1> Url G ιΰ + J ft ε Μ id ft '»« no m η cm σι cm ho

Ø^ft VQ'a'O CM CM CM CMØ ^ ft VQ'a'O CM CM CM CM

HH

0 H ^ tp G H0 H ^ tp G H

G d) Ti \G d) Ti

•Η Æ <U tP• Η Æ <U tP

G ft > p å Q) ·&G ft> p å Q) · &

H PH P

Tf -PTf -P

H 10 GH 10 G

g 0) ra -P gg 0) ra -P g

G (1) GG (1) G

O 4-> HO 4-> H

•H -P O• H -P O

+> ω > m o r- <n ftp Q) * - » ·.+> ω> m o r- <n ftp Q) * - »·.

p TI h r-· η σ op TI h r- · η σ o

O (0 π Η H CM HO (0 π Η H CM H

to τι "Θ. Sto τι "Θ. S

Ti <D tn ""Ti <D tn ""

id Gid G

a) o) cna) o) cn

Cp g G wCp g G w

Ή ·Η ·Η PΉ · Η · Η P

Η -P G HΗ -P G H

Η \ H ASHCMPO H CM ΓΟ H CM H CM Hr-CM Hh (MΗ \ H ASHCMPO H CM ΓΟ H CM H CM Hr-CM Hh (M

(U > ·& > HH(U> · &> HH

X rø P CJX red P CJ

tfl -Ptfl -P

P to O r~sP to O r ~ s

m faj -Pm faj -P

^ ω i m ti -P to^ ω i m ti -P two

(C G -P -P(C G -P -P

ctl 01 tPctl 01 tP

P > P Rj TI cn O Ti > 0)~x +) +) (t) (U > Cr tu ω Ό cp ε +) P tu -Η -P ~ •H 0)G Η φ O to +) g H H OO VO o Π5 HQ) ti) H ft ro CM CO σι Γ'- ft G g Cno&H H H -sP> P Rj TI cn O Ti> 0) ~ x +) +) (t) (U> Cr tu ω Ό cp ε +) P tu -Η -P ~ • H 0) G Η φ O to +) g HH OO VO o Π5 HQ) ti) H ft ro CM CO σι Γ'- ft G g Cno & H HH -s

Id O Η P RJ i X -H -P RJ ftoId O Η P RJ i X -H -P RJ fto

H tp \ X Id OH tp \ X Id O

O id > u λ: m G cnO id> u λ: m G cn

0) -H0) -H

X 'R*X 'R *

ft Η λ -Pft Η λ -P

O is) -P X Φ I t: i gw <u a> o-PipPtoO is) -P X Φ I t: i gw <u a> o-PipPto

oa) tom idtupOGoa) tom idtupOG

X ÆG Η -P ·—> ^ HP to go -P-PX EG Η -P · -> ^ HP to go -P-P

h fto øffiu u Ætua >i-p p ω X -ft >100 G O H +> ft) p g d) H G o O G CP O 0)H H (1) β h fto ραίο o og'*'* aptu g > o d) (¾ id X tpm in ΛΡΟΟ ΟτΙ βΉο Æ 01 ip'— ^ p acn cn rø to ti <d -p ρh fto øffiu u Ætua> ip p ω X -ft> 100 GOH +> ft) pgd) HG o AND CP O 0) HH (1) β h fto ραίο o and '*' * aptu g> od) (¾ id X rpm in ΛΡΟΟ ΟτΙ βΉο Æ 01 ip'— ^ p acn cn rø two ti <d -p ρ

Id O > (ϋκ (dgCMCM>T)-H PÆld gi o tn m o o ή k a o id g ond o tn h inId O> (ϋκ (dgCMCM> T) -H PÄld gi o tn m o o ή k a o id g ond o tn h in

I II I

mm«« æmm «« æ

Cn > > > > tPCn>>>> tP

G Q Q Q Q pG Q Q Q Q p

CP H \ \ \ \ GCP H \ \ \ \ G

GP G G G G ÆrøGP G G G G Ærø

•H 0) d) 0) d) <D -d* tQU• H 0) d) 0) d) <D -d * tQU

GP P P PPI -PftGP P P PPI -Pft

ΡΦ >i >i >i >i Q -PΡΦ> i> i> i> i Q -P

cog ω-Ρ -P +)+)¾ ηcog ω-Ρ -P +) +) ¾ η

Id d) >CQ to totox ft H CP ·& (DG) tø · · · ·· · CQ& fUr-i 04 vøId d)> CQ to totox ft H CP · & (DG) th · · · ·· · CQ & fUr-i 04 vue

