DK156265B - PROCEDURE FOR SEPARATING A COMPONENT FROM A FLUIDUM THROUGH PARTICLES OF A SYNTHETIC POLYMER. - Google Patents

PROCEDURE FOR SEPARATING A COMPONENT FROM A FLUIDUM THROUGH PARTICLES OF A SYNTHETIC POLYMER. Download PDF

Info

Publication number
DK156265B
DK156265B DK356678AA DK356678A DK156265B DK 156265 B DK156265 B DK 156265B DK 356678A A DK356678A A DK 356678AA DK 356678 A DK356678 A DK 356678A DK 156265 B DK156265 B DK 156265B
Authority
DK
Denmark
Prior art keywords
process according
separated component
carbon
component
sample
Prior art date
Application number
DK356678AA
Other languages
Danish (da)
Other versions
DK156265C (en
DK356678A (en
Inventor
Laurence Ivan Peterson
James Watson Neely
Steven Lee Rock
Carl Joseph Kollman
Robert Kunin
Original Assignee
Rohm & Haas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/652,019 external-priority patent/US4040990A/en
Priority claimed from US05/654,323 external-priority patent/US4064043A/en
Priority claimed from US05/654,265 external-priority patent/US4063912A/en
Priority claimed from US05/654,261 external-priority patent/US4064042A/en
Priority claimed from DK64676A external-priority patent/DK149795C/en
Application filed by Rohm & Haas filed Critical Rohm & Haas
Publication of DK356678A publication Critical patent/DK356678A/en
Publication of DK156265B publication Critical patent/DK156265B/en
Application granted granted Critical
Publication of DK156265C publication Critical patent/DK156265C/en

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

DK 156265BDK 156265B

Den foreliggende opfindelse angâr en fremgangsmâde til adskillelse af en komponent fra et fluidum, ved hvilken fluidet bringes i kontakt med partikler af en syntetisk polymer, som har indeholdt mindst en car-bonfikserende gruppe og er blevet underkastet en varmebehandling (pyro-5 lyse), hvilke varmebehandlede partikler har et carbonindhold pâ mindst 85 vægt% og et carbon-til-hydrogen atomforhold fra 1,5:1 til 20:1.The present invention relates to a method of separating a component from a fluid in which the fluid is contacted with particles of a synthetic polymer which have contained at least one carbon-fixing group and have been subjected to a heat treatment (pyrolysis). said heat treated particles having a carbon content of at least 85% by weight and a carbon-to-hydrogen atomic ratio of 1.5: 1 to 20: 1.

Det mest almindeligt anvendte adsorptionsmiddel er idag aktiveret carbon. Til fremstillingen af aktiveret carbon til industrielt formai anvendes et bredt spektrum af carbonholdige udgangsmaterialer 10 sâsom antracit og bituminost kul, koks, carboniserede flager, tprv, etc. Sâdanne materialers egnethed afhænger af et lavt askeindhold og tilgæn-gelighed i en ensartet og ikke skiftende kvalitet. Disse materialer har imidlertid fplgende ulemper: 15 a) vanskelig og bekostelig termisk regenerering b) hpje regenereringstab pâ 10% pr. cyklus c) skprhed af parti klerne af aktivt carbon d) mange! pâ kontrol med udgangsmaterialer.The most commonly used adsorbent today is activated carbon. For the manufacture of activated carbon for industrial use, a wide range of carbonaceous starting materials 10 such as anthracite and bituminous coal, coke, carbonized flakes, tprv, etc. are used. Such suitability depends on low ash content and availability in uniform and non-changing quality . However, these materials have the following drawbacks: a) difficult and expensive thermal regeneration b) high regeneration loss of 10% per annum. cycle c) the freshness of the batch of activated carbon d) many! on control of starting materials.

20 Til undgâelse af disse ulemper anvendes sorptionsmidler opnâet ved pyrolyse af syntetiske polymerer. Fra DD-patentskrift nr. 63.768 kendes f.eks. et pyrolyseprodukt af et sulfoneret styren-divinylbenzencopoly-merisat.To avoid these drawbacks, sorbents obtained by pyrolysis of synthetic polymers are used. It is known from DD patent specification No. 63,768, for example. a pyrolysis product of a sulfonated styrene-divinylbenzene copolymerate.

De pyrolyserede partikler udviser et carbon-til-hydrogen forhold 25 fra 1,5:1-20:1, fortrinsvis 2,0:1-10:1, mens aktivt carbon normalt har et meget hpjere C/H-forhold, som mindst er stdrre end 30:1, jf. Carbon and Graphite Handbook, Charles L. Mante!!, Interscience Publishers, N.Y.The pyrolyzed particles exhibit a carbon-to-hydrogen ratio of 25: 1.5: 1-20: 1, preferably 2.0: 1-10: 1, while active carbon usually has a much higher C / H ratio which at least is greater than 30: 1, see Carbon and Graphite Handbook, Charles L. Mante !!, Interscience Publishers, NY

1968, side 198). De pyrolyserede partikler indeholder mindst 85 vægt% carbon, mens den resterende de! i hovedsagen udgpres af hydrogen, 30 alkalimetaller, jordalkal installer, nitrogen, oxygen, svovl og chlor, idet disse stoffer hidrprer fra udgangspolymeren eller de funktionelle grupper (carbonfikserende grupper). Hydrogen, oxygen, svovl, nitrogen, alkalimetaller, overgangsgruppemetaller, jordalkalimetaller og andre grundstoffer kan ogsâ hidrpre fra fyldstoffer, som er sat til de porpse 35 polymerer for at tjene som katalysator og/eller carbonfikserende grupper eller give en anden virkning.1968, page 198). The pyrolyzed particles contain at least 85% by weight of carbon, while the remaining de! essentially hydrogen, 30 alkaline metals, alkaline earths, nitrogen, oxygen, sulfur and chlorine, these substances derived from the starting polymer or functional groups (carbon fixing groups). Hydrogen, oxygen, sulfur, nitrogen, alkali metals, transition group metals, alkaline earth metals, and other elements may also be derived from fillers added to the porous polymers to serve as catalyst and / or carbon fixing groups or to provide a different effect.

For at 0ge overfladen af sâdanne pyrolyserede partikler og for at muliggpre fremstillingen af adsorptionsmidler for specifikke adsorbaterTo increase the surface of such pyrolyzed particles and to enable the preparation of adsorbents for specific adsorbates

DK 156265BDK 156265B

2 med adsorptionskapaciteter som langt overgâr aktivt kuls, foreslâs det ifdlge opfindelsen, at der som syntetisk polymer anvendes en makroporps harpiks, og at de pyrolyserede parti kler udviser et overfladeareal pâ 50 p p til 1500 m/g, hvoraf 6 til 700 m /g hidrdrer fra makroporer med en gen-5 nemsnitlig kritisk dimension fra 50 til 100.000 A og resten af over-fladearealet fra mindre porer med en gennemsnitlig kritisk dimension fra 2 til 50 A.2 with adsorption capacities far exceeding active carbon, it is proposed according to the invention that as a synthetic polymer, a macroporps resin be used and that the pyrolysed particles exhibit a surface area of 50 pp to 1500 m / g, of which 6 to 700 m / g prevents from macropores with an average critical dimension of 50 to 100,000 A and the rest of the surface area from smaller pores with an average critical dimension of 2 to 50 A.

I foretrukne udfdrelsesformer af opfindelsen adskilles enten en organisk komponent fra et væskeformigt medium eller en komponent fra en 10 gasformig blanding, idet den makropordse syntetiske polymer som inde-holder en carbonfikserende gruppe er afledt af en eller flere etylenisk umættede monomerer eller monomerer, som kan kondenseres til den makro-porpse polymer, eller blandinger deraf.In preferred embodiments of the invention, either an organic component is separated from a liquid medium or a component from a gaseous mixture, the macroporse synthetic polymer containing a carbon-fixing group being derived from one or more condensable ethylenically unsaturated monomers or monomers. to the macro-porous polymer, or mixtures thereof.

En anden foretrukket udfdrelsesform af opfindelsen er rettet pâ ad-15 skillelsen af organiske komponenter fra blod, hvortil de fdrnævnte pyrolyserede partikler ligeledes anvendes.Another preferred embodiment of the invention is directed to the separation of organic components from blood to which the aforementioned pyrolysed particles are also used.

Til nærmere belysning af opfindelsen beskrives forst de pyrolyserede partikler af en makropords syntetisk polymer og deres fremstilling.For a more detailed illustration of the invention, first, the pyrolyzed particles of a macropord synthetic polymer are described and their preparation.

De af fortrînsvis kugler eller perler med en betydelig strukturel styrke 20 og sammenhæng. De brækker ikke let i stykker og danner ikke nogen stdv-partikler, sâledes som det er tilfældet med aktivt carbon. Da de ikke let gâr i stykker, er regenereringstabet hyppigt 1 avéré, end hvad der er sædvanligt for aktivt carbon.Preferably, they are balls or beads of considerable structural strength and coherence. They do not break easily and do not form any dust particles, as is the case with activated carbon. Since they do not break easily, the regeneration loss is often 1 averé than is usual for activated carbon.

Inkorporering af pnskelige elementer og funktionelle grupper til 25 forbedring af absorptionsevnen over for specifikke adsorbater gennemfp-res let. Kontrol af den gennemsnitlige porestdrrelse og porestdrrelses-fordelingen gennemfpres meget lettere med veldefinerede syntetiske ud-gangsmaterialer. Denne forpgede kontrol tillader fremstilling af adsorp-tionsmidler, som er udformet med henblik pâ specifikke adsorbater og med 30 adsorptionskapaciteter, som er langt storre, end hvad der er muligt med aktiverede carbontyper.Incorporation of desirable elements and functional groups to improve absorbency to specific adsorbates is readily accomplished. Control of the average pore size and pore size distribution is much easier to perform with well-defined synthetic starting materials. This preliminary control permits the production of adsorbents designed for specific adsorbates and with 30 adsorption capacities far greater than is possible with activated carbon types.

Det er h0jst dnskeligt, at varmebehandlingen, dvs. pyrolysen gen-nemfpres i en inert atmosfære i form af f.eks. argon, néon, hélium, ni-trogen eller lignende, under anvendelse af perler af makroporps synte-35 tisk polymer substitueret med en carbonfikserende gruppe, som tillader polymeren at forkulle uden at smelte, sâledes at den makroporose struk-tur bevares, og et hdjt udbytte af carbon frembringes. Blandt egnede carbonfikserende grupper er sulfonat-, carboxyl-, amin-, halogen-, 3It is highly desirable that the heat treatment, ie. the pyrolysis is carried out in an inert atmosphere in the form of e.g. argon, neon, helium, nitrogen or the like, using beads of macroporps synthetic polymer substituted with a carbon-fixing group which allows the polymer to char without melting, thus preserving the macroporous structure and a high yield of carbon is generated. Suitable carbon-fixing groups are sulfonate, carboxyl, amine, halogen, 3

DK 156265BDK 156265B

oxygen-, sulfonatsalt-, carboxylatsalt- og kvarternær aminsaltgrupper.oxygen, sulfonate salt, carboxylate salt and quaternary amine salt groups.

Disse grupper indfdres i udgangspolymeren ved hjælp af velkendte konven-tionelle teknikker, sâsom de omsætninger, der anvendes til at gdre poly-merer funktionelle til fremstilling af ionbytningsharpikser. Carbonfik-5 serende grupper kan ogsâ frembringes ved opsugning af en reaktiv præ-kursor derfor i porerne af den makropordse polymer, som derefter, eller under opvarmning, kemisk binder carbonfikserende grupper til polymeren. Eksempler pâ sâdanne reaktive prækursorer omfatter svovlsyre, oxida-tionsmidler, salpetersyre, Lewis syrer, acrylsyre og lignende.These groups are incorporated into the starting polymer by well known conventional techniques, such as the reactions used to make polymers functional for the production of ion exchange resins. Carbon fixing groups can also be produced by aspirating a reactive precursor, therefore, into the pores of the macroporded polymer which then, or during heating, chemically bond carbon fixing groups to the polymer. Examples of such reactive precursors include sulfuric acid, oxidizing agents, nitric acid, Lewis acids, acrylic acid and the like.

10 Temperaturer, som er passende for den termiske omdannelse, ligger almindeligvis i omrâdet fra 300°C til ca. 900°C, skdnt hdjere temperaturer kan være egnede, afhængigt af polymeren, som skal behandles, og den dnskede sammensætning af det færdige pyrolyserede produkt. Ved temperaturer over ca. 700°C nedbrydes udgangspolymeren vidtgâende under 15 dannelse af porer af molekylsigtestdrrelse i produktet, dvs. en gennem-snitlig kritisk dimension pâ ca. 4 - 6 A, hvorved en foretrukket klasse af adsorptionsmidler ifdlge opfindelsen frembringes. Ved 1 avéré temperaturer ligger den gennemsnitlige kritiske dimension af de termisk dannede porer sædvanligvis i omrâdet fra ca. 6 A til sâ meget som 50 A. Omrâdet 20 mellem ca. 400°C og 800°C er et foretrukket temperaturomrâde for pyroly-sen. Som det senere vil blive forklaret mere fuldstændigt, er tempera-turkontrol væsentlig for, at det dnskede produkts sammensætning, over-fladeareal, porestruktur og andre fysiske karakteristika kan frembringes. Varigheden af den termiske behandling er relativt uvæsentlig, 25 forudsat at en minimumsindvirkningstid af den forhdjede temperatur over-holdes.Temperatures suitable for the thermal conversion are generally in the range of 300 ° C to approx. 900 ° C, although higher temperatures may be suitable, depending on the polymer to be treated and the composition of the finished pyrolyzed product. At temperatures above approx. 700 ° C, the starting polymer is degraded extensively to form pores of molecular sieve test in the product, ie. an average critical dimension of approx. 4 - 6 A, thereby producing a preferred class of adsorbents according to the invention. At 1 ambient temperature, the average critical dimension of the thermally formed pores is usually in the range of approx. 6 A to as much as 50 A. The area 20 between approx. 400 ° C and 800 ° C is a preferred temperature range for the pyrolysis. As will be more fully explained later, temperature control is essential for the composition, surface area, pore structure and other physical characteristics of the product to be produced. The duration of the thermal treatment is relatively insignificant, provided that a minimum impact time of the elevated temperature is observed.

Ved kontrol af betingelserne for den termiske dekomponering, og i særdeleshed af temperaturen, indstilles grundstofsammensætningen, og særlig vigtigt carbon-til-hydrogenatom forholdet (C/H) i de færdigfrem-30 stillede parti kler pâ den dnskede mâde. Kontrolleret varmebehandling giver partikler, som med hensyn til værdien af C/H forholdet er en mel-lemting mellem aktiveret carbon og de kendte polymer-adsorptionsmidler.By checking the conditions of the thermal decomposition, and in particular the temperature, the elemental composition, and particularly important the carbon-to-hydrogen atom ratio (C / H) in the prepared parts, is adjusted in the desired manner. Controlled heat treatment produces particles which, with respect to the value of the C / H ratio, are an intermediate between activated carbon and the known polymer adsorbents.

Den efterfdlgende tabel illustrerer virkningen af maksimum-pyrolysetemperaturen pâ C/H forholdet af slutproduktet under anvendelse 35 af makropordse funktionaliserede polymerer som udgangsmaterialer.The following table illustrates the effect of the maximum pyrolysis temperature on the C / H ratio of the final product using 35-microporse functionalized polymers as starting materials.

44

DK 156265 BDK 156265 B

TABEL ITABLE I

Udgangsmateriale- Maksimumpyrolyse- C/H forhold i sammensætning temperatur_ produkt_ 5 (1) Styren/divinyl-benzen copolymer-adsorptionsmiddel (kontrol) 1 10 (2) Styren/divinyl- benzen ionbytnings-harpiks med sulfon-syre-funktionalitet (H+form) 400°C 1,66 15 (3) Samme soin (2) 500°C 2,20 (4} Samme som (2) 600°C 2,85 (5) Samme som (2) 800°C 9,00 (6) Aktiveret carbon ubetydelig mængde hydrogen 20Starting material- Maximum pyrolysis C / H ratio in composition temperature_ product_ 5 (1) Styrene / divinyl-benzene copolymer adsorbent (control) 1 (2) Styrene / divinyl-benzene ion exchange resin with sulfonic acid functionality (H + form ) 400 ° C 1.66 15 (3) Same soin (2) 500 ° C 2.20 (4} Same as (2) 600 ° C 2.85 (5) Same as (2) 800 ° C 9.00 (6) Activated carbon insignificant amount of hydrogen 20

Et bredt spektrum af pyrolyserede harpikser kan fremstilles ved, at porpsiteten og/eller den kemiske sammensætning af udgangspolymeren vari-eres, og ogsâ ved at betingelserne for den termiske dekomponering varie-25 res.A wide range of pyrolyzed resins can be prepared by varying the porosity and / or the chemical composition of the starting polymer, and also by varying the conditions of the thermal decomposition.