Eksempel 7 34 149795Example 7 34 149795

De pyrolyserede polymeres evne til at adsorbere visse uønskede blodkomponenter er.blevet undersøgt for at fastslå deres anvendelighed véd hæmodialysebehandling af nyresvigt. Et bredt spektrum af styren/DVB-typen af pyrolyserede polymere er blevet undersøgt. Resultaterne af charge-eksperimenter, som er sammenstillet i tabel XX, indikerer, at en oxygen-ætset prøve har høj kapacitet med hensyn til urinsyreadsorption. Graden af urinsyrekapacitet svarer til volumenet af porer i 6 - 40 Å området, som er dannet ved oxygen-ætsning.The ability of the pyrolyzed polymers to adsorb certain unwanted blood components has been investigated to determine their utility in renal hemodialysis treatment. A wide range of styrene / DVB type pyrolysed polymers has been studied. The results of charge experiments compiled in Table XX indicate that an oxygen-etched sample has high uric acid adsorption capacity. The degree of uric acid capacity corresponds to the volume of pores in the 6 - 40 Å range formed by oxygen etching.

Tabel XXTable XX

Pyrolyserede polymeres charge-ligevægtskapacitet for urinsyre bragt til ligevægt ved stuetemperatur i vandig phosphat-puffer med pH 7,4, interpoleret til 10 ppm kapacitetPyrolysed polymer charge equilibrium capacity for uric acid equilibrated at room temperature in aqueous 7.4 pH phosphate buffer, interpolated to 10 ppm capacity

Nr. beskrivelse @ 10 ppm 1 styren/DVB-ætset 18,4 mg/g 2 pyrolyseret sulfoneret styren/DVB (800°C) 9,3 3 Η II II II II 9 0 4 " " " " (1000°C) 8,5 5 " " " " (800°C) 8,3 6. " " " " (800°C) 8,2No. description @ 10 ppm 1 styrene / DVB etched 18.4 mg / g 2 pyrolyzed sulfonated styrene / DVB (800 ° C) 9.3 3 Η II II II II 9 0 4 "" "" (1000 ° C) 8, 5 "" "" (800 ° C) 8.3 6. "" "" (800 ° C) 8.2

7 pyrolyseret sulfoneret styren/DVB7 pyrolyzed sulfonated styrene / DVB

H2S04 opsugende til 800°C 2,6H2 SO4 aspirating to 800 ° C 2.6

8 pyrolyseret sulfoneret styren/DVB8 pyrolyzed sulfonated styrene / DVB

(større makroporer)(800°C) 2,2 9 pyrolyseret sulfoneret styren/DVB (500°C) 1,2(larger macropores) (800 ° C) 2.2 9 pyrolyzed sulfonated styrene / DVB (500 ° C) 1.2

Eksempel 8Example 8

Urinsyreadsorption bestemtes for forskellige prøver af pyrolyseret polymer (alle afledt af "Amberlite 200") i en 50 ppm opløsning af urinsyre i 0,1N phosphatpuffer ved pH 7,4. Urinsyreopløsningen ledtes gennem en søjle på 5 cm polymer ved en strømningshastighed på 30 SV/time i opadgående retning ved en temperatur på a; 25°C. Resultaterne er sammenstillet i tabel XXI.Uric acid adsorption was determined for various samples of pyrolyzed polymer (all derived from "Amberlite 200") in a 50 ppm solution of uric acid in 0.1N phosphate buffer at pH 7.4. The uric acid solution was passed through a column of 5 cm polymer at a flow rate of 30 SV / hr upwards at a temperature of α; 25 ° C. The results are summarized in Table XXI.

Claims (11)

1. Delvist pyrolyserede partikler af en makroporøs syntetisk polymer, hvilke partikler har egenskaber, som er egnede til brug ved adsorption, molekylsigtning og/eller katalyse, og har stor modstandsdygtighed over for knusning og partikelafstødning, KENDETEGNET ved, AT de er dannet ved kontrolleret termisk nedbrydning af en makroporøs syntetisk polymer, som indeholder en carbonfikserende gruppe, dvs. en gruppe, der tillader polymeren at forkulle uden at smelte, og som er afledt af en eller flere ethylenisk umættede monomere eller monomere, som kan kondenseres til frembringelse af makroporøse polymere, eller blandinger deraf, hvilke delvist pyrolyserede partikler har (a) et carbonindhold på i det mindste 85 vægt%, (b) en U8795 multimodal porefordeling med makroporer af størrelse i området fra ca. 50 Å til ca. 100.000 Å i gennemsnitlig porediameter, og (c) et carbon-til-hydrogen atomforhold på mellem ca. 1,5:1 og ca. 20:1.1. Partially pyrolyzed particles of a macroporous synthetic polymer, which have properties suitable for use in adsorption, molecular sieving and / or catalysis, and have high resistance to crushing and particle repellency, CHARACTERIZED by the fact that they are formed by controlled thermal degradation of a macroporous synthetic polymer containing a carbon fixing group, i. a group which allows the polymer to char without melting, and which is derived from one or more ethylenically unsaturated monomers or monomers which can be condensed to produce macroporous polymers, or mixtures thereof, which have partially pyrolyzed particles having (a) a carbon content of (b) a U8795 multimodal pore distribution with macropores of size ranging from about 50 Å to approx. 100,000 Å in average pore diameter, and (c) a carbon-to-hydrogen atomic ratio of about 1.5: 1 and approx. 20: 1. 2. Delvist pyrolyserede partikler ifølge krav 1, KENDETEGNET ved, AT partiklerne er perler eller kugler med cå. samme dimensioner som ionbytningsharpikser.Partially pyrolyzed particles according to Claim 1, characterized in that the particles are beads or balls with co. the same dimensions as ion exchange resins. 3. Delvist pyrolyserede partikler ifølge krav 1, KENDETEGNET ved, AT partiklernes porer er bimodale med mikroporer af størrelse i området fra ca. 4 Å til ca. 50 Å og makroporer af størrelse i området fra ca. 50 Å til ca. 100.000 Å.Partially pyrolyzed particles according to claim 1, characterized in that the pores of the particles are bimodal with micropores of size in the range of approx. 4 Å to approx. 50 Å and macropores in size ranging from approx. 50 Å to approx. 100,000 Å. 4. Delvist pyrolyserede partikler ifølge krav 1, KENDETEGNET ved, AT partiklernes overfladeareal målt ved N2-adsorption ligger mellem ca. 50 og 1500 m2/g, hvoraf makroporerne bidrager med ca. 6 til ca. 700 m2/g bestemt ved kviksølvadsorptionsteknikken.Partially pyrolyzed particles according to claim 1, characterized in that the surface area of the particles as measured by N2 adsorption is between approx. 50 and 1500 m2 / g, of which the macropores contribute approx. 6 to approx. 700 m2 / g determined by the mercury adsorption technique. 5. Delvist pyrolyserede partikler ifølge krav 1, KENDETEGNET ved, AT partiklerne indeholder mikroporer af molekylsigtestørrelse, som er mellem ca. 4 Å og 6 Å i gennemsnitlig porediameter.Partially pyrolyzed particles according to claim 1, characterized in that the particles contain micropores of molecular sieve size which are between 4 Å and 6 Å in average pore diameter. 6. Delvist pyrolyserede partikler ifølge krav 1, KENDETEGNET ved, AT carbon-til-hydrogen atomforholdet er mellem ca. 2,0:1 og 10:1.Partially pyrolyzed particles according to claim 1, characterized in that the carbon-to-hydrogen atomic ratio is between ca. 2.0: 1 and 10: 1. 7. Delvist pyrolyserede partikler ifølge krav 1, KENDETEGNET ved, AT den carbonfikserende gruppe er udvalgt blandt sulfonat, carboxyl, amin, halogen, oxygen, sulf onatsalte, carboxylatsalte og kva-ternære ammoniumsalte.Partially pyrolyzed particles according to claim 1, characterized in that the carbon-fixing group is selected from sulfonate, carboxyl, amine, halogen, oxygen, sulfonate salts, carboxylate salts and quaternary ammonium salts. 8. Delvist pyrolyserede partikler ifølge krav 1, KENDETEGNET ved, AT partiklernes carbon-til-hydrogen atomforhold er mindst 9,0.Partially pyrolyzed particles according to claim 1, characterized in that the carbon-to-hydrogen atomic ratio of the particles is at least 9.0. 9. Delvist pyrolyserede partikler ifølge krav 1, KENDETEGNET ved, AT partiklerne indeholder op til ca. 15 vægt% af et metal.Partially pyrolyzed particles according to claim 1, characterized in that the particles contain up to approx. 15% by weight of a metal. 10. Delvist pyrolyserede partikler ifølge krav 1, KENDETEGNET ved, AT partiklerne indeholder op til ca. 15 vægt% af et eller flere alkalimetaller, jordalkalimetaller, nitrogen, oxygen, svovl, chlor, overgangsmetaller eller blandinger deraf.Partially pyrolyzed particles according to claim 1, characterized in that the particles contain up to approx. 15% by weight of one or more alkali metals, alkaline earth metals, nitrogen, oxygen, sulfur, chlorine, transition metals or mixtures thereof. 11. Delvist pyrolyserede partikler ifølge krav 1, KENDETEGNET ved, AT partiklerne indeholder op til ca. 15 vægt% af et metal udvalgt blandt jern, kobber, sølv, nikkel, mangan, palladium, kobolt, titan, zirconium, natrium, kalium, calcium, zink, cadmium, rutheniumPartially pyrolyzed particles according to claim 1, characterized in that the particles contain up to approx. 15% by weight of a metal selected from iron, copper, silver, nickel, manganese, palladium, cobalt, titanium, zirconium, sodium, potassium, calcium, zinc, cadmium, ruthenium
DK64676A 1975-02-18 1976-02-17 PARTY PYROLYZED POLYMER PARTICLES AND PROCEDURES FOR THEIR PREPARATION DK149795C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK356678A DK156265C (en) 1975-02-18 1978-08-11 PROCEDURE FOR SEPARATING A COMPONENT FROM A FLUIDUM THROUGH PARTICLES OF A SYNTHETIC POLYMER.