Slutproduktets porestruktur skal hâve mindst to forskellige sæt af porer med forskellig gennemsnitlig stprrelse, dvs. at slutproduktet skal hâve multimodal porefordeling. De stprre porer hidrprer fra den som udgangsmateriale anvendte makroporpse harpiks, som fortrinsvis indeholder 30 makroporer i omrâdet fra 50 til 100.000 A i gennemsnitlig kritisk dimension. De tidligere nævnte mindre porer, hvis gennemsnitlige kritiske dimension i almindelighed ligger i omrâdet fra 4 til 50 A, mâ i vid ud-strækning tilskrives pyrolysen og maksimumtemperaturen under pyrolysen.The pore structure of the final product must have at least two different sets of pores of different average sizes, ie. that the final product should have multimodal pore distribution. The larger pores are derived from the macroporps resin used as the starting material, which preferably contains 30 macropores in the range of 50 to 100,000 A in average critical dimension. The smaller pores mentioned earlier, whose average critical dimension generally ranges from 4 to 50 A, must be largely attributed to the pyrolysis and the maximum temperature during the pyrolysis.

De pyrolyserede polymerer, der anvendes ifplge opfindelsen har et 35 relativt stort overfladeareal. Overfladearealet, malt ved fL-adsorption, 2 c ligger i almindelighed mellem 50 og 1500 m /g. Af dette vil makroporerne normalt bidrage med ca. 6 til ca. 700 m /g, fortrinsvis 6 - 200 m /g, bestemt ved kviksplvadsorptionsteknikken, mens det resterende hidrprer 5The pyrolyzed polymers used according to the invention have a relatively large surface area. The surface area, painted by fL adsorption, 2 c is generally between 50 and 1500 m / g. Of this, the macropores will usually contribute approx. 6 to approx. 700 m / g, preferably 6 - 200 m / g, as determined by the mercury plate sorption technique, while the residual hydrate 5

DK 156265 BDK 156265 B

fra de ved den termiske behandling frembragte mindre porer. Porefri polymerer, sàsom harpikser af "ge1"-typen, som er blevet underkastet termisk behandling ifplge den kendte teknik (jfr. f.eks. psttysk patent-skrift nr. 27.022 og nr. 63.768) har ikke de store porer, som er væsent-5 lige for adsorptionsmidlerne ifplge opfindelsen, lige sa lidt som de ud-viser samme effektivitet som de her omhandlede pyrolyserede polymerer.from the smaller pores produced by the thermal treatment. Pore-free polymers, such as "ge1" type resins which have been subjected to thermal treatment according to the prior art (cf., e.g., German Patent Specification No. 27,022 and No. 63,768) do not have the large pores which are significant. 5 just for the adsorbents of the invention, as little as exhibiting the same efficiency as the pyrolysed polymers herein.

Den efterfplgende tabel illustrerer makroporpsitetens indvirkning pâ produktsammensætni ngen:The following table illustrates the impact of macroporpsity on the product composition:

10 Tabel IITable II

Adsorptionsmidler fremstillet ud fra sulfonerede sty-ren/divinylbenzen copolymerer* med varierende makroporpsitet 15Adsorbents prepared from sulfonated styrene / divinylbenzene copolymers * with varying macroporpsity 15

Efter _Fer pyrolyse_ pvrolvseAfter _Per pyrolysis_ pvrolvse

Prpve Polymer- % Gennemsnit- Overflade- Overflade- nr. type DVB lig pore- areal areal 20 stprrelse A (m2/g) (m2/g) 1 ikke-porps 8 00 32 2 makroporps 20 300 45 338 25 3 " 50 ca.100 130 267 4 " 80 50 570 570 5 " 6 20.000 6 360 * Aile copolymerer sulfoneredes til i det mindste 30 90% af teoretisk maksimalværdi og opvarmedes til 800°C i inert atmosfære.Sample Polymer% Average- Surface- Surface No. type DVB equal pore area area 20 size A (m2 / g) (m2 / g) 1 non-porps 8 00 32 2 macroporps 20 300 45 338 25 3 "50 approx. 100 130 267 4 "80 50 570 570 5" 6 20,000 6 360 * All copolymers were sulfonated to at least 30 90% of theoretical maximum value and heated to 800 ° C in an inert atmosphere.

Som det kan ses af dataene i tabel II, star slutproduktets endelige 35 overfladeareal ikke altid i direkte relation til porpsiteten af udgangs-materialet. Overfladearealet af de makroporpse polymère, der anvendes som udgangsmateriale, varierer med en faktor pâ næsten 100, mens overfl adeareal et af de pyrolyserede harpikser kun adskiller sig fra hinanden 6As can be seen from the data in Table II, the final surface area of the final product does not always relate directly to the porosity of the starting material. The surface area of the macroporse polymers used as starting material varies by a factor of nearly 100, whereas the surface area of one of the pyrolyzed resins differs only from one another 6

DK 156265 BDK 156265 B

med en faktor pâ ca. 2. Den ikke-porpse "gel"-harpiks har et overfladeareal, som ligger et godt stykke under omrâdet for udgangsmaterialerne if0lge opfindelsen, og den giver et produkt, som har et overfladeareal, der ligger væsentligt under de varmebehandlede makroporpse harpiksers.with a factor of approx. 2. The non-porous "gel" resin has a surface area which is well below the range of the starting materials of the invention, and provides a product having a surface area substantially below the heat-treated macroporse resins.

5 Pyrolysens varighed afhænger af det tidsrum, som er npdvendigt til fjernelse af de flygtige komponenter fra den pâgældende polymer og den valgte fremgangsmâdes varmeoverfprselskarakteristika. Pyrolysen sker i almindelighed meget hurtigt, nâr varmeoverfdrslen sker hurtigt, f.eks. i en ovn, hvor et tyndt lag materiale pyrolyseres, eller i et fluidiseret 10 leje. For at forhindre den pyrolyserede polymer i at brænde reduceres polymerens temperatur sædvanligvis til ikke over 400°C, fortrinsvis ikke over 300°C, fpr det pyrolyserede materiale udsættes for luft. Den mest foretrukne udfprelse af fremgangsmâden omfatter hurtig opvarmning til maksimumtemperaturen, fastholdelse af temperaturen pà maksimet i et kort 15 tidsrum (af stdrrelsesordenen 0-20 minutter) efterfulgt af hurtig re-duktion af temperaturen til stuetemperatur fpr udtagning af prpven. Pro-dukter til anvendelse ifplge opfindelsen er blevet fremstillet ved denne foretrukne fremgangsmàde ved opvarmning til 800°C og afkpling i et tidsrum pâ 20 - 30 minutter. Ogsà længere perioder ved de forhdjede tempera-20 turer er tilfredsstillende, da der ikke synes at indtræffe yderligere dekomponering, medmindre temperaturen forpges.The duration of the pyrolysis depends on the amount of time required to remove the volatile components from the polymer in question and the heat transfer characteristics of the selected method. Pyrolysis generally occurs very quickly when the heat transfer is rapid, e.g. in an oven where a thin layer of material is pyrolyzed, or in a fluidized bed. In order to prevent the pyrolysed polymer from burning, the temperature of the polymer is usually reduced to not more than 400 ° C, preferably not above 300 ° C, before the pyrolysed material is exposed to air. The most preferred embodiment of the method comprises rapid heating to the maximum temperature, maintaining the temperature at the maximum for a short period of time (of the order of 0-20 minutes) followed by rapid reduction of the temperature to room temperature prior to sampling. Products for use in accordance with the invention have been prepared by this preferred method of heating to 800 ° C and decoupling for a period of 20 to 30 minutes. Also, longer periods at the elevated temperatures are satisfactory as no further decomposition appears to occur unless the temperature is missed.

Smâ mængder af aktiverende gasser sâsom C02, S03, 02, H20 eller kombinationer deraf har en tendens til at reagere med polymeren under pyrolysen og forpge overfladearealet af det færdige materiale derved.Small amounts of activating gases such as CO 2, SO 3, 02, H 2 O or combinations thereof tend to react with the polymer during the pyrolysis, thereby purging the surface area of the finished material.

25 Det er valgfrit at anvende sâdanne gasser, og de kan anvendes til opnà-else af specîelle karakteristika af adsorptionsmidlerne.Such gases are optional and can be used to obtain special characteristics of the adsorbents.

De polymerer, der kan anvendes som udgangsmaterialer til fremstil-ling af de pyrolyserede harpikser, omfatter makropordse homopolymerer eller copolymerer af én eller flere monoethylenisk eller polyethylenisk 30 umættede monomerer eller monomerer, som ved kondensation kan omsættes til frembringelse af makroporpse polymerer og copolymerer. De makropo-r0se harpikser, der anvendes som prækursorer ved dannelsen af de makro-porpse varmebehandlede polymerer, er kendte. Et hvilket som helst af de kendte materialer af denne type, som har en passende carbonfikserende 35 gruppe, er egnet. De foretrukne monomerer er sâdanne alifatiske og aro-matiske materialer, som er ethylenisk umættede.The polymers which can be used as starting materials for the preparation of the pyrolyzed resins include macroporous homopolymers or copolymers of one or more monoethylenically or polyethylenically unsaturated monomers or monomers which can be converted by condensation to produce macroporous polymers and copolymers. The macroporous resins used as precursors in the formation of the macroporse heat-treated polymers are known. Any of the known materials of this type which have a suitable carbon fixing group are suitable. The preferred monomers are such aliphatic and aromatic materials which are ethylenically unsaturated.

Som eksempler pâ passende monoethylenisk umættede monomerer, som kan anvendes til fremstilling af den makroporpse harpiks, kan nævnes:Examples of suitable monoethylenically unsaturated monomers which can be used to prepare the macroporse resin include:

DK 156265 BDK 156265 B

7 styren, methylacrylat, ethylacrylat, propylacrylat, isopropylacrylat, butylacrylat, tert-butylacrylat, ethylhexylacrylat, cyclohexylacrylat, isobornylacrylat, benzylacrylat, phenylacrylat, al kyl phenyl acryl at, ethoxymethylacrylat, ethoxyethylacrylat, ethoxypropylacrylat, propoxy-5 methylacrylat, propoxyethylacrylat, propoxypropylacrylat, ethoxyphenyl-acrylat, ethoxybenzylacrylat, ethoxycyclohexylacrylat og de tilsvarende estere af methacrylsyre, ethylen, propylen, isobutylen, diisobutylen, styren, vinyltoluen, vinylchlorid, vinylacetat, vinylidenchlorid, acry-1onitri 1, methacrylonitril, acrylamid, methacrylamid, diacetoneacryl-10 amid, vinylestere, inklusive vinylacetat, vinylpropionat, vinylbutyrat, vinyllaurat, vinylketoner, inklusive vinylmethylketon, vinylethylketon, vinylisopropylketon, vinyl-n-butylketon, vinylhexylketon, vinyloctyl-keton, methylisopropenylketon, vinylaldehyder inklusive acrolein, metha-crolein, crotonaldehyd, vinylethere inklusive vinylmethylether, vinyl-15 ethylether, vinylpropylether, vinylisobutylether, vinylidenforbindelser inklusive vinylidenchlorid, -bromid eller -bromchlorid, estere af acryl-syre og methacrylsyre sàsom methyl-, ethyl-, 2-chlorethyl-, propyl-, isopropyl- , n-butyl-, isobutyl-, t-butyl-, sec-butyl-, amyl-, hexyl-, glycidyl-, ethoxyethyl-, cyclohexyl-, octyl-, 2-ethylhexyl-, 20 decyl-, dodecyl-, hexadecyl- og octadecylestrene af disse syrer, hydroxyalkylmethacrylatcr og -acrylater sâsom hydroxyethylmethacrylat og hydroxypropylmethacrylat, ogsâ de tilsvarende neutrale halvsyre-halvestere af de umættede dicarboxylsyrer inklusive itakonsyre, citra-consyre, aconitsyre, fumarsyre og maleinsyre, substituerede acrylamider, 25 sâsom N-monoalkyl-, -N,N-dialkyl- og N-dialkylaminoalkylacrylamider eller -methacrylamider, hvor alkylgrupperne kan hâve fra 1 til 18 carbonatomer, sâsom methyl-, ethyl-, isopropyl-, butyl-, hexyl-, cyclohexyl-, octyl-, dodecyl-, hexadecyl- og octadecylaminoalkylestere af acryl- eller methacrylsyre, sâsom /î-dimethylaminoethyl, /J-di ethyl ami no-30 ethyl eller 6-dimethylaminohexylacrylater og -methacrylater, alkyl-thioethylmethacrylater og -acrylater, sâsom ethylthioethylmethacrylat, vinylpyridiner, sâsom 2-vinylpyridin, 4-vinylpyridin, 2-methyl-5-vinyl-pyridin, osv. Et difunktionelt methacrylat sâsom ethylenglycol-dimethacrylat eller trimethylolpropandimethacrylat kan ogsâ være copoly-35 meriseret med de fprnævnte polyfunktionelle methacrylater.7, ethyl acetate, ethyl acetate acrylate, ethoxybenzyl acrylate, ethoxycyclohexyl acrylate and the corresponding esters of methacrylic acid, ethylene, propylene, isobutylene, diisobutylene, styrene, vinyltoluene, vinyl chloride, vinyl acetate, vinylidene chloride, acrylonitrile 1, methacrylonitrile, , vinyl propionate, vinyl butyrate, vinyl laurate, vinyl ketones, including vinyl methyl ketone, vinyl ethyl ketone, vinyl isopropyl ketone, vinyl n-butyl ketone, vinyl hexyl ketone, vinyloctyl ketone, methyl isopropenyl ketone, vinyl aldehydes, vinyl aldehydes, acrolein, methanol Ethyl ether, vinyl propyl ether, vinyl isobutyl ether, vinylidene compounds including vinylidene chloride, bromide or bromine chloride, esters of acrylic acid and methacrylic acid such as methyl, ethyl, 2-chloroethyl, propyl, isopropyl, n-butyl, isobutyl, The t-butyl, sec-butyl, amyl, hexyl, glycidyl, ethoxyethyl, cyclohexyl, octyl, 2-ethylhexyl, decyl, dodecyl, hexadecyl and octadecyl esters of these acids, hydroxyalkyl methacrylate and acrylates such as hydroxyethyl methacrylate and hydroxypropyl methacrylate, as well as the corresponding neutral half-acid half-esters of the unsaturated dicarboxylic acids including itaconic acid, citric acid, aconic acid, fumaric acid and maleic acid, substituted acrylamides, N-N-mono, N -dialkylaminoalkylacrylamides or methacrylamides wherein the alkyl groups can have from 1 to 18 carbon atoms, such as methyl, ethyl, isopropyl, butyl, hexyl, cyclohexyl, octyl, dodecyl, hexadecyl and octadecylaminoalkyl esters of acrylic or , s such as î-dimethylaminoethyl, J-di ethyl aminomethyl or 6-dimethylaminohexyl acrylates and methacrylates, alkylthioethyl methacrylates and acrylates, such as ethylthioethyl methacrylate, vinyl pyridines, such as 2-vinylpyridine, 4-vinylpyridine vinyl pyridine, etc. A difunctional methacrylate such as ethylene glycol dimethacrylate or trimethylol propanedimethacrylate may also be copolymerized with the aforementioned polyfunctional methacrylates.

Nâr det drejer sig om copolymerer, som indeholder ethylthioethylmethacrylat, kan produkterne om dnsket oxideres til det tilsvarende sulfoxid eller sulfon.In the case of copolymers containing ethylthioethyl methacrylate, the products may be oxidized to the corresponding sulfoxide or sulfone if desired.

88

DK 156265 BDK 156265 B

Polyethylenisk umættede monomerer, som sædvanligvis virker, som om de kun indeholder én sâdan umættet gruppe, sâsom isopren, butadien og chloropren, kan anvendes som del af den monoethylenisk umættede katego-ri.Polyethylenically unsaturated monomers, which usually act as if they contain only one such unsaturated group, such as isoprene, butadiene and chloroprene, can be used as part of the monoethylenically unsaturated category.

5 Som eksempler pâ polyethylenisk umættede forbindelser kan nævnes: divinylbenzen, divinylpyridin, divinylnaphthalener, diallylphthalat, ethylenglycoldiacrylat, ethyl e'nglycoldimethacrylat, divinylsulfon, poly-vinyl- eller polyallylethere af glycol, af glycerol, af pentaerythritol, af monothio- eller dithioderivater af glycoler og af resorcinol, 10 divinylketon, divinylsulfid, allylacrylat, diallylmaleat, diallyl-fumarat, diallylsuccinat, diallylcarbonat, diallylmalonat, diallyl-oxalat, diallyladipat, diallylsebacat, divinylsebacat, diallyltartrat, diallylsilikat, triallyltricarballylat, triallylaconitat, triallyl-citrat, triallylphosphat, Ν,Ν'-methylendiacrylamid, N,N'-methylen-15 dimethacrylamid, Ν,Ν'-ethylendiacrylamid, trivinylnaphthalener og poly-vinylanthracener.Examples of polyethylenically unsaturated compounds include: divinylbenzene, divinylpyridine, divinylnaphthalenes, diallyl phthalate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, divinyl sulfone, polyvinyl or polyallyl ether, glycerine, pycerol, glycerine, glycerine, glycerine of resorcinol, divinyl ketone, divinyl sulfide, allyl acrylate, diallyl maleate, diallyl fumarate, diallylsuccinate, diallyl carbonate, diallyl malonate, diallyl oxalate, diallyladipate, diallylsebacate, divinylsebacate, diallylate -methylenediacrylamide, N, N'-methylene-dimethacrylamide, Ν, Ν'-ethylenediacrylamide, trivinyl naphthalenes and polyvinyl anthracenes.

Aromatiske ethylenisk umættede molekyler sâsom styren, vinyl-pyridin, vinylnaphthalen, vinyltoluen, phenylacrylat og vinylxylener er en foretrukken klasse af monomerer af denne type.Aromatic ethylenically unsaturated molecules such as styrene, vinyl pyridine, vinyl naphthalene, vinyl toluene, phenyl acrylate and vinyl xylenes are a preferred class of monomers of this type.

20 Som eksempler pâ foretrukne polyethylenisk umættede forbindelser kan nævnes: divinylpyridin, divinylnaphthalen, divinylbenzen, tri-vinylbenzen, alkyldivinylbenzener med fra 1 til 4 alkylgrupper pâ 1 til 2 carbonatomer som substituenter i benzenkernen, og alkyltri-vinylbenzener med 1 til 3 alkylgrupper pâ 1 til 2 carbonatomer som sub-25 stituenter i benzenkernen. Ud over de homopolymerer og copolymerer af disse poly(vinyl)benzenmonomerer kan en eller flere af dem være copoly-meriseret med op til 98% (pâ basis af vægten af den totale monomer-blanding) af (1) monoethylenisk umættede monomerer eller (2) polyethylenisk umættede monomerer forskellige fra de netop definerede poly(vinyl)-30 benzener, eller (3) en blanding af (1) og (2). Som eksempler pâ de alkylsubstituerede di- og trivinylbenzener kan nævnes de forskellige vinyltoiuener, divinylethylbenzen, 1,4-divinyl-2,3,5,6-tetramethylben-zen, l,3,5-trivinyl-2,4,6-trimethylbenzen, 1,4-divinyl- 2,3,6-tri ethylbenzen, 1,2,4-trivinyl-3,5-diethylbenzen, 1,3,5-tri vi nyl-35 2-methylbenzen.20 Examples of preferred polyethylenically unsaturated compounds include: divinylpyridine, divinylnaphthalene, divinylbenzene, trivinylbenzene, alkyl divinylbenzenes having from 1 to 4 alkyl groups on 1 to 2 carbon atoms as substituents in the benzene nucleus, and alkyltrivinylbenzenes having 1 to 3 2 carbon atoms as substituents in the benzene nucleus. In addition to the homopolymers and copolymers of these poly (vinyl) benzene monomers, one or more of them may be copolymerized up to 98% (by weight of the total monomer mixture) of (1) monoethylenically unsaturated monomers or (2) polyethylenically unsaturated monomers different from the just-defined poly (vinyl) -30 benzenes, or (3) a mixture of (1) and (2). Examples of the alkyl-substituted di- and trivinylbenzenes include the various vinyl toluene, divinylethylbenzene, 1,4-divinyl-2,3,5,6-tetramethylbenzene, 1,3,5-trivinyl-2,4,6-trimethylbenzene , 1,4-divinyl-2,3,6-triethylbenzene, 1,2,4-trivinyl-3,5-diethylbenzene, 1,3,5-trivinyl-2-methylbenzene.

Copolymerer af styren, divinylbenzen og ethylvinylbenzen er særligt foretrukne.Copolymers of styrene, divinylbenzene and ethylvinylbenzene are particularly preferred.

Som eksempler pâ egnede kondensationsmonomerer kan nævnes: (a) ali- 9Examples of suitable condensation monomers include: (a) ali- 9

DK 156265 BDK 156265 B

fatiske divalente syrer sâsom maleinsyre, fumarsyre, itakonsyre, 1,1-cyclobutandicarboxylsyre, etc.; (b) alifatiske diaminer sâsom piperazin, 2-methylpiperazin, çis, ds-bis (4-aminocyclohexyl)methan, metaxylylen-diamin, etc.; (c) glycoler sâsom diethylenglycol, triethylenglycol, 1,2-5 butandiol, neopentylglucol, etc.; (d) bischlorformiater sâsom ci s- og trans-1 » 4-cyclohexylbi schlorformi at, 2,2,2,4-tetramethy1-13-cyclobutyl-bischlorformiat og bischlorformiater, etherglycoler som nævnt ovenfor, etc.; (e) hydroxysyrer sâsom salicylsyre, m- og p~ hydroxybenzoesyre og lactoner afledt deraf sâsom propiolactonerne, valerolactonerne, capro-10 lactonerne, etc.; (f) diisocyanater sâsom ci s- og trans-cyclopropan-1,2-diisocyanat, cis- og trans-cvclobutan-l-2-diisocvanat. etc.; (g) aroma-tiske divalente syrer og deres derivater (estrene, anhydriderne og syre-chloriderne) sâsom phthalsyre, phthalanhydrid, terephthalsyre, iso-phthalsyre, dimethylphthalat, etc.; (h) aromatiske diaminer sâsom benzi-15 din, 4,4'methylendiamin, bis(4-aminophenyl)ether, etc.; (i) bisphenoler sâsom bisphenol A, bisphenol C, bisphenol F, phénolphthaleinresorcinol, etc.; (j) bisphenol-bis(chlorformiater) sâsom bisphenol A-bis(chlor-formiat), 4,4/-dihydroxybenzophenon-bis(chlorformiat), etc.; (k) carb-onyl- og thiocarbonylforbindelser sâsom formaldehyd, acetaldehyd, thio-20 acetone, acetone, etc.; (1) phénol og derivater deraf sâsom phénol, alkylphénoler, etc.; samt andre kondensationsmonomerer og blandinger af de foranstâende.fatty divalent acids such as maleic acid, fumaric acid, itaconic acid, 1,1-cyclobutanedicarboxylic acid, etc .; (b) aliphatic diamines such as piperazine, 2-methylpiperazine, cis, ds-bis (4-aminocyclohexyl) methane, methaxylylene diamine, etc .; (c) glycols such as diethylene glycol, triethylene glycol, 1,2-5 butanediol, neopentylglucol, etc .; (d) bischloroformates such as cis and trans-1-4-cyclohexylbichloroformate, 2,2,2,4-tetramethyl-13-cyclobutyl bischloroformate and bischloroformates, ether glycols as mentioned above, etc .; (e) hydroxy acids such as salicylic acid, m- and p-hydroxybenzoic acid and lactones derived therefrom such as the propiolactones, valerolactones, caprolactones, etc .; (f) diisocyanates such as cis and trans-cyclopropane-1,2-diisocyanate, cis and trans-cyclobutane-1-2-diisocvanate. etc .; (g) aromatic divalent acids and their derivatives (the esters, anhydrides and acid chlorides) such as phthalic acid, phthalanhydride, terephthalic acid, iso-phthalic acid, dimethyl phthalate, etc .; (h) aromatic diamines such as benzidine, 4,4'methylenediamine, bis (4-aminophenyl) ether, etc .; (i) bisphenols such as bisphenol A, bisphenol C, bisphenol F, phenolphthalein resorcinol, etc .; (j) bisphenol bis (chloroformate) such as bisphenol A-bis (chloroformate), 4,4-dihydroxybenzophenone bis (chloroformate), etc .; (k) carbonyl and thiocarbonyl compounds such as formaldehyde, acetaldehyde, thioacetone, acetone, etc .; (1) phenol and its derivatives such as phenol, alkyl phenols, etc .; as well as other condensation monomers and mixtures of the foregoing.

Ionbytningsharpikser fremstillet ud fra aromatiske og/eller alifati ske monomerer udgpr en foretrukket klasse af udgangspolymerer til 25 fremstilling af porpse adsorptionsmidler. Ionbytningsharpiksen kan ogsâ indeholde en funktionel gruppe i form af kation, anion, stærk base, svag base, sulfonsyre, carboxylsyre, oxygenholdig gruppe, halogen og blandinger deraf. Sâdanne ionbytningsharpikser kan ydermere eventuelt indeholde et oxidationsmiddel, en reaktiv substans, svovlsyre, salpeter-30 syre, acrylsyre eller lignende, som i det mindste delvis udfylder poly-merens makroporer fpr varmebehandling.Ion exchange resins prepared from aromatic and / or aliphatic monomers of a preferred class of starting polymers for the preparation of porous adsorbents. The ion exchange resin may also contain a functional group in the form of cation, anion, strong base, weak base, sulfonic acid, carboxylic acid, oxygen-containing group, halogen and mixtures thereof. Further, such ion exchange resins may optionally contain an oxidizing agent, a reactive substance, sulfuric acid, nitric acid, acrylic acid or the like, which at least partially fills the polymer macropores for heat treatment.

Den syntetiske polymer kan imprægneres med et fyldstof sâsom "carbon black", trækul, bentjære, savsmuld eller andet carbonholdigt materiale forud for pyrolysen. Sâdanne fyldstoffer udgpr en pkonomisk 35 carbonkilde, som kan tilsættes i mængder pâ op til ca. 90 vægt% af poly-meren.The synthetic polymer can be impregnated with a filler such as "carbon black", charcoal, bone tar, sawdust or other carbonaceous material prior to pyrolysis. Such fillers comprise an economical 35 carbon source which can be added in amounts of up to approx. 90% by weight of the polymer.

Udgangspolymererne kan, nâr de er ionbytningsharpikser, eventuelt indeholde forskellige metaller, som i atomar form er fordelt deri pâThe starting polymers, when they are ion exchange resins, may optionally contain various metals which are atomically distributed therein in

DK 156265BDK 156265B

ίο ionpladserne. Disse metaller kan omfatte jern, kobber, sdlv, nikkel, mangan, palladium, kobolt, titan, zirconium, natrium, kalium, calcium, zink, cadmium, ruthénium og uran. Ved anvendelse af ionbytningsprincip-pet er det muligt for fagmanden at kontrollere sâvel mængden af métal, 5 som inkorporeres, som fordelingen.ίο ion sites. These metals may include iron, copper, sdlv, nickel, manganese, palladium, cobalt, titanium, zirconium, sodium, potassium, calcium, zinc, cadmium, ruthenium and uranium. By using the ion exchange principle, it is possible for the person skilled in the art to control both the amount of metal 5 incorporated and the distribution.

Skent inkorporeringen at metaller i harpikserne primært sker for at fremme deres evne til at tjene som katalytorer, kan nyttige adsorptions-midler ogsâ indeholde métal. De i betragtning kommende syntetiske poly-merer og ionbytningsharpikser, hvad enten disse er i syre-, base- eller 10 métal sa!tform, er kommercielt tilgængelige.While the incorporation of metals into the resins is thought to occur primarily to promote their ability to serve as catalysts, useful adsorbents may also contain metals. The considered synthetic polymers and ion exchange resins, whether in acid, base or 10 metal form, are commercially available.

Ifplge opfindelsen anvendes de delvis pyrolyserede partikler til adskillelse af en komponent fra et fluidum. Herved kan komponenter ad-skilles fra et gasformigt eller flydende medium ved, at mediet bringes i kontakt med pyrolyserede partikler af en makroporps syntetisk polymer.According to the invention, the partially pyrolyzed particles are used to separate a component from a fluid. Hereby, components can be separated from a gaseous or liquid medium by contacting the medium with pyrolyzed particles of a macroporp synthetic polymer.

15 Det har f.eks. vist sig, at en pyrolyseret styrendivinylbenzen- baseret stærkt sur makroporps ionbytningsharpiks opnâet ved pyrolyse af hydrogen-, jern(III)-, kobber(II)-, s0lv(I)- eller calcium(II)-formen kan formindske koncentrationen af vinylchlorid i luft, fortrinsvis t0r luft, fra en initialkoncentration pâ 2 ppm - 300.000 ppm til et niveau 20 pâ mindre end 1 ppm ved strpmningshastigheder pâ 1 s0jlevolumen pr. time til 600 spjlevolumener pr. minut, fortrinsvis 10 - 200 spjlevolumener pr. minut.15 It has e.g. It has been found that a pyrolyzed styrene divinylbenzene-based highly acidic macroporp ion exchange resin obtained by pyrolysis of hydrogen, iron (III), copper (II), silver (I) or calcium (II) form can decrease the concentration of vinyl chloride in air, preferably dry, from an initial concentration of 2 ppm - 300,000 ppm to a level 20 of less than 1 ppm at rates of crushing at 1 column volume per minute. to 600 mirror volumes per hour. per minute, preferably 10 - 200 mirror volumes per minute. minute.

I sammenligning med aktiveret carbon udviser de ifplge opfindelsen anvendte adsorptionsmidler en række fordele sâsom 1 avéré adsorptions-25 varme, mindre polymérisation af adsorberede monomerer pâ overfladen, mindre behov for regenereringsmiddel pâ grund af diffusionskinetik, mindre tab af kapacitet ved multicirkulering og mindre lækage f0r gennembrud. Lignende virkninger er blevet iagttaget, nâr andre uren-heder sâsom SOg og HgS fjernes. Adsorptionsmidlerne er særligt nyttige 30 inden for luftforureningsbekæmpelsesomrâdet til fjernelse af komponenter sâsom svovlholdige molekyler, halogenerede carbonhydrider, organiske syrer, aldehyder, alkoholer, ketoner, alkaner, aminer, ammoniak, acrylo-nitril, aromater, oliedampe, halogener, oplpsningsmidler, monomerer, organiske nedbrydningsprodukter, hydrogencyanid, carbonmonoxid og kvik-35 splvdampe.Compared to activated carbon, the adsorbents used in the invention exhibit a number of advantages such as 1 avere adsorption heat, less polymerization of adsorbed monomers on the surface, less need for regenerating agent due to diffusion kinetics, less loss of multicirculation capacity and less leakage through . Similar effects have been observed when other impurities such as SOg and HgS are removed. The adsorbents are particularly useful in the air pollution control field for removing components such as sulfur-containing molecules, halogenated hydrocarbons, organic acids, aldehydes, alcohols, ketones, alkanes, amines, ammonia, acrylonitrile, aromatics, oil vaporizers, halogens, halogens, , hydrogen cyanide, carbon monoxide and mercury vapors.

Af specifikke chlorerede carbonhydrider kan nævnes: l,2,3,4,10,10-hexachlor-l,4,4a,5,8,8a-hexahydro-l,4-endo-exo-5, 11Specific chlorinated hydrocarbons include: 1,2,3,4,10,10-hexachloro-1,4,4a, 5,8,8a-hexahydro-1,4-endo-exo-5,11

DK 156265BDK 156265B

8-dimethannaphthalen, 2-chlor-4-ethylami no-6-i sopropylami no-s-tri azi n, polychlorbi cyclopentadieni somerer, isomerer af benzenhexachlorid, 5 60% octochlor-4,7-methantetrahydroindan, 1.1- di chlor-2,2-bi s-(p-ethylphenyl)ethan, 1.1.1- trichlor-2,2-bis-(p-chlorphenyl)ethan, dichlordiphenyldichlor-ethylen, 1.1- bi s-(p-chlorphenyl)-2,2,2-trichlorethanol, 10 2,2-dichlorvinyldimethylphosphat, 1.2.3.4.10.10- hexachlor-6,7-epoxy-l,4,4a,5,6,7-dimethannaphthalen, 1.2.3.4.10.10- hexachlor-6,7-epoxy-l,4,4a,5,6,7,8,8a-octahydro-l,4-endo-endo-5,8-dimethannaphthalen, 74% 1,4,5,6,7,8,8a-heptachlor-32,4,7a-tetrahydro-4,7-methani nden, 15 1,2,3,4,5,6-hexachlorcyclohexan 2.2- bi s(p-methoxyphenyl)-1,1,1-trichlorethan, chloreret kamfen med 67-69% chlor.8-Dimethannaphthalene, 2-chloro-4-ethylamino no-6-i sopropylamino no-s-triazane, polychlorobic cyclopentadieni summers, isomers of benzene hexachloride, 5 60% octochloro-4,7-methane tetrahydroindane, 1.1-di chloro-2 , 2-bi s- (p-ethylphenyl) ethane, 1.1.1-trichloro-2,2-bis- (p-chlorophenyl) ethane, dichlorodiphenyl dichloro-ethylene, 1.1-bi s- (p-chlorophenyl) -2,2 2,2-trichloroethanol, 2,2-dichlorovinyl dimethyl phosphate, 1.2.3.4.10.10-hexachloro-6,7-epoxy-1,4,4a, 5,6,7-dimethannaphthalene, 1.2.3.4.10.10-hexachloro-6, 7-epoxy-1,4,4a, 5,6,7,8,8a-octahydro-1,4-endo-endo-5,8-dimethannaphthalene, 74% 1,4,5,6,7,8, 8a-heptachlor-32,4,7a-tetrahydro-4,7-methanide, 1,2,3,4,5,6-hexachlorocyclohexane 2.2-bis (p-methoxyphenyl) -1,1,1-trichloroethane , chlorinated camphor with 67-69% chlorine.

Som andre komponenter, som kan adsorberes fra væsker ved hjælp af 20 disse adsorptionsmidler, kan nævnes chlorerede phenoler, nitrophenoler, overfladeaktive midler sâsom detergenter, emulgatorer, dispergerings- og befugtningsmidler, carbonhydrider sâsom toluen og benzen, spildprodukter fra organiske og uorganiske farvestoffer, farvestoffer fra sukkerarter, olier og fedtstoffer, vellugtende estere og monomerer.Other components which can be adsorbed from liquids by these adsorbents include chlorinated phenols, nitrophenols, surfactants such as detergents, emulsifiers, dispersants and wetting agents, hydrocarbons such as toluene and benzene, waste products from organic and inorganic dyes, dyes sugars, oils and fats, scented esters and monomers.