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
US55050075A 1975-02-18 1975-02-18
US55049975A 1975-02-18 1975-02-18
US55049575A 1975-02-18 1975-02-18
US55048675A 1975-02-18 1975-02-18
US55049775A 1975-02-18 1975-02-18
US55049775 1975-02-18
US55048675 1975-02-18
US55049975 1975-02-18
US55049575 1975-02-18
US55050075 1975-02-18
US65202076A 1976-01-26 1976-01-26
US65202076 1976-01-26
US65201976 1976-01-26
US05/652,019 US4040990A (en) 1975-02-18 1976-01-26 Partially pyrolyzed macroporous polymer particles having multimodal pore distribution with macropores ranging from 50-100,000 angstroms
US05/654,323 US4064043A (en) 1975-02-18 1976-02-02 Liquid phase adsorption using partially pyrolyzed polymer particles
US65426176 1976-02-02
US65426576 1976-02-02
US05/654,265 US4063912A (en) 1975-02-18 1976-02-02 Gaseous phase adsorption using partially pyrolyzed polymer particles
US65432376 1976-02-02
US05/654,261 US4064042A (en) 1975-02-18 1976-02-02 Purification of blood using partially pyrolyzed polymer particles

Publications (3)

Publication Number Publication Date
DK64676A DK64676A (en) 1976-08-19
DK149795B true DK149795B (en) 1986-10-06
DK149795C DK149795C (en) 1987-06-01

Family

ID=27581287

Family Applications (1)

Application Number Title Priority Date Filing Date
DK64676A DK149795C (en) 1975-02-18 1976-02-17 PARTY PYROLYZED POLYMER PARTICLES AND PROCEDURES FOR THEIR PREPARATION

Country Status (10)

Country Link
AU (2) AU506954B2 (en)
DD (2) DD125340A5 (en)
DE (2) DE2606089C2 (en)
DK (1) DK149795C (en)
FR (2) FR2301294A1 (en)
GB (2) GB1544440A (en)
IE (2) IE42276B1 (en)
IL (1) IL49045A (en)
NL (1) NL182886C (en)
SE (2) SE424631B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348989A (en) * 1976-10-16 1978-05-02 Sumitomo Chem Co Ltd Artificial kidney
US4267055A (en) * 1979-09-04 1981-05-12 Rohm And Haas Company Separation of more planar molecules from less planar molecules
DE3029187C2 (en) * 1980-08-01 1986-04-17 Bergwerksverband Gmbh, 4300 Essen Process for removing hydrogen sulfide from oxygen-free or oxygen-containing gas mixtures
US5104545A (en) * 1989-12-15 1992-04-14 Nalco Chemical Company Process for removing water soluble organic compounds from produced water
US5135656A (en) * 1989-12-15 1992-08-04 Nalco Chemical Company Process for removing water soluble organic compounds from produced water
JPH0426510A (en) * 1990-05-18 1992-01-29 Tonen Corp Carbon particle, its production and its application
US5460792A (en) * 1992-12-23 1995-10-24 Rohm And Haas Company Removal and destruction of halogenated organic and hydrocarbon compounds with porous carbonaceous materials
US6114466A (en) * 1998-02-06 2000-09-05 Renal Tech International Llc Material for purification of physiological liquids of organism
DE10011223B4 (en) * 2000-03-08 2005-02-10 Carbotex Produktions-Und Veredelungsbetriebe Gmbh Spherical high-performance adsorbents with microstructure and their use
DE102013102017A1 (en) * 2013-02-28 2014-08-28 Khs Gmbh Method and device for processing CIP media
CN105377402A (en) * 2013-08-06 2016-03-02 陶氏环球技术有限责任公司 Method for extracting natural gas liquids from natural gas using an adsorbent media comprising a partially pyrolized macroporous polymer
EP4045580B1 (en) * 2019-10-15 2023-12-06 INEOS Styrolution Group GmbH Method of producing styrene monomers by depolymerization of a styrene-copolymer-containing polymer mass
FR3127758A1 (en) * 2021-10-05 2023-04-07 S.N.F. Sa THICKENING POLYMERIC COMPOSITION FOR COSMETIC AND DETERGENT COMPOSITION