25 Adsorptionsmidlerne kan regenereres, nâr kapaciteten er opbrugt.The adsorbents can be regenerated when capacity is used up.

Det specielle regenereringsmiddel, som vil være mest egnet, afhænger af naturen af det adsorberede materiale, men regenereringsmidlerne omfatter i almindelighed saltvand, oplpsningsmidler, varmt vand, syrer og damp. Adsorptionsmidlernes evne til at kunne termisk regenereres udgor en sær-30 lig fordel.The particular regenerant which will be most suitable depends on the nature of the adsorbed material, but the regenerants generally comprise saline, solvents, hot water, acids and vapors. The ability of the adsorbents to be thermally regenerated presents a particular advantage.

Adsorptionsmidler uden aktiverinqAdsorbents without activation

Opfindelsen anvender overlegne adsorptionsmidler, som ikke har be-35 hov for "aktivering", som det er almindeligt i forbindelse med mange carbonholdige adsorptionsmidler betegnet "aktivt carbon". Adsorptionsmidler, som har egenskaber, der bâde er bedre end og forskellige fra aile andre adsorptionsmidlers egenskaber, fremstilles direkte i ét 12The invention employs superior adsorbents which do not require "activation", as is commonly associated with many carbonaceous adsorbents termed "active carbon". Adsorbents which have both better and different properties than all other adsorbents are produced directly in one 12

DK 156265 BDK 156265 B

trin ved varmebehandling af polymerer som beskrevet ovenfor. Aktivering med reaktive gasser er en procès, som af og til kan være pnskelig af hensyn til modifikation af adsorptionsegenskaberne, men det er ikke nogen nedvendig de! af opfindelsen. Som det vises i tabel III og IV 5 nedenfor, influeres adsorptionsegenskaberne markant af maksimumtempera-turen, som harpiksen udsættes for. Som vist i tabel III, frembringer en temperatur pâ 500°C et adsorptionsmiddel, som er optimalt til fjernelse af chloroform fra vand.steps of heat treating polymers as described above. Activation with reactive gases is a process that may sometimes be feasible for modification of adsorption properties, but it is not necessary! of the invention. As shown in Tables III and IV 5 below, the adsorption properties are significantly influenced by the maximum temperature to which the resin is exposed. As shown in Table III, a temperature of 500 ° C produces an adsorbent which is optimal for removing chloroform from water.

Harpikser, som er varmebehandlet ved 800°C, er i stand til selek-10 tivt at adsorbere molekyler efter stprrelse (se tabel IV). Den ved 800°C behandledes harpiks er endnu mere effektiv til adskillelse af hexan og carbontetrachlorid end vist i tabel IV, da næsten ait CCI^ ad-sorberes pâ overfladen af makroporerne og ikke i mikroporerne. Den til-syneladende bedre selektivitet af den kommercielle carbonmolekylsigte 15 (eksempel 5) skyldes sandsynligvis meget mindre overf1 adeareal af makroporerne. Harpiksen, som er varmebehandlet ved 500°C (nr. 1 i tabel IV) udviser meget mindre selektivitet over for de to molekyler med forskel-lig stprrelse og understreger sâledes den vigtige indflydelse, som maksimumtemperaturen under varmebehandlingen har pâ adsorptionsegen-20 skaberne. 1Resins heat-treated at 800 ° C are capable of selectively adsorbing molecules by size (see Table IV). The resin treated at 800 ° C is even more effective at separating hexane and carbon tetrachloride than shown in Table IV, since almost all CCl4 is adsorbed on the surface of the macropores and not in the micropores. The apparent better selectivity of the commercial carbon molecular sieve 15 (Example 5) is probably due to much less surface area of the macropores. The resin, which is heat treated at 500 ° C (# 1 in Table IV), exhibits much less selectivity to the two molecules of different sizes and thus emphasizes the important influence that the maximum temperature during the heat treatment has on the adsorption properties. 1

Tabel IIITable III

DK 156265BDK 156265B

1313

Vandig chloroform ligevægtskapaciteter for forskellige adsorptionsmidler 5 _Aqueous chloroform equilibrium capacities for various adsorbents 5

Aile adsorptionsmidler i ligevægt med 2 ppm CHClj i deioniseret vand ved stuetemperatur.All equilibrium adsorbents with 2 ppm CHCl 2 in deionized water at room temperature.

10 Nr. Prpve Ligevægtskapacitet 2 ppm 1 1 S/DVB polymert adsorptions- 6,0 mg/g tort adsorptions- 15 middel middel 2 Pittsburgh granulært aktiveret carbon 10,2 3 Sulfoneret S/DVB harpiks pyrolyseret til 800°C 21 20 4 Samme som nr. 3, men oxygen- ætset 28 5 Samme som nr. 3 pyrolyseret til 500°C 45 25 1 S/DVB = copolymer af styren og divinylbenzen 1410 No. Prpve Equilibrium capacity 2 ppm 1 1 S / DVB polymer adsorbent 6.0 mg / g tort adsorbent 2 Pittsburgh granular activated carbon 10.2 3 Sulfonated S / DVB resin pyrolyzed to 800 ° C 21 20 4 Same as no. 3 but oxygen etched 28 5 Same as No. 3 pyrolyzed to 500 ° C 45 25 1 S / DVB = styrene and divinylbenzene copolymer 14

Tabel IVTable IV

DK 156265 BDK 156265 B

Molekylsigtningsbestemmelse via ligevægtsdampoptagelse 5Molecular screening determination via equilibrium vapor uptake 5

Kapacitet (βΐ/g)Capacity (βΐ / g)

Nr. Prpve CCI 4* Hexan^ 10 1 Sulfoneret S/DVB pyrolyseret til 500°C 12,1 13,6 2 Samme som nr. 1, pyrolyseret til 800°C 3,4 15,7 15 3 Pittsburgh aktiveret carbon 41,0 40,9 4 Samme som nr. 2, oxygen-ætset 17,6 22,7 5 Carbonmolekylsigte fra TakedaNo. Sample CCI 4 * Hexane ^ 10 1 Sulfonated S / DVB pyrolyzed to 500 ° C 12.1 13.6 2 Same as No. 1, pyrolyzed to 800 ° C 3.4 15.7 15 3 Pittsburgh activated carbon 41.0 40 , 9 4 Same as No. 2, oxygen-etched 17.6 22.7 5 Carbon molecular sieve from Takeda

Chemical Industries 0,50 12,1 20 * Effektiv minimumdimension 6,1 A 2Chemical Industries 0.50 12.1 20 * Effective minimum dimension 6.1 A 2

Effektiv minimumdimension 4,3 AEffective minimum dimension 4.3 A

Den foreliggende opfindelse illustreres yderligere ved de efter-25 fplgende eksempler.The present invention is further illustrated by the following examples.

Eksempel 1Example 1

En prpve pâ 40 g af "Amberlite 200" (registreret varemærke til-hprende Rohm and Haas Company for en styren/DVB sulfonsyre-ionbytnings-30 harpiks) i Na+-formen (49,15% fast stof) anbragtes i et filterrpr og ud- 3 vaskedes med 200 cm deioniseret vand. 20 g FeClg.ôHgO opl0stes i ca. 1 liter deioniseret vand og ledtes gennem harpiksprpven pâ en kolonne i lpbet af ca. 4 timer. Ensartet og fuldstændig opfyldning kunne iagttages visuelt. Prpven udvaskedes dernæst med 1 liter deioniseret vand, under-35 kastedes sugning i 5 minutter og luftt0rredes i 18 timer.A sample of 40 g of "Amberlite 200" (registered trademark of Rohm and Haas Company for a styrene / DVB sulfonic acid ion exchange resin) in the Na + form (49.15% solid) was placed in a filter tube and out. - 3 were washed with 200 cm of deionized water. Dissolve 20 g of FeCl 1 liter of deionized water and passed through the resin sample on a column over approx. 4 hours. Uniform and complete filling could be observed visually. The sample was then washed with 1 liter of deionized water, subjected to suction for 5 minutes and air-dried for 18 hours.

10 g af denne pr0ve pyrolyseredes dernæst sammen med talrige andre pr0ver i en ovn, som var udstyret til indledning af 7 liter argongas pr. minut. Prpvens temperatur hævedes til 706°C i l0bet af 6 timer under 1510 g of this sample was then pyrolysed together with numerous other samples in an oven equipped to initiate 7 liters of argon gas per day. minute. The sample temperature was raised to 706 ° C over 6 hours below 15

DK 156265BDK 156265B

trinvise forogelser pâ ca. 110°C hver time. Prpven holdtes ved maksimum-temperaturen i en halv time. Dernæst blev strommen til ovnen afbrudt, og ovnen med indhold tilIodes at afkple uforstyrret til stuetemperatur un-der kontinuert argongennemstrdmning i ldbet af de næste 16 timer. Udbyt-5 tet af fast materiale efter pyrolyse var 43%. De fysiske karakteristika af denne prdve er anfdrt i tabel V sammen med data for prdverne B til G og 1 til K, soin fremstilledes pâ samme mâde.incremental increases of approx. 110 ° C every hour. The sample was kept at the maximum temperature for half an hour. Next, the furnace power was disconnected and the furnace with contents was allowed to cool undisturbed to room temperature during continuous argon flow over the next 16 hours. The yield of solid after pyrolysis was 43%. The physical characteristics of this sample are given in Table V together with data for samples B to G and 1 to K, which were prepared in the same way.

1616

DK 156265 BDK 156265 B

'd'd

I «HI H

(U 0) >ιΠ β *d 04 g r- cn cn t" cn ir> en(U 0)> ιΠ β * d 04 g r- cn cn t "cn ir> en

>( C (D O O VO CO O VO C"· CO I I> (C (D O O VO CO O VO C "· CO I I

CO d) CO 'N. »» ^ *·*>*“ **CO d) CO 'N. »» ^ * · *> * “**

Ht) I» & OOOHOOOHt) I »& OOOHOOO

•H (0 (0 g• H (0 (0 g)

. rH (0 <D. rH (0 <D

)4 (d d) >0 tn) 4 (d d)> 0 tn

HN Nom O t" O COHN After O t "O CO

iM g cn en i οί i n m coiM g cn and i οί i n m co

O N ΙΛ N ^ fO rHO N ΙΛ N ^ fO rH

d) >d)>

OISLAND

d) T)d) T)

o(0 rH CM Ho (0 rH CM H

gg

| W H| W H

a) tn d) ιη β Λ >1 <0 S= = ss = = =: = = = H tn 41) o g ωa) tn d) ιη β Λ> 1 <0 S = = ss = = =: = = = H tn 41) o g ω

Md) MMd) M

>i îh m fXi m +1> i îh m fXi m +1

Cn « > d) cn cn d) >i cn h _ > ho £ntnü»tntntntntntntn&> d) o , _Cn «> d) cn cn d)> i cn h _> ho £ ntnü» tntntntntntntn &> d) o, _

H Ό >1 OOOOOOOOLOHOH 1> 1 OOOOOOOOLOHO

d) β Oc HHHHHHHinr^CNCNd) β Oc HHHHHHHinr ^ CNCN

+} >1 cn co m tO tn 5-i+}> 1 cn co m tO tn 5-i

Eh d> Ίθ-Eh d> Ίθ-

tq 4Mtq 4M

•sr = CN = = = g O I O O o = 54• sr = CN = = = g O I O O o = 54

o pq ο ο ο ο Oo pq ο ο ο ο O

CN x CN CN CN CN CHCN x CN CN CN CN CN CH

0)0)0)0)00)100+ O 4J+> + +>O + 0iOOao0) 0) 0) 0) 00) 100+ O 4J +> + +> O + 0iOOao

H H -H -H CN H H CN CN CNH H -H -H CN H H CN CN CN

H H H rH Ή -HH H H rH Ή -H

ViîmM)h0)Sh0)0)0) = 0) 0)0)0)0)+)0)+)+14-)0+)ViîmM) h0) Sh0) 0) 0) = 0) 0) 0) 0) 0) +) 0) +) + 14-) 0+)

J3 Λ Λ -Q -H Λ -H -H H O -HJ3 Λ Λ -Q -H Λ -H -H H O -H

g g g g i—| g i—I i—I i—I CN i—Ig g g g i— | g i — I i — I i — I CN i — I

ι3<;<2<2!^<.νί54)4 ^4 0) = = = =0)=0)0)0)0)0)ι3 <; <2 <2! ^ <. νί54) 4 ^ 4 0) = = = = 0) = 0) 0) 0) 0) 0)

H A A A A +) AH A A A A +) A

(0 o(0 orJ o(tJ 0(tJ g g g g "H S(0 o (0 orJ o) tJ 0 (tJ g g g g "H S

U =04= = =)4 = 0) H H 0) 4J H H H o(0 H »<0 «(0 <>(d A °(0 (tf H H H H 04 H 0( Ot 0( Ë ft JT d) (D O tn <0U = 04 = = =) 4 = 0) HH 0) 4J HHH o (0 H »<0« (0 <> (d A ° (0 (tf HHHH 04 H 0) Ot 0 (Ë ft JT d)) DO tn <0

EnfeUrfSKUaffiEs « 0) > ·&DEFINITIONS «0)> · &

0 4<pqOPMpHO!XÎHit)X0 4 <pqOPMpHO! XÎHit) X

0404

DK 156265 BDK 156265 B

1717

Eksempel 2Example 2

Teknikken i eksempel 1 modificeres derved, at 250 g "Amberlite 200" pâ hydrogenform (opnâet ved konvertering af natriumformen med saltsyre) pyrolyseres ved kontinuert hævning af temperaturen til 760°C i l0bet af 5 6 timer. Prpven tillades dernæst at afkple i l0bet af de næste 12 timer, 2 hvorefter den udviser et overf1 adeareal pâ 390 m /g.The technique of Example 1 is modified by pyrolysing 250 g of "Amberlite 200" in hydrogen form (obtained by conversion of the sodium form with hydrochloric acid) by continuously raising the temperature to 760 ° C over 5 hours. The sample is then allowed to cool over the next 12 hours, after which it exhibits a surface area of 390 m / g.

FremganasmâdeeksemplerFremganasmâdeeksempler

Adsorption af vinvlchlorid 10 3 10 cm prdve anbringes i en kolonne af rustfrit stâl med en indre diameter pâ 1,69 cm. S0jleh0jden er sâ 5,05 cm. Under brug af et fortyn-dingsudstyr med et blandekammer udvikles en gasstr0m pâ 580 ppm vinyl-chlorid i luft og ledes gennem kolonnen med en volumetrisk strom-15 ningshastighed pâ 800 ml/min. Kolonnestr0mningshastigheden er derfor 80 spjlevolumener/min. Aile eksperimenter gennemf0res ved omgivelsestempe-ratur og et overtryk pâ 110 kPa. En delstr0m pâ 10 ml/min. udtages fra afgangsgassen og indfpres i en flammeionisationsdetektor til kontinuert vinylchloridanalyse. Ogsâ konventionelle Rohm and Haas adsorptionsmidler 20 og en type Calgon aktiveret carbon undersoges. Resultaterne vises neden-for.Adsorption of wine chloride 10 3 10 cm sample is placed in a stainless steel column with an internal diameter of 1,69 cm. The column height is then 5.05 cm. Using a dilution equipment with a mixing chamber, a gas stream of 580 ppm vinyl chloride is developed in air and passed through the column at a volumetric flow rate of 800 ml / min. Therefore, the column flow rate is 80 rpm. All experiments are carried out at ambient temperature and an overpressure of 110 kPa. A partial flow of 10 ml / min. is extracted from the exhaust gas and injected into a flame ionization detector for continuous vinyl chloride analysis. Also conventional Rohm and Haas adsorbents 20 and a type of Calgon activated carbon were investigated. The results are shown below.

Adsorption af vinylchlorid i prpve K, H+-form, pyrolyseret 18Adsorption of vinyl chloride in sample K, H + form, pyrolyzed 18

Tabel VITable VI

DK 156265 BDK 156265 B

5 Forldbet tid Lækage Momentan (min.) (ppm VCM) % lækaae 0 0 0 25 0 0 50 0 0 10 75 0 0 100 0 0 125 0 0 150 0 0 166 1 0,1 15 200 34 5,8 225 242 42 250 454 78 275 569 98 300 580 100 205 Elapsed time Leakage Momentary (min.) (Ppm VCM)% leakage 0 0 0 25 0 0 50 0 0 10 75 0 0 100 0 0 125 0 0 150 0 0 166 1 0.1 15 200 34 5.8 225 242 42 250 454 78 275 569 98 300 580 100 20

Tabel VIITable VII

Adsorption af vinylchlorid i prpve B, Fe^^form, 3 pyrolyseret og udvasket med HgSO^, sojlevolumen - 20 cm 25 _Adsorption of vinyl chloride in sample B, Fe ^^ form, 3 pyrolyzed and washed with HgSO ^, column volume - 20 cm 25

Forldbet tid Lækage Momentan (min.) (ppm) % lækaae 0 0 0 25 0 0 30 50 0 0 75 0 0 100 0 0 109 1 0,2 125 284 49 35 150 521 90 175 568 98 200 580 100Elapsed time Leakage Momentary (min) (ppm)% leakage 0 0 0 25 0 0 30 50 0 0 75 0 0 100 0 0 109 1 0.2 125 284 49 35 150 521 90 175 568 98 200 580 100

Tabel VIIITable VIII

Adsorption af vinylchlorid i prdve C, Ct/^form, pyrolyseretAdsorption of vinyl chloride in prdve C, Ct / ^ form, pyrolyzed

DK 156265 BDK 156265 B

19 5 Forlpbet tid Lækage Momentan (min.) (ppm VCM) % lækaae 0 0 0 . ' 25 0 0 50 0 0 10 75 0 0 100 0 .0 125 0 0 143 1 0,2 150 2 0,4 15 175 68 12 200 244 42 225 401 69 250 501 86 275 564 97 20 300 580 10019 5 Elapsed time Leakage Moment (min) (ppm VCM)% leakage 0 0 0. '25 0 0 50 0 0 10 75 0 0 100 0 .0 125 0 0 143 1 0.2 150 2 0.4 15 175 68 12 200 244 42 225 401 69 250 501 86 275 564 97 20 300 580 100

Tabel IXTable IX

Adsorptien af vinylchlorid i prpve A, Fe^^form, pyrolyseret 25 _The adsorption of vinyl chloride in sample A, Fe ^^ form, pyrolyzed 25

Forlpbet tid Lækage Momentan (min.) (ppm VCM) % lækaae 0 0 Ό 25 0 0 30 50 0 0 75 0 Ό 100 0 0 125 2,0 $,-3 150 26 4,5 35 175 112 19 200 303 52 116 1 0,2Elapsed time Leakage Moment (min) (ppm VCM)% leakage 0 0 Ό 25 0 0 30 50 0 0 75 0 Ό 100 0 0 125 2.0 $, - 3 150 26 4.5 35 175 112 19 200 303 52 116 1 0.2

Tabel XTable X

Adsorption af vinvlchlorid i Pittsburgh PCB 12 x 30 aktiveret carbonAdsorption of vinyl chloride in Pittsburgh PCB 12 x 30 activated carbon

DK 156265 BDK 156265 B

20 5 Forldbet tid Lækage Momentan fmin.l fppm) % lækage 0 0 0 25 0 0 50 0 0 10 75 0 0 100 0 0 115 0 0 117 1 0,2 200 580 100 1520 5 Elapsed time Leakage Momentary fmin.l fppm)% leakage 0 0 0 25 0 0 50 0 0 10 75 0 0 100 0 0 115 0 0 117 1 0.2 200 580 100 15

Yderli aere fremaanasmâdeeksemolerExternal front exhalation exchanger

Adsorptionen gennemfpres med en spjle pâ 9,5 cm af harpiks J, som underkastes en vinylchlorid-indgangsstr0m indeholdende 350 ppm og med en str0mnîngshastighed pâ 160 spjlevolumener pr. minut. Regenerering gen-20 nemf0res under anvendelse af damp ved 130 - 160°C i 20 minutter efter-fulgt af tdrring med luft i 10 minutter. Eksperimentet foretages 15 gan-ge for at vise, at der ikke sker kapacitetstab efter talrige cykler. Re-sultaterne vises i den efterfdlgende tabel.The adsorption is carried out with a 9.5 cm flush of resin J, which is subjected to a vinyl chloride input stream containing 350 ppm and at a flow rate of 160 flush volumes per minute. minute. Regeneration is carried out using steam at 130 - 160 ° C for 20 minutes followed by drying with air for 10 minutes. The experiment is performed 15 times to show that no capacity loss occurs after numerous cycles. The results are shown in the following table.

25 Tabel XITable XI

Cvklus Tid* Volumenkapacitet Væatkapacitet 1 45 6,9 11,1 3 42 6,4 10,3 30 5 49 7,5 12,1 7 45 6,9 11,1 9 45 6,9 11,1 11 37 5,6 9,0 13 40 6,1 9,8 35 15 45 6,9 11,1 * Forldbet tid i minutter ved 1 ppm lækage.Cycle Time * Volume Capacity Weave Capacity 1 45 6.9 11.1 3 42 6.4 10.3 30 5 49 7.5 12.1 7 45 6.9 11.1 9 45 6.9 11.1 11 37 5, 6 9.0 13 40 6.1 9.8 35 15 45 6.9 11.1 * Elapsed time in minutes at 1 ppm leak.

2121

DK 156265 BDK 156265 B

Resultaterne af sammenlignende eksperimenter med andre kommercielle harpikser og carbontyper vises i den efterfplgende tabel.The results of comparative experiments with other commercial resins and carbon types are shown in the following table.

Tabel XII 5Table XII 5

Adsorptionsmiddel Volumenkapacitet Vægtkapacitet (mg/cm3) (mg/g) 10 Prpve D 14,4 13,5Adsorbent Volume capacity Weight capacity (mg / cm3) (mg / g) 10 Sample D 14.4 13.5

Prpve F 9,8 13,1Sample F 9.8 13.1

Pr0ve 6 2,9 3,2Sample 6 2.9 3.2

Pittsburgh BPL 12 x 30 aktiveret carbon 8,5 17,0 15 Kreha kugleformet aktiveret carbon 13,9 26,7Pittsburgh BPL 12 x 30 Activated Carbon 8.5 17.0 15 Kreha Spherical Activated Carbon 13.9 26.7

Pr0ve Η^ΙΠ) 29,2 47,1Sample Η ^ ΙΠ) 29.2 47.1

Prpve H(I) 26,6 42,4Sample H (I) 26.6 42.4

Pittsburgh PCB 12 x 30 20 carbon 7,6 16,8Pittsburgh PCB 12 x 30 20 carbon 7.6 16.8

Pittsburgh PCB 12 x 30 carbon 11,4 25,3 (I) Drift med en indgangskoncentration pâ 460 ppm ved 160 SV/min.Pittsburgh PCB 12 x 30 carbon 11.4 25.3 (I) Operation with an input concentration of 460 ppm at 160 SV / min.

3 25 over en 10 cm prpve (II) Drift med en indgangskoncentration pâ 350 ppm ved 160 SV/min.3 25 over a 10 cm sample (II) Operation with an input concentration of 350 ppm at 160 SV / min.

3 over en 10 cm prpve (III) Drift med en indgangskoncentration pâ 1070 ppm ved 160 SV/min.3 over a 10 cm sample (III) Operation with an input concentration of 1070 ppm at 160 SV / min.

3 over en 10 cm prpve 30 (IV) Drift med en indgangskoncentration pâ 860 ppm ved 160 SV/min.3 over a 10 cm sample 30 (IV) Operation with an input concentration of 860 ppm at 160 SV / min.

_Λ 3 over en 10 cm prpve._ 3 over a 10 cm sample.

Det mâ bemærkes, at prpve H, som er fremstillet ved fremgangsmâden i eksempel 2, repræsenterer en foretrukket udfprelsesform.It should be noted that sample H prepared by the method of Example 2 represents a preferred embodiment.

35 Prpve J udviser ved sammenligning med PCB 12 x 30 carbon et mindre fald i kapacitet, nâr den relative fugtighed forpges som vist nedenfor.Sample J, when compared to PCB 12 x 30 carbon, exhibits a slight decrease in capacity when the relative humidity is lost as shown below.

2222

DK 156265 BDK 156265 B

Relativ fugtighed Volumenkapacitet mg/cm3Relative humidity Volume capacity mg / cm3

PCB 12 x 30 Prpve JPCB 12 x 30 Prpve J

5 0 11,4 6,4 52 9,6 7,4 60 4,1 4,8 100 - 2,3 105 0 11.4 6.4 52 9.6 7.4 60 4.1 4.8 100 - 2.3 10

Indgangskoncentration - 850 til 1100 ppmInput concentration - 850 to 1100 ppm

Phénoladsoration 15 20 cm af prpve I underkastes en indgangskoncentration pâ 500 ppm phénol oplpst i deioniseret vand. Strpmningshastigheden er 4 SV/time.Phenol adsorption 15 20 cm of sample I is subjected to an initial concentration of 500 ppm phenol dissolved in deionized water. The strain rate is 4 SV / hr.

Prpven udviser en lækage pâ mindre end 1 ppm ved 38 spjlevolumener. Pr0-vens kapacitet beregnes at være 25,0 mg/g ved en lækage pâ 3 ppm.The sample exhibits a leakage of less than 1 ppm at 38 mirror volumes. The capacity of the sample is calculated to be 25.0 mg / g at a leakage of 3 ppm.

"Amberlite XAD-4", som er et kommercielt adsorptionsmiddel, viser, 20 nâr det anvendes som sammenligning, en kapacitet pâ 14,4 mg/g ved en lækage pâ 6 ppm."Amberlite XAD-4", which is a commercial adsorbent, shows, when used by comparison, a capacity of 14.4 mg / g at a leakage of 6 ppm.

Prpve I regenereres med methanol med en hastighed pâ 2 SV/time og kræver 5 SV for at blive 71% regenereret.Sample I is regenerated with methanol at a rate of 2 SV / hr and requires 5 SV to be 71% regenerated.

Prpve B vurderes med henblik pâ adsorptionskapacitet over for H2S 25 og SOg. Resultaterne viser, at der adsorberes signifikante mængder af begge forureninger. Lignende mâlinger for en aktiveret carbontype viser en ubetydelig adsorption af S02 ved 100°C.Sample B is evaluated for adsorption capacity to H2S 25 and SOg. The results show that significant amounts of both contaminants are adsorbed. Similar measurements for an activated carbon type show negligible adsorption of SO 2 at 100 ° C.

André syntetiske organiske polymerer end ionbytningsharpikser er blevet underspgt for adsorptionskapacitet. En prpve af polyacrylonitril 30 tyærbundet med 15% divinylbenzen er blevet pyrolyseret under forskellige eksperimentelle betingelser og vurderet med henblik pâ S02-adsorptions-evne. De eksperimentelle betingelser og resultater er præsenteret i tabel ΧΪΠ. Endnu en gang adsorberes signifikante mængder af S02· Eksem-pel N er af særlig interesse, da en oxidation af copolymeren i luft for-35 ud for pyrolysen signifikant forpger adsorptionskapaciteten for S02 af det pyrolyserede produkt.Other synthetic organic polymers than ion exchange resins have been investigated for adsorption capacity. A sample of polyacrylonitrile 30 tethered with 15% divinylbenzene has been pyrolyzed under various experimental conditions and evaluated for SO2 adsorption ability. The experimental conditions and results are presented in Table ΧΪΠ. Once again, significant amounts of SO 2 · Example N is of particular interest, as oxidation of the copolymer in air prior to pyrolysis significantly decreases the adsorption capacity of SO 2 of the pyrolyzed product.

2323

DK 156265 BDK 156265 B

UU

OISLAND

o tnl ή H tJ g fi d) Λ d) > Λ fio tnl ή H tJ g fi d) Λ d)> Λ fi

(!) tiP ti!> 0\0 O(!) tiP ti!> 0 \ 0 O

fi o m ο ofi o m ο o

Q) CO h N OQ) CO h N O

tntn

d) CMd) CM

MM

fi H O 0) -H -H tn li tn tn tjt +) >ifi H O 0) -H -H tn li tn tn tjt +)> i

+) XXX «JH+) XXX «JH

•H * H H H U O• H * H H H U O

Ü O O O -P MÜ O O O -P M

Ο I -P g g g « >1 h tn Q) a) Oi ►i tn+> g g g o fi fi -h fi fi O -duomo O ·© nj g «j cm cm vû ,¾ *fiΟ I -P g g g «> 1 h tn Q) a) Oi ►i tn +> g g g o fi fi -h fi fi O -duomo O · © nj g« j cm cm vû, ¾ * fi

>i 4J d >.>.·. -P> i 4J d>.>. ·. -P

H « «J O O O «S dj o ex λ gH «« J O O O «S dj o ex λ g

Q. P HQ. P H

O -PUP

+j tn d) i to+ j tn d) in two

P d) tn «JP d) tn «J

d) Ό x tn m tn «j cm tn >i H g g rH +J H I I «J Dj O p «J I I co tn ÎH d) d) -d> TJ g > u cm c 3 O) O «J H fid) Ό x tn m tn «j cm tn> i H g g rH + J H I I« J Dj O p «J I I co tn ÎH d) d) -d> TJ g> u cm c 3 O) O« J H fi

fi JSfi JS

H-| a) CM tJH | a) CM tJ

«J N S -H«J N S -H

fi dj -Pfi dj -P

CMd) -P dP ϋΡ dP dPCMd) -P dP ϋΡ dP dP

ΟΛ +) ^ cm (o m -PΟΛ +) ^ cm (o m -P

co H >·.<«. 00 d)co H> ·. <«. 00 d)

H > Λ ^ h ADH> Λ ^ h AD

h fi fi «jmcn·'* » Mh fi fi «jmcn · '*» M

H O H fi CM d) X tp > o >H O H fi CM d) X tp> o>

-H O-H O

1-1+)¾ o\o d) d) m . u1-1 +) ¾ o \ o d) d) m. u

Λ -P <a° OΛ -P <a ° O

«j h ιη *· o«J h ιη * · o

EhOH OJ fi fi fi OEhOH OJ fi fi fi O

«5 H g d) d) 0) cm co«5 H g d) d) 0) cm co

CU>fi H d) g g g MCU> fi H d) g g g M

«J d) +> +> -H -H H H«J d) +> +> -H -H H H

,Χ g ·+)+)+) o\° H, Χ g · +) +) +) o \ ° H

W Hfi X O -PW Hfi X O -P

fi+> -h «j m ro in Hfi +> -h «j m ro in H

o d) +> g -fi •H nef Td m +) fi d) fio d) +> g -fi • H nef Td m +) fi d) fi

Û4 fi g HÛ4 fi g H

fi Λ o fi c a oh tn g o «3 g dj d) a) ofi Λ o fi c a oh tn g o «3 g dj d) a) o

'd > tn d) d) g g g ο -P'd> tn d) d) g g g ο -P

(«J +) fi J> +) Ή H H Γ' fi «J .+)+)+) >(«J +) fi J> +) Ή H H Γ 'fi« J. + + +) +)>

•fi X -fi W• fi X -fi W

•H -H ftf rH rH rH Q) *1 1 P g * > fi tn d) · +) d) en CU tn "d h g W d) d) d) > g tn -P d) u fi• H -H ftf rH rH rH Q) * 1 1 P g *> fi tn d) · +) d) and CU tn "d h g W d) d) d)> g tn -P d) u fi

fi O O O tn O «Jfi O O O tn O «J

•H « O O O H o > +i χ ο ο ο ή o (¾• H «O O O H o> + i χ ο ο ο ή o (¾

d) «J r~ cm o cm Od) «J r ~ cm o cm O

Λ g in en to -HΛ g in and to -H

d) rfi fi tn +) d) d) > tn > > H d) * «J- S.d) rfi fi tn +) d) d)> tn>> H d) * «J- S.

O > * fi CM fi 24O> * fi CM fi 24

DK 156265 BDK 156265 B

Hodstandsdvatiahed over for knusninaHeadstand deviance towards the hug

Den fysiske integritet af perler af pyrolyserede polymerer er storre end for andre kugleformede adsorptionsmidler og granulær ak-5 tiveret carbon soin indikeret i tabel XIV. Bedre modstandsdygtighed over for brud forventes at resultere i en stærkt udstrakt effektiv brugstid i sammenligning med granulært carbon, for hvilket nedslidningstabet kan være stort. At afstpdning af partikulært materiale ikke forekommer ved de pyrolyserede polymerer muliggpr ogsâ deres brug inden for anvend-10 elsesomrâder, hvor aktiveret carbon er uacceptabelt, sâsom ved blod-behandling.The physical integrity of beads of pyrolyzed polymers is greater than that of other spherical adsorbents and granular activated carbon soin indicated in Table XIV. Better resistance to fracture is expected to result in a highly extended effective service life compared to granular carbon, for which the loss of wear can be large. Partitioning of particulate matter by the pyrolyzed polymers is also not possible for their use in applications where activated carbon is unacceptable, such as by blood treatment.

Tabel XIVTable XIV

15 Knusestyrke af makroporpse pyrolyserede polymerer og andre adsorptionsmidler.15 Crush strength of macroporse pyrolyzed polymers and other adsorbents.

Beskrivelse nr. type Knusestyrke * (kg) 20 _Description No. type Crush strength * (kg) 20 _

Sulfoneret S/DVB 1 400°C 2,3 varmebehandlet 2 500°C > 3,1 2 under inert at- 25 mosfære til an- 3 600°C > 3,4 2 f0rt temperatur 4 800oC > 3,4 2 5 1000°C » 3,6 3Sulfonated S / DVB 1,400 ° C 2.3 heat treated 2,500 ° C> 3.1 2 under inert atmosphere to about 3,600 ° C> 3.4 2 before temperature 4 800 ° C> 3.4 2 5 1000 ° C »3.6 3

Kugleformet 30 aktiveret carbon 6 Kureha 0,93 7 Prpve af ukendt 0,51 japansk oprindelse anvendt ved blodbe-handlingseksperimenter 35 Granulart aktiveret carbon 8 Pittsburgh BPL ^ -0,90Spherical 30 Activated Carbon 6 Kureha 0.93 7 Sample of Unknown 0.51 Japanese Origin Used in Blood Treatment Experiments 35 Granular Activated Carbon 8 Pittsburgh BPL ^ -0.90

DK 156265BDK 156265B

25 * Masse, som ma anbringes pâ den pvre af to parai Telle plader for at fremkalde brud i partikel mellem pladerne - gennemsnit af mindst 10 pr0ver.25 * Mass to be applied to two of Parai Telle plates to induce particle breakage between plates - average of at least 10 samples.