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD63768A (en) *
JPS4979997A (en) * 1972-11-24 1974-08-01

Also Published As

Publication number Publication date
AU1122276A (en) 1977-08-25
SE424631B (en) 1982-08-02
DE2606120C2 (en) 1986-07-17
NL7601656A (en) 1976-08-20
SE7601394L (en) 1976-08-19
FR2301294B1 (en) 1982-11-26
DE2606120A1 (en) 1976-09-02
DE2606089C2 (en) 1985-10-31
GB1543376A (en) 1979-04-04
FR2301294A1 (en) 1976-09-17
DD125340A5 (en) 1977-04-13
DD124232A5 (en) 1977-02-09
IL49045A (en) 1979-12-30
IE42277B1 (en) 1980-07-02
SE434126B (en) 1984-07-09
GB1544440A (en) 1979-04-19
DE2606089A1 (en) 1976-08-26
SE8005517L (en) 1980-08-01
AU505557B2 (en) 1979-11-22
AU506954B2 (en) 1980-01-31
NL182886C (en) 1988-06-01
IL49045A0 (en) 1976-04-30
DK149795C (en) 1987-06-01
IE42276L (en) 1976-08-18
IE42277L (en) 1976-08-18
FR2301551B1 (en) 1983-01-21
IE42276B1 (en) 1980-07-02
DK64676A (en) 1976-08-19
FR2301551A1 (en) 1976-09-17
AU1122476A (en) 1977-08-25

Similar Documents

Publication Publication Date Title
CA1080198A (en) Pyrolyzed beads of a resinous polymer
CA1081619A (en) Liquid phase adsorption using pyrolyzed polymers
DK149795B (en) PARTY PYROLYZED POLYMER PARTICLES AND PROCEDURES FOR THEIR PREPARATION
JP3777123B2 (en) Method for producing spherical activated carbon
EP3096871B1 (en) Method to provide pipeline quality natural gas
CA2956135C (en) Process for carbon dioxide recovery from a gas stream containing carbon dioxide and hydrocarbons
CA1085310A (en) Blood purification process using pyrolyzed polymers
CA1082613A (en) Air pollution control using pyrolyzed resin adsorbents
WO2015142380A1 (en) Sequential removal of ngls from a natural gas stream
US20170066987A1 (en) Improved adsorption process for recovering condensable components from a gas stream
WO2018085076A1 (en) Psa produced hydrocarbon gas supply for power generation
US10093877B2 (en) Temperature controlled adsorption process for recovering condensable components from a gas stream
EP3094397B1 (en) Methane-rich natural gas supply for stationary combustion systems
Malik et al. Synthesis and characterization of nanostructured carbons with controlled porosity prepared from sulfonated divinylbiphenyl copolymers
WO2016191259A1 (en) Method to regenerate adsorbent in a pressure swing adsorption process
US20170066988A1 (en) Co-current regeneration process for adsorption media used for recovering condensable components from a gas stream
CA1068666A (en) Pyrolyzed ion exchange resins containing metal salts
JPS6317485B2 (en)
JPS6351161B2 (en)
DK156265B (en) PROCEDURE FOR SEPARATING A COMPONENT FROM A FLUIDUM THROUGH PARTICLES OF A SYNTHETIC POLYMER.
JP3597783B2 (en) Method for producing activated carbon for adsorption heat pump
PL110108B1 (en) Method of producing partially pyrolized polymers
JP5085307B2 (en) Method for producing activated carbide and method for treating dioxins
JPS5839773B2 (en) Kousei no katsuiseitan no seizouhouhou
JP2019108250A (en) Porous charcoal material

Legal Events

Date Code Title Description
PBP Patent lapsed