ο 5 Nedre grænse, da i det mindste én parti kel ikke blev bmdt ved maksimumbelastning pâ 3,6 kg.ο 5 Lower limit, since at least one particle was not hampered by a maximum load of 3.6 kg.

33

Ingen perler blev brudt ved maksimumbelastning.No beads were broken at maximum load.

10 Da partiklerne har irregulær form, blev eksperimentet afbrudt, nâr et hjdrne var slâet af.10 Because the particles are of irregular shape, the experiment was interrupted when a hump was turned off.

il Carbonfikserende arupperil Carbon fixing groups

Det er blevet vist, at talrige grupper bevirker carbonfiksering 15 under pyrolyse. En partiel liste over grupper og deres effektivitet er anfprt i tabel XV. Gruppens eksakte kemiske natur er uvæsentlig, da en hvilken som helst gruppe, der tjener til at forhindre forflygtigelse af carbonet under pyrolysen, er tilfredsstillende.Numerous groups have been shown to effect carbon fixation 15 during pyrolysis. A partial list of groups and their effectiveness is given in Table XV. The exact chemical nature of the group is immaterial, as any group which serves to prevent volatilization of the carbon during pyrolysis is satisfactory.

20 iil Opsuaede carbonfikserende midler20 µl of aspirated carbon fixing agents

Opfyldning af en makropor0s copolymers porer med en reaktiv sub-stans forud for pyrolysen tjener til at forhindre forflygtigelse af carbonet i copolymeren. I tilfældet, hvor der anvendes svovlsyre, er det blevet vist, at materialet gennemgâr en sulfoneringsreaktion under op-25 varmning, som frembringer en substans lig udgangsmaterialet i prpve 1 i tabel XV. Det stprre carbonudbytte, der opnâs via opsugning frem for ved præsulfonering, er uventet og viser, at fremgangsmâden kan være bedre end andre carbonfikseringsteknikker.Filling the pores of a macropore copolymer with a reactive substance prior to pyrolysis serves to prevent volatilization of the carbon in the copolymer. In the case where sulfuric acid is used, it has been shown that the material undergoes a sulphonation reaction under heating which produces a substance similar to the starting material in sample 1 of Table XV. The higher carbon yield obtained by aspiration rather than by presulfonation is unexpected and shows that the method may be better than other carbon fixation techniques.

30 iiil Impræanerede polvmerer30 iiil Impregnated Polymers

Imprægnering er eksemplificeret ved nr. 4 i tabel XVI, hvor porerne i en type carbon black indeholdende S/DVB-copolymer opfyldtes med H2S04 og pyrolyseredes. Carbonudbyttet er h0jere end i det tilsvarende ekspe-riment (prpve 1), som er gennemf0rt uden tilstedeværelsen af carbon 35 black.Impregnation is exemplified by # 4 in Table XVI where the pores of a type of carbon black containing S / DVB copolymer were filled with H 2 SO 4 and pyrolyzed. The carbon yield is higher than in the corresponding experiment (sample 1), which was carried out without the presence of carbon black.

2626

DK 156265 BDK 156265 B

o Ή <H (U Φ <1) (d Ό Ό Όo Ή <H (U Φ <1) (d Ό Ό Ό

G GG Φ G G GG GG Φ G G G

03 H i-i r-1 h (d (d d <d d d nJ ni (d cd φ -ro -ro φ -η Φ Φ ·π ·γί ·η -ro Ό tJi lj> (ji H 0 0 003 H i-i r-1 h (d (d d <d d d nJ ni) (d cd φ -ro -ro φ -η Φ Φ · π · γί · η -ro Ό tJi lj> (ji H 0 0 0

Ο d G GΟ d G G

A û) ΛA)) Λ

•H• H

AA

OISLAND

CM O &> o dCM O &> o d

0) O -H0) O -H

+> . <£> G+>. <£> G

f -p | Λ dP # dP dP dP # àP dP cJP dP 03 Φ Ό vo σ> co co o <4? οί n~ ό <x> Ό > 3 vo m r-~ oo cm Ln r- r~ d 0)f -p | Λ dP # dP dP dP # àP dP cJP dP 03 Φ Ό vo σ> co co o <4? οί n ~ ό <x> Ό> 3 vo m r- ~ oo cm Ln r- r ~ d 0)

P ! -HOP! -HAY

a) d Sa) d S

a a h üa a h ü

g S S Sg S S S

Cn Ο v_ φ tji ·Cn Ο v_ φ tji ·

O d Φ GO d Φ G

rS -H tn Φ 3 d td O) § g Λ ft > s-j <y y h p ><3 «û ό g b,rS -H tn Φ 3 d td O) § g Λ ft> s-j <y y h p> <3 «ú ό g b,

m d > Pm d> P

H û) S1 . 5H u) S1. 5

<D -H Ό o y -H<D -H Ό o y -H

-Q «H ΦΉ , 2! Ή rjJ d «H 5-J !> Ή-Q «H ΦΉ, 2! Ή rjJ d «H 5-J!> Ή

Fh O φ Φ o\° <sp ον c?P <1) 1H MFh O φ Φ o \ ° <sp ον c? P <1) 1H M

43 d -P o oo C4 ^ -P Ή >i μι >,4-! ·» 1 tiP tSP ^ «JP (JP <A° 1 o\P Ή 43 Oi td w>i t" r·1 •'β· ro o H H H co ^ φ43 d -P o oo C4 ^ -P Ή> i µι>, 4-! · »1 tiP tSP ^« JP (JP <A ° 1 o \ P Ή 43 Oi td w> i t "r · 1 • 'β · ro o H H H co ^ φ

O π ^ η π n n lo m oo 04 g -HO π ^ η π n n lo m oo 04 g -H

•rl Ό ° 0 .• rl Ό ° 0.

4J 3 O 03 4-> H 104J 3 O 03 4-> H 10

H - HH - H

H X S4 OH X S4 O

HH Φ -d Φ H -P g ΦHH Φ -d Φ H -P g Φ

p4 H -p Cf» - >i ’Op4 H -p Cf »-> i 'O

H Φ H g H dH Φ H g H d

-P >1 4JpLi 4J(d>0-H-P> 1 4JpLi 4J (d> 0-H

φλ φ -p S-J 03 -P ^ „φλ φ -p S-J 03 -P

4JH4J 00 H 4-> I Φ fô g dOC4JH4J 00 H 4-> I Φ fô g dOC

(d >i Φ PQ >ι <d φ n s d ΗΟΦ Φ d X g H > X -p d4J 03Φ μ,-H 03 θ' a, O O M -H ÛOHOH(dS4(D3 \ -H 0(d> i Φ PQ> ι <d φ n s d ΗΟΦ Φ d X g H> X -p d4J 03Φ µ, -H 03 θ 'a, O O M -H ÛOHOH (dS4 (D3 \ -H 0

a, ΐΗΛΟ^\ΛιΊΉΐίΉθ430 P Pa, ΐΗΛΟ ^ \ ΛιΊΉΐίΉθ430 P P

3 H μ| H -p Ή d P 03<—Jü3 03iH nj g θ' d P3 H µ | H -p Ή d P 03 <—Jü3 03iH nj g θ 'd P

S-ι ddjd-Hg-H(d G <d 43 > g WO-HS-ι ddjd-Hg-H (d G <d 43> g WO-H

tji ΟΙϋϋΰιϋΑΟ+ΐΙΙ+ΐΐΌϋιί > Λ Gtji ΟΙϋϋΰιϋΑΟ + ΐΙΙ + ΐΐΌϋιί> Λ G

•H 03 M• H 03 M

μι Φ <d Sh >, 03 Ο Φμι Φ <d Sh>, 03 Ο Φ

0j H0j H

φ 4J d 03 PQ 'O d φ 44 (Q ffl (p > ffl H « PQ PQ pq d Φ O) •ri > > > P > >1 > > > > >100) O) P P p \ p d P P P P Cnop U \ \ \ is \ -rl \ \ \ \ Φ S4 S-j (d en ω ω <! ω > ω ω ω w Λ P< ΰ -4 ι—I 04 00 27φ 4J d 03 PQ 'O d φ 44 (Q ffl (p> ffl H «PQ PQ pq d Φ O) • ri>>> P>> 1>>>>> 100) O) PP p \ pd PPPP Cnop U \ \ \ is \ -rl \ \ \ \ Φ S4 Sj (d and ω ω <! Ω> ω ω ω w Λ P <ΰ -4 ι — I 04 00 27

DK 156265 BDK 156265 B

<D<D

ww

iHI h

PP

•Cf 4J -P 4-> 4-1• Cf 4J -P 4-> 4-1

H g Q) <D 0) <UH g Q) <D 0) <U

0 P λ: 44 44 44 ω0 P λ: 44 44 44 ω

Λ O MM Μ Μ PΛ O MM Μ Μ P

Ρ 44 flj fU « W tn 43 6 k jg ê Tl •h 44 ό ό 'u <o +· XX P P P P P &> >1Ρ 44 flj fU «W tn 43 6 k jg ê Tl • h 44 ό ό 'u <o + · XX P P P P P &>> 1

rHrh

m V) * o 1 <D Ήm V) * o 1 <D Ή

P +j # (» dP (AOP + j # (»dP (AO

O -P (JD H H ^ CO -P (JD H H ^ C

Λ >1 00 σι (T( Q) 54 43 |4 p T) >i OP ωΛ> 1 00 σι (T (Q) 54 43 | 4 p T)> i OP ω

rHrh

>1 54> 1 54

OISLAND

PP

>1> 1

rHrh

ω o Ό Piω o Ό Pi

P <DP <D

P 4J HP 4J H

rç) 4J *4* P · P >· - **rç) 4J * 4 * P · P> · - **

54 H 43 UD CN CN I tn O54 H 43 OUT CN CN I tn O

Φ dJOvo^n O PΦ dJOvo ^ n O P

H P P ^ HH P P ^ H

Ό >i W Λ •HW > _Ό> i W Λ • HW> _

g H Q Pg H Q P

CO ·Η \ OCO · Η \ O

tri 4-5 ω Λ β J_|tri 4-5 ω Λ β J_ |

•H (U PP• H (U PP

PH POPH PO

tn P a) *h P -H P ' o\otn P a) * h P -H P 'o \ o

WP >1 P -PWP> 1 P -P

p. p w ^ P tn H O 44 ^ H g O 1« > P O >1 P CO g > X P g COPO CN o Ό CN 0 <44 td 44 op. p w ^ P tn H O 44 ^ H g O 1 «> P O> 1 P CO g> X P g COPO CN o Ό CN 0 <44 td 44 o

HP4JCCPH CNHP4JCCPH CN

P P P >1+0 o\o PP P P> 1 + 0 o \ o P

χχ 54 tn o\° H cn S oo Ο Όχχ 54 tn o \ ° H cn S oo Ο Ό

p p p ooo H tn en Λ Pp p p ooo H tn and Λ P

E4W w en Pi S C p 6E4W w and Pi S C p 6

44 P) · P44 P) · P

HO 1k OPHO 1k OP

<(4 0<(4 0

p 44 P Hp 44 P H

ο Ο Ό 4Jο Ο Ό 4J

43 P P P43 P P P

M H Q) WM H Q) W

p Λ P Hp Λ P H

U P +· W PU P + · W P

P P > PP P> P

g mm m mo p g >i >> >>Λ tn >ig mm m mo p g> i >> >> Λ tn> i

H QQ Q Q P PHH QQ Q Q P PH

ο \ \ \ \ P 430 p) COCO COCOO H Puο \ \ \ \ P 430 p) COCO COCOO H Pu

O -HO -H

ο 4-1 Pο 4-1 P

PP

<0 H p<0 H p

P PP P

4-> 4-54-> 4-5

P PP P

. P. P

p +> Pp +> P

P PPP PP

w tn H Ό füw tn H Ό fü

P PPP PP

a, H CN H ^ P Pi e o g p m h w 28a, H CN H ^ P Pi e o g p m h w 28

DK 156265 BDK 156265 B

Eksemoel 3Example 3

Det efterf0lgende eksperiment frembragte prpve nr. 1 i tabel XVI.The subsequent experiment produced sample # 1 in Table XVI.

En prpve pâ 30,79 g af den makroporpse copolymer (20% DVB/S) an-bragtes i et kvartsrpr med en udvendig diameter pâ 30 mm, egnet til ef-5 terfplgende varmebehandling. Den ene ende af rpret blokeredes med kvartsuld, og copolymeren anbragtes oven pâ kvartsulden med rpret holdt vertikalt. Isopropanol, deioniseret vand og 98% HgSO^ (1 liter af hver) hældtes i rækkefplge gennem harpiksen i lpbet af en période pâ 1,5 time. Overskydende H2S04 Ί0b af under en 10 minutters pause. Ca. 5,5 g syre 10 forblev i porerne af harpiksen. Rpret anbragtes horisontait i en rprovn, 3 og N2 ledtes gennem rpret i en mængde pâ 4800 cm pr. minut. linder op-varmning udvikledes fprst hvid rpg og dernæst en rpdlig stikkende lug-tende olie fra prpven. Produktet var sorte, skinnende, fritstrpmmende perler, som groft taget havde samme st0rrelse som udgangsharpiksen.A sample of 30.79 g of the macroporse copolymer (20% DVB / S) was placed in a quartz tube with an outside diameter of 30 mm, suitable for subsequent heat treatment. One end of the ratchet was blocked with quartz wool, and the copolymer was placed on top of the quartz wool with the ratchet held vertically. Isopropanol, deionized water and 98% HgSO4 (1 liter of each) were poured in succession through the resin over a 1.5 hour period. Excess H2S04 Ί0b off during a 10 minute break. Ca. 5.5 g of acid 10 remained in the pores of the resin. Rpret was placed horizontally in a test tube, 3 and N2 were passed through the ratchet at an amount of 4800 cm per meter. minute. In the heat of heating, first white rpg was developed and then a prickly smelling smelling oil from the sample. The product was black, shiny, free-flowing beads, roughly the same size as the starting resin.

1515

Eksempel 4Example 4

Fplgende eksperiment frembragte prpve 2 i tabel XVI.The following experiment produced sample 2 in Table XVI.

En benzoesyrecopolymer fremstilledes ud fra en chlormethyleret harpiks (20% DVB/S) ved oxidation med salpetersyre. En portion pâ 20,21 20 g af den oplpsningsmiddelkvældede og vakuumt0rrede harpiks anbragtes i et kvartsr0r, som i den ene ende var lukket med kvartsuld. R0ret holdtes horisontalt i en "Glas-col" varmekappe og opvarmedes gradvis til 800°C i l0bet af 200 min. Prpven afkpledes til stuetemperatur i l0bet af ca. 120 min. Nitrogen strpmmede gennem rpret under opvarmningen med en hastighed 3 25 pâ 4800 cm /min. Hvid rpg udvikledes fra prpven under opvarmning. Slut-produktet bestod af skinnende métal!isk sorte perler.A benzoic acid copolymer was prepared from a chloromethylated resin (20% DVB / S) by oxidation with nitric acid. A portion of 20.21 20 g of the solvent-swollen and vacuum-dried resin was placed in a quartz tube closed at one end with quartz wool. The tube was held horizontally in a "Glass-col" heating jacket and gradually heated to 800 ° C over 200 minutes. The sample was cooled to room temperature over approx. 120 min. Nitrogen flowed through the rack during heating at a rate of 3 25 at 4800 cm / min. White rpg developed from the sample during heating. The end product consisted of shiny metallic black beads.

Typisk multimodal porestprrelsefordeling af de pyrolyserede poly-merpartiklër illustreres nedenfor i tabel XVII.Typical multimodal pore size distribution of the pyrolyzed polymer particles is illustrated below in Table XVII.

2929

DK 156265 BDK 156265 B

' i o φ 4-1'i o φ 4-1

rHrh

φ x β +) p ο ω— h <1) (fl \u °«i 0) H -PO Ëφ x β +) p ο ω— h <1) (fl \ u ° «i 0) H -PO Ë

>ι Λ 0) O> ι Λ 0) O

,_l ρ o tu tn es ro ro oo m sî:, _l ρ o tu tn es ro ro oo m sî:

0 β φ oo X o o o o o ^ rH0 β φ oo X o o o o o ^ rH

j-ι OC'—· Ai- ------ X) tr ·Η 00-000000j-ι OC'— · Ai- ------ X) tr · Η 00-000000

P W -PP W -P

<d P Φ<d P Φ

Φ OΦ Oh

05 g Φ «. -h β05 g Φ «. -h β

PP

o o.Island Island.

O -P ~O -P ~

SH Φ USH Φ U

À; ^tsO ό o\ 41 es co ο oo φ OCO O O O O rH rH i i g (O no — — — - - - - CSfijOO ooooooooo —. tu o —A; ^ tsO ό o \ 41 es co ο oo φ OCO O O O O rH rH i i g (O no - - - - - - - CSfijOO ooooooooo -. tu o -

O -PUP

ο Φ es Sh —.ο Φ es Sh -.

φ -PO rn N ΙΛ N œ Nφ -PO rn N ΙΛ N œ N

φ 05 ΦΟ O i—1 O i—li—l Oφ 05 ΦΟ O i — 1 O i — li — l O

•p >.050 “*·----• p> .050 “* · ----

-H rH -p O OOOOOOOOO-H rH -p O OOOOOOOOO

rH O W 00 P P I —'rH O W 00 P P I - '

Φ > CSCS> CS

Λ £1 °Λ £ 1 °

VÛ -s1 Γ- UO CSVÛ -s1 Γ- UO CS

£ U o o H o o φ o - - - - - N o OOOOOO O-'£ U o o H o o φ o - - - - - N o OOOOOO O- '

β Oβ O

φ r-v m Λ tn — H \ c'ë — ^φ r-v m Λ tn - H \ c'ë - ^

H -H Ü UH-H Ü U

h > — O mes onh> - O mes on

[> -rH O O rH rH rH[> -rH O O rH rH rH

|xj 'φ Φ O - - - -| xj 'φ Φ O - - - -

\ p CO OOOOOOOOO\ p CO OOOOOOOOO

H β Φ "" φ Φ g Λ P >iH β Φ "" φ Φ g Λ P> i

(d î>iH(d î> iH

B -POB -PO

05 (X . , Φ m -P co co Γ' a ή ο h o I-H r - - - tn po ooooooooo β (Ü o •P Λ cs rH Ë Φ <1 Ό =05 (X.,-M -P co co Γ 'a ή ο h o I-H r - - - tn po ooooooooo β (Ü o • P Λ cs rH Ë Φ <1 Ό =

P -PP -P

O ΦO Φ

U-i PU-i P

φ Φ Φ 05 05 05φ Φ Φ 05 05 05

rH t-ι rHrH t-ι rH

φ rH Φ rv P O P <>3;φ rH Φ rv P O P <> 3;

p p P — OOOOOOp p P - OOOOOO

Ό. >- -Θ. OOOOOOΌ. > - -Θ. OOOOOO

HJ 0.-ΡΦ VO O rH CS CO ^ CO COHJ 0.-ΡΦ VO O rH CS CO ^ CO CO

05 05 T3 I S’ I I I I I Λ φ φ φ o<tf I Ο Ο Ο Ο Ο05 05 T3 I S 'I I I I I Λ φ φ φ o <tf I Ο Ο Ο Ο Ο

Ρ Ai P Ρ ./ VD^OOOOΡ Ai P Ρ ./ VD ^ OOOO

Ο Ai 0 g ν Η es η <f Ρ4 -Η Ρ-ι ΟΟ Ai 0 g ν Η es η <f Ρ4 -Η Ρ-ι Ο

DK 156265 BDK 156265 B

3030

Eksempel 5Example 5

Ledningsvand fra en byvandforsynîng (Spring House, Pennsylvania) som var tilsat CHC13 til en koncentration pâ ca. 1 ppm ledtes under hur-tig strpmning pâ 0,535 liter pr. liter pr. minut gennem tre kolonner, 5 som indeholdt pyrolyseret styren/divinylbenzen ("Amberlite 200") pyroly-seret polymer, og som parailelt var forbundet med en fælles kilde. Af-gangsstrpmmen opsamledes, og CHClj-koncentrationen màltes ved hjælp af GC/EC analyse. Resultaterne, som er anfprt i tabel XVIII, viser, at 500°C prpven udkonkurrerer kontrol-adsorptionsmidlerne med en bred mar-10 gin. For at checke reproducerbarheden af disse resultater underspgtes en anden portion 500°C harpiks under identiske omstændigheder, og den var signifikant bedre end den fprste prpve. Den bedste 500° harpiksprpve kan behandle ca. 14 gange sa mange spjlevolumener ledningsvand som det gra-nulære aktiverede carbon. Ydeevneforskellen mellem de to 500° pyrolyse-15 rede harpikspr0ver kan henfpres til det signifikant lavere oxygenindhold i den bedste pr$ve. Mindre oxygen antages at fpre til en mere hydrofob overfl ade, hvorved overfladens tiltrækning over for tungt oplpselige or-ganiske forbindelser som chloroform forpges. Det er blevet vist, at bâde damp og oplgsningsmiddel regenererer 500°C harpikserne effektivt. Smâ 20 kolonner med charge-belastet harpiks behandledes med damp og methanol og udviste derefter samme charge-ligevægtkapacitet som fpr regenerering. Et andet sst kolonneeksperimenter gennemfprtes efter regenerering af kolon-nerne med 5 spjlevolumener methanol. Resultaterne findes i tabel XVIII.Tap water from an urban water supply (Spring House, Pennsylvania) to which CHC13 was added to a concentration of ca. 1 ppm was conducted under rapid stocking of 0.535 liters per liter. liter per liter. per minute through three columns, 5 containing pyrolyzed styrene / divinylbenzene ("Amberlite 200") pyrolyzed polymer, and which were connected in parallel to a common source. The residual current was collected and the CHCl 2 concentration was measured by GC / EC analysis. The results listed in Table XVIII show that the 500 ° C sample outperforms the control adsorbents by a wide margin. In order to check the reproducibility of these results, another portion of 500 ° C resin was examined under identical conditions and was significantly better than the first sample. The best 500 ° resin sample can treat approx. 14 times as many flush volumes of tap water as the granular activated carbon. The performance difference between the two 500 ° pyrolysed resin samples can be attributed to the significantly lower oxygen content in the best sample. Less oxygen is assumed to feed to a more hydrophobic surface, thereby reducing the attraction of the surface to heavily soluble organic compounds such as chloroform. Both steam and solvent have been shown to efficiently regenerate the 500 ° C resins. Small 20 column loaded charge resins were treated with steam and methanol and then exhibited the same charge equilibrium capacity as fpr regeneration. Another six column experiment is performed after regenerating the columns with 5 volumes of methanol. The results are in Table XVIII.

Anden cyklus kapaciteterne af den pyrolyserede harpiks (a) og det poly-25 mere adsorptionsmiddel er hpjere end kapaciteterne for den fprste cyklus, hvilket indikerer, at methanolen ud over fuldstændig regenerering fjernede nogle forureninger, som var til stede ved begyndelsen af den fsirste cykl us. Den lavere anden cykl us kapacitet for det aktiverede carbon indikerer ufuldstændig regenerering. Det pyrolyserede materiale 30 regenereres knap sâ let som "XAD-4", idet det kræver ca. 1 spjlevolumen regenereringsmiddel mere for opnâelse af en ækvivalent regenererings-grad. Aktiveret carbon regenereres signifikant mindre let, idet kun 62% regenerering opnâs efter 5 spjlevolumener methanol (beregnet ud fra for-holdet mellem kapaciteterne ved fprste og anden cyklus).The second cycle capacities of the pyrolyzed resin (a) and the polymer more adsorbent are higher than the capacities of the first cycle, indicating that the methanol, in addition to complete regeneration, removed some contaminants present at the beginning of the first cycle. . The lower second cycle us capacity of the activated carbon indicates incomplete regeneration. The pyrolyzed material 30 is barely regenerated as "XAD-4", requiring approx. 1 mirror volume of regenerant more to obtain an equivalent degree of regeneration. Activated carbon is significantly less easily regenerated, with only 62% regeneration achieved after 5 volumes of methanol (calculated from the ratio of first and second cycle capacities).

35 3135 31

DK 156265 BDK 156265 B

Tabel XVIIITable XVIII

Resultater af kolonnestudier over fjernelse af chloroform fra ledningsvand.Results of column studies on chloroform removal from tap water.

5 _ 1 ppm CHClj i Spring House ledningsvand, nedadrettet strpmning ved 0,535 liter pr. min. pr. liter ved stuetemperatur 105 _ 1 ppm CHCl 2 in Spring House tap water, downward saturation at 0.535 liters per liter. mine. per. liter at room temperature 10

Cvklus nr. 1: SV ved Kapacitet til 10% lækaae 10% lækaaeCycle No 1: SV at Capacity for 10% leakage 10% leakage

Adsorotionsmiddel 15 Pyrolyseret polymer (500°C) (a) 6.150 12,3 mg/gAdsorbent 15 Pyrolyzed polymer (500 ° C) (a) 6.150 12.3 mg / g

Pyrolyseret polymer (500°C) (b) 11.850 24,9 "Filtrasorb 300" (aktiveret carbon) 850 1,8 "XAD-4" (et kommercielt tilgænge-20 ligt polymert adsorptionsmiddel) 630 2,2Pyrolyzed polymer (500 ° C) (b) 11,850 24.9 "Filtersorb 300" (activated carbon) 850 1.8 "XAD-4" (a commercially available polymeric adsorbent) 630 2.2

Cvklus nr. 2:Cvc # 2:

Adsorotionsmiddel 25Adsorbent 25

Pyrolyseret polymer (500°C) (a) 8.350 16,8 mg/g "Filtrasorb 300" (aktiveret carbon) 525 1,3 "XAD-4" 1.175 4,0 30Pyrolyzed polymer (500 ° C) (a) 8,350 16.8 mg / g "Filtrasorb 300" (activated carbon) 525 1.3 "XAD-4" 1.175 4.0 30

Eksempel 6Example 6

Fire pyrolyserede harpikser, som er représentative for forskellige fremstillingsteknikker for styren/DVB-materialer, er blevet vist at hâve fortræffelige charge-ligevægtkapaciteter for phénol som vist i tabel 35 XIX. De samme harpikser underspgtes i kolonnebelastnings/re- genereringscykler, og resultaterne præsenteres i tabel XIX. En prpve (oxygen-ætset) beholder inden for den eksperimentelle usikkerhed sin ko-lonnekapacitet under aile tre cykler. De andre undersdgte prpver synes 32Four pyrolyzed resins representative of various styrene / DVB materials manufacturing techniques have been shown to have excellent phenol charge equilibrium capacities as shown in Table 35 XIX. The same resins were examined in column load / regeneration cycles and the results are presented in Table XIX. A sample (oxygen-etched) retains within its experimental uncertainty its column capacity during all three cycles. The other samples examined appear to be 32

DK 156265 BDK 156265 B

at være regenereret ufuldstændigt under de valgte regenereringsbetingel-ser. Oxygen-ætsning for0ger kun charge- og kolonnephenolkapaciteten lidt i sammenligning med den uætsede prækursor, men forpger regenererbarheden drastisk. Dannelse af porer i 6-40 A-omrâdet ved ætsning kan forpge dif-5 fusionshastigheden inden for parti klerne og derved tillade mere effektiv regenerering.to be incompletely regenerated under the selected regeneration conditions. Oxygen etching only slightly increases the charge and column phenol capacity compared to the etched precursor, but drastically reduces the regenerability. Formation of pores in the 6-40 A range by etching can accelerate the diffusion rate within the clusters, thereby allowing more efficient regeneration.

Det er intéressant, at 500°C prpven, som var fremragende til chloroform-fjernelse, havde en lav kapacitet for phénol. Da der i 800°C prpven fandtes porer med molekylsigtestprrelse og ikke i 500°C materia-10 let, er det sandsynligt, at de mindste porer er de aktive positioner for phénoladsorption.It is of interest that the 500 ° C sample, which was excellent for chloroform removal, had a low phenol capacity. Since in the 800 ° C sample, pores of molecular sieve size were found and not in the 500 ° C material, it is likely that the smallest pores are the active positions for phenol adsorption.

3333

DK 156265 BDK 156265 B

PP

<D ·<D ·

H CUH CU

na e ri d)na e ri d)

g +Jg + J

oi a) ai p p -P tn o -P û) (d •h oi -P Ai -P _ ri g a (β) ο ήoi a) ai p p -P tn o -P u) (d • h oi -P Ai -P _ ri g a (β) ο ή

P w nJP w nJ

0 CT» CU Ë H N Ch O 01 H (S 0ï CN HO0 CT »CU Ë H N Ch O 01 H (S 0ï CN HO

0) £ Id eu \ <£> Ν’ CO VO Ν’ H (N CM CN CM0) £ Id eu \ <£> Ν 'CO VO Ν' H (N CM CN CM

Tfl -H M CU θ'!Tfl -H M CU θ '!

(fl P H(fl P H

Ë OHË OH

<d «l a îji p ai Ό H 4J Λ 0) h ω eu ><d «l a îji p ai Ό H 4J Λ 0) h ω eu>

i—II-I

01 -P01 -P

a: aia: ai

01 -P01 -P

p -Pp -P

o ai M-l p — rçd h MP (d Ë rd w ai p c; £ ai ni i ¢) in o h cno a M-l p - rd h MP (d w ai p c; £ ai ni i ¢) in o h cn

-p ai G CD ë ·* N-p ai G CD ë · * N

ai g -H H p r-~ h σ\ oai g -H H p r- ~ h σ \ o

4J -H fi ·πΗ H CM H4J -H fi · πΗ H CM H

•H +1 Ë ^ 0 ü \ O· CQ >• H + 1 Ë ^ 0 ü \ O · CQ>

(d > P(d> P

eu ω +1 m οι M N< 01eu ω +1 m οι M N <01

H -P PH -P P

0 (3) ai h0 (3) ai h

£ ^ .p Ai H CN Π HCNPO H CN H CN H Γ" CN H f" CN£ ^ .p Ai H CN Π HCNPO H CN H CN H Γ "CN H f" CN

CD TP 4J >1 HHCD TP 4J> 1 HH

Λ a ai u eu (dp > ufl 1 <tf P tl X ai <u i H P P 01 X! ai -p oi ai &> — h h g g Ό tn ai ph >a>\· ,q o +> ai > &i cd h \ tn ë EN ai > H -P ^ fl M H J)Λ a ai u eu (dp> ufl 1 <tf P tl X ai <ui HPP 01 X! Ai -p oi ai &> - hhgg Ό tn ai ph> a> \ ·, qo +> ai> & i cd h \ tn ë EN ai> H -P ^ fl MHJ)

-p g H . H 00 co O-p g H. H 00 co O

•H ^ ai H CU H CN H en H• H ^ ai H CU H CN H and H

tJiü Pi H H HtJiü Pi H H H

H ^ P (d <- o (S) cd cuo P v i ido ai ai u Ai m hH ^ P (d <- o (S) cd cuo P v i ido ai ai u Ai m h

si p ai Psi p ai P

a ο ό oa ο ό o

.p Ό XI.p Ό XI

g 01 ·Ρ H Pg 01 · Ρ H P

ft ü -P A4 0) I g Φ eu (d ai ai υ-PtnPoi oft ü -P A4 0) I g Φ eu (d ai ai υ-PtnPoi o

οι oi cd ai p ai Pοι oi cd ai p ai P

0 > H -P — HP 01 go -P -P0> H -P - HP 01 go -P -P

ο ω ai gu ο ,ραι eu x-h p aiο ω ai gu ο, ραι eu x-h p ai

in > 10 O P O H -P g Pin> 10 O P O H -P g P

Hin h po o · p ci ocu h ai p αίο o o W n n< cup P>Hin h po o · p ci ocu h ai p αίο o o W n n <cup P>

Il A4 tr»in m Λ PO O 0 P HIl A4 tr »in m Λ PO O 0 P H

ai Xi'-' ^ pcuc/ιω moi (d-Pai Xi'- '^ pcuc / ιω moi {d-P

ai X a g n n i>fl p A4 pi X3 o o h a tu PP tn cd pai X a g n n i> fl p A4 pi X3 o o h a tu PP tn cd p

tji Htji H

P PP P

ri ai ^ pp cq m p m Λ p ai > > > > piri ai ^ pp cq m p m Λ p ai>>>> pi

01 P Q QQQ. P01 P Q QQQ. P

cdai \ \ \ \ ^cdai \ \ \ \ ^

Htji p p ρργ xi m ai ai ai ai ai ai I oiu ppai p p p p pl -+-* fp > >1 >1 >( ->1 3 +*Htji p p ρργ xi m ai ai ai ai ai ai I oiu ppai p p p p pl - + - * fp>> 1> 1> (-> 1 3 + *

•Θ- -P -P -P -P Γ* H• Θ- -P -P -P -P Γ * H

DK 156265 BDK 156265 B

3434

Eksemoel 7Example 7

De pyrolyserede polymerers evne til at adsorbere visse upnskede blodkomponenter er blevet undersogt for at fastslâ deres anvendelighed ved hæmodialysebehandling af nyresvigt. Et bredt spektrum af styren/DVB-5 typen af pyrolyserede polymerer er blevet undersogt. Resultaterne af charge-eksperimenter, som er sammenstillet i tabel XX, indikerer, at en oxygen-ætset pr0ve har hoj kapacitet med hensyn til urinsyreadsorption.The ability of the pyrolyzed polymers to adsorb certain unwanted blood components has been investigated to determine their utility in renal hemodialysis treatment. A wide spectrum of styrene / DVB-5 type of pyrolyzed polymers has been investigated. The results of charge experiments compiled in Table XX indicate that an oxygen-etched sample has high uric acid adsorption capacity.

Graden af urinsyrekapacitet svarer til volumenet af porer i 6-40 A om-râdet, som er dannet ved oxygen-ætsning.The degree of uric acid capacity corresponds to the volume of pores in the 6-40 A range formed by oxygen etching.

1010

Tabel XXTable XX

Pvrolvserede polymerers charge-!iqevæqtskapacitet for urinsvre 15 bragt til ligevægt ved stuetemperatur i vandig phosphatpuffer med pH 7,4, interpoleret til 10 ppm kapacitetProlubricated polymers charge equilibrium capacity for uric acid 15 equilibrated at room temperature in pH 7.4 aqueous phosphate buffer, interpolated to 10 ppm capacity

Nr. beskrivelse a 10 ppm 20 1 styren/DVB-ætset 18,4 mg/g 2 pyrolyseret sulfoneret styren/DVB (800°C) 9,3 3 " " " " " 9,0 4 " " * " (1000°C) 8,5 5 " " " " (800°C) 8,3 25 6 * " " " (800°C) 8,2No. Description of 10 ppm 20 1 styrene / DVB etched 18.4 mg / g 2 pyrolyzed sulfonated styrene / DVB (800 ° C) 9.3 3 "" "" "9.0 4" "*" (1000 ° C) 8.5 5 "" "" (800 ° C) 8.3 25 6 "" "" (800 ° C) 8.2

7 pyrolyseret sulfoneret styren/DVB7 pyrolyzed sulfonated styrene / DVB

HgSO^ opsugende til 800°C 2,6HgSO4 aspirating to 800 ° C 2.6

8 pyrolyseret sulfoneret styren/DVB8 pyrolyzed sulfonated styrene / DVB

(stprre makroporer) (800°C) 2,2 30 9 pyrolyseret sulfoneret styren/DVB (500°C) 1,2(larger macropores) (800 ° C) 2.2 30 9 pyrolyzed sulfonated styrene / DVB (500 ° C) 1.2

Eksempel 8Example 8

Urinsyreadsorption bestemtes for forskellige prpver af pyrolyseret polymer (aile afledt af "Amberlite 200") i en 50 ppm oplpsning af urin-35 syre i 0,1N phosphatpuffer ved pH 7,4. Urinsyreopl0sningen ledtes gennem en s0jle pâ 5 cm polymer ved en str0mningshastighed pà 30 SV/time i op-adgâende retning ved en temperatur pâ ~25°C. Resultaterne er sammenstillet i tabel XXI.Uric acid adsorption was determined for various samples of pyrolyzed polymer (all derived from "Amberlite 200") in a 50 ppm solution of uric acid in 0.1N phosphate buffer at pH 7.4. The uric acid solution was passed through a column of 5 cm polymer at a flow rate of 30 SV / hour in the upward direction at a temperature of ~ 25 ° C. The results are summarized in Table XXI.

Claims (25)

1. Fremgangsmâde til adskillelse af en komponent fra et fluidum, ved hvilken fluidet bringes i kontakt med partikler af en syntetisk 30 polymer, som har indeholdt mindst en carbonfikserende gruppe og er blevet underkastet en varmebehandling (pyrolyse), hvilke„varmebehandlede partikler har et carbonindhold pâ mindst 85 vægt% og et carbon-til-hydrogen atomforhold fra 1,5:1 til 20:1 KENDETEGNET ved, AT der som syntetisk polymer anvendes en makropores harpiks, og AT de pyrolyserede p 35 partikler udviser et overfladeareal pâ 50 til 1500 m /g, hvoraf 6 til 2 700 m /g hidrorer fra makroporer med en gennemsnitlig krttisk dimension fra 50 til 100.000 A og resten af overfladearealet fra mindre porer med en gennemsnitlig kritisk dimension fra 2 til 50 A. DK 156265 BA method of separating a component from a fluid in which the fluid is contacted with particles of a synthetic polymer which have contained at least one carbon-fixing group and have been subjected to a heat treatment (pyrolysis), which "heat treated particles have a carbon content of at least 85 wt.% and a carbon-to-hydrogen atomic ratio of 1.5: 1 to 20: 1. m / g, of which 6 to 2 700 m / g are from macropores with an average Cretaceous dimension from 50 to 100,000 A and the rest of the surface area from smaller pores with an average critical dimension from 2 to 50 A. DK 156265 B 2. Fremgangsmâde ifplge krav 1 KENDETEGNET ved, AT den fraskilte komponent er organisk, AT fluidet er væskeformigt , og AT den makroporpse syntetiske polymer indeholdende en carbonfikserende gruppe er af-ledt af en eller flere ethylenisk umættede monomerer eller monomerer, 5 der kan kondenseres til frembringelse af den makroporpse polymer, eller blandinger deraf.2. A process according to claim 1, characterized in that the separated component is organic, that the fluid is liquid and that the macroporse synthetic polymer containing a carbon-fixing group is derived from one or more ethylenically unsaturated monomers or monomers which can be condensed into producing the macroporse polymer, or mixtures thereof. 3. Fremgangsmâde ifpige krav 1 eller 2 KENDETEGNET ved, AT den fraskilte komponent er en aromatisk forbindelse.3. A process according to claim 1 or 2, characterized in that the separated component is an aromatic compound. 4. Fremgangsmâde ifplge krav 3 KENDETEGNET ved, AT den fraskilte 10 organiske komponent er en phénol.4. A process according to claim 3, characterized in that the separated organic component is a phenol. 5. Fremgangsmâde ifpige krav 1 eller 2 KENDETEGNET ved, AT den fraskilte komponent er et farvestof.5. A process according to claim 1 or 2, characterized in that the separated component is a dye. 6. Fremgangsmâde ifPige krav 1 eller 2 KENDETEGNET ved, AT fluidet er et flydende vandigt medium.6. A process according to claim 1 or 2, characterized in that the fluid is a liquid aqueous medium. 7. Fremgangsmâde ifplge krav 4, KENDETEGNET ved, AT fluidet er en sukkerholdig væske.7. A process according to claim 4, characterized in that the fluid is a sugary liquid. 8. Fremgangsmâde ifplge krav 1 eller 2 KENDETEGNET ved, AT den fraskilte komponent er et overfladeaktivt middel.8. A method according to claim 1 or 2, characterized in that the separated component is a surfactant. 9. Fremgangsmâde krav 1 eller 2 KENDETEGNET ved, AT den fraskilte 20 komponent er hexan.9. The process of claim 1 or 2, characterized in that the separated component is hexane. 10. Fremgangsmâde ifplge krav 1 eller 2 KENDETEGNET ved, AT den fraskilte komponent er chloroform.A process according to claims 1 or 2, characterized in that the separated component is chloroform. 11. Fremgangsmâde ifplge krav 1 eller 2 KENDETEGNET ved, AT fluidet er et ikke-vandigt medium.11. A process according to claim 1 or 2, characterized in that the fluid is a non-aqueous medium. 12. Fremgangsmâde ifplge krav 1 KENDETEGNET ved, AT fluidet er gas- formigt, og AT den makroporpse syntetiske polymer indeholdende en carbonfikserende gruppe er afledt af en eller flere ethylenisk umættede monomerer, eller monomerer, som kan kondenseres til frembringelse af den makroporpse polymer, eller blandinger deraf.A process according to claim 1, characterized in that the fluid is gaseous and that the macroporphous synthetic polymer containing a carbon-fixing group is derived from one or more ethylenically unsaturated monomers, or monomers which can be condensed to produce the macroporphic polymer, or mixtures thereof. 13. Fremgangsmâde ifplge krav 1 eller 12 KENDETEGNET ved, AT den fraskilte komponent er et aromatisk carbonhydrid.13. A process according to claims 1 or 12, characterized in that the separated component is an aromatic hydrocarbon. 14. Fremgangsmâde ifplge krav 1 eller 12 KENDETEGNET ved, AT den fraskilte komponent er et chloreret carbonhydrid.A process according to claim 1 or 12, characterized in that the separated component is a chlorinated hydrocarbon. 15. Fremgangsmâde ifplge krav 1 eller 12 KENDETEGNET ved, AT den 35 fraskilte komponent er en keton.15. A process according to claim 1 or 12 characterized in that the separated component is a ketone. 15 Porefordeling svarende til ovenstâende pnsve-numre (cm /g) Porediameter A: Pr0ve 1 Pr0ve 2 Pr0ve 3 < 4 0,08 0,0 0,05 20 4 - 6 0,12 0,09 0,04 6 - 40 0,0 0,12 0,12 40 -100 0,0 0,05 0,01 100 - 200 0,08 0,12 0,17 200 - 300 0,13 0,18 0,07 25 > 300 0,0 0,02 0,0115 Pore distribution corresponding to the above pnsve numbers (cm / g) Pore diameter A: Sample 1 Sample 2 Sample 3 <4 0.08 0.05 0.05 20 4 - 6 0.12 0.09 0.04 6 - 40 0 , 0. 0.12 0.12 40 -100 0.0 0.05 0.01 100 - 200 0.08 0.12 0.17 200 - 300 0.13 0.18 0.07 25> 300 0.0 0.02 0.01 16. Fremgangsmâde ifplge krav 1 eller 12 KENDETEGNET ved, AT den fraskilte komponent er ethylacrylat.A process according to claims 1 or 12, characterized in that the separated component is ethyl acrylate. 17. Fremgangsmâde ifplge krav 1 eller 12 KENDETEGNET ved, AT den DK 156265 B fraskilte komponent er toluen.17. A process according to claim 1 or 12, characterized in that the component separated DK 156265 B is toluene. 18. Fremgangsmâde ifpige krav 1 eller 12 KENDETEGNET ved, AT den fraskilte komponent er methylchloroform.18. A process according to claim 1 or 12, characterized in that the separated component is methyl chloroform. 19. Fremgangsmâde ifplge krav 1 KENDETEGNET ved, AT den fraskilte 5 komponent er organisk, AT fluidet er blod, og AT den makroporpse synte-tiske polymer indeholdende en carbonfikserende gruppe, er afledt af en eller flere ethylenisk umættede monomerer, eller monomerer, som kan kon-denseres til den makroporpse polymer, eller blandinger deraf.19. A process according to claim 1, characterized in that the separated component is organic, that the fluid is blood, and that the macroporse synthetic polymer containing a carbon-fixing group is derived from one or more ethylenically unsaturated monomers, or monomers which can condensed to the macroporse polymer, or mixtures thereof. 20. Fremgangsmâde ifpige krav 1 eller 19 KENDETEGNET ved, AT den 10 fraskilte komponent er en aromatisk forbindelse.20. A process as claimed in claim 1 or 19, characterized in that the separated component is an aromatic compound. 21. Fremgangsmâde ifplge krav 1 eller 19 KENDETEGNET ved, AT den fraskilte komponent er urinsyre.21. A method according to claim 1 or 19, characterized in that the separated component is uric acid. 22. Fremgangsmâde ifplge krav 1 eller 19 KENDETEGNET ved, AT den fraskilte komponent er et barbiturat.22. A method according to claim 1 or 19, characterized in that the separated component is a barbiturate. 23. Fremgangsmâde ifplge krav 1 eller 19 KENDETEGNET ved, AT den fraskilte komponent er creatinin.23. A process according to claim 1 or 19, characterized in that the separated component is creatinine. 24. Fremgangsmâde ifplge et hvilket som helst af de foregâende krav, KENDETEGNET ved, AT de pyrolyserede makroporpse syntetiske polymerer indeholder porer af molekylsigtestprrelse pâ ca. 2-10 A sâvel som stprre 20 makroporer.A method according to any one of the preceding claims, characterized in that the pyrolyzed macroporse synthetic polymers contain pores of molecular sieve size of approx. 2-10 A as well as larger 20 macropores. 25 Kpbenhavn, 3025 Kpbenhavn, 30
DK356678A 1975-02-18 1978-08-11 PROCEDURE FOR SEPARATING A COMPONENT FROM A FLUIDUM THROUGH PARTICLES OF A SYNTHETIC POLYMER. DK156265C (en)

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
US55049775A 1975-02-18 1975-02-18
US55049575A 1975-02-18 1975-02-18
US55050075A 1975-02-18 1975-02-18
US55048675A 1975-02-18 1975-02-18
US55049975A 1975-02-18 1975-02-18
US55049975 1975-02-18
US55048675 1975-02-18
US55049575 1975-02-18
US55050075 1975-02-18
US55049775 1975-02-18
US65202076A 1976-01-26 1976-01-26
US65202076 1976-01-26
US05/652,019 US4040990A (en) 1975-02-18 1976-01-26 Partially pyrolyzed macroporous polymer particles having multimodal pore distribution with macropores ranging from 50-100,000 angstroms
US65201976 1976-01-26
US65432376 1976-02-02
US65426576 1976-02-02
US05/654,323 US4064043A (en) 1975-02-18 1976-02-02 Liquid phase adsorption using partially pyrolyzed polymer particles
US05/654,265 US4063912A (en) 1975-02-18 1976-02-02 Gaseous phase adsorption using partially pyrolyzed polymer particles
US65426176 1976-02-02
US05/654,261 US4064042A (en) 1975-02-18 1976-02-02 Purification of blood using partially pyrolyzed polymer particles
DK64676 1976-02-17
DK64676A DK149795C (en) 1975-02-18 1976-02-17 PARTY PYROLYZED POLYMER PARTICLES AND PROCEDURES FOR THEIR PREPARATION

Publications (3)

Publication Number Publication Date
DK356678A DK356678A (en) 1978-08-11
DK156265B true DK156265B (en) 1989-07-24
DK156265C DK156265C (en) 1989-12-11

Family

ID=27581528

Family Applications (1)

Application Number Title Priority Date Filing Date
DK356678A DK156265C (en) 1975-02-18 1978-08-11 PROCEDURE FOR SEPARATING A COMPONENT FROM A FLUIDUM THROUGH PARTICLES OF A SYNTHETIC POLYMER.

Country Status (1)

Country Link
DK (1) DK156265C (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD63768A (en) *
US3516791A (en) * 1967-07-14 1970-06-23 Canadian Patents Dev Microporous carbon preparation
CH515195A (en) * 1969-07-31 1971-11-15 Battelle Memorial Institute Composite material and process for its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD63768A (en) *
US3516791A (en) * 1967-07-14 1970-06-23 Canadian Patents Dev Microporous carbon preparation
CH515195A (en) * 1969-07-31 1971-11-15 Battelle Memorial Institute Composite material and process for its manufacture

Also Published As

Publication number Publication date
DK156265C (en) 1989-12-11
DK356678A (en) 1978-08-11

Similar Documents

Publication Publication Date Title
CA1081619A (en) Liquid phase adsorption using pyrolyzed polymers
CA1080198A (en) Pyrolyzed beads of a resinous polymer
CA2939755C (en) Method for regenerating adsorbent media used for extracting natural gas liquids from natural gas
EP3096871B1 (en) Method to provide pipeline quality natural gas
NO163726B (en) MOLECULE VIEW FOR SEPARATION OF GAS OR LIQUID MIXTURE CONTAINING INGREDIENTS WITH AT LEAST TWO DIFFERENT MOLECULE DIAMETERS, MOLECULE WEIGHTS OR MOLECULE FORMS AND APPLICATION OF THE MOLECULE WEIGHT.
CA2956135C (en) Process for carbon dioxide recovery from a gas stream containing carbon dioxide and hydrocarbons
US9976091B2 (en) Sequential removal of NGLs from a natural gas stream
CA1082613A (en) Air pollution control using pyrolyzed resin adsorbents
EP3096864B1 (en) Process for recovering natural gas liquids from natural gas produced in remote locations
CA1085310A (en) Blood purification process using pyrolyzed polymers
DK149795B (en) PARTY PYROLYZED POLYMER PARTICLES AND PROCEDURES FOR THEIR PREPARATION
WO2015130339A1 (en) Process control method for extracting natural gas liquids from natural gas
US20170066987A1 (en) Improved adsorption process for recovering condensable components from a gas stream
WO2016069316A1 (en) Temperature controlled adsorption process for recovering condensable hydrocarbons from a methane rich stream
DK156265B (en) PROCEDURE FOR SEPARATING A COMPONENT FROM A FLUIDUM THROUGH PARTICLES OF A SYNTHETIC POLYMER.
SU497781A3 (en) The method of obtaining sulfonated macrorelate porous copolymers
WO2016191259A1 (en) Method to regenerate adsorbent in a pressure swing adsorption process
CN116529207A (en) Carbonaceous material, process for producing the same, fluorine-containing organic compound removing material, filter for water purification, and water purifier
JPS6351161B2 (en)
Wang et al. Bis (2‐mercapto‐ethyl) amine modification of macroporous sulfonic resin catalyst in bisphenol‐a synthesis
JPS6317485B2 (en)
CA1068666A (en) Pyrolyzed ion exchange resins containing metal salts
PL110108B1 (en) Method of producing partially pyrolized polymers
CHUENKLANG et al. Effect of activation by alkaline solution on properties of activated carbon from rubber wood
JP2010221114A (en) Water treatment method, and heavy metal adsorbent

Legal Events

Date Code Title Description
PBP Patent lapsed