DE102010053054A1 - Mechanochemische Herstellung von Zeolithen - Google Patents

Mechanochemische Herstellung von Zeolithen Download PDF

Info

Publication number
DE102010053054A1
DE102010053054A1 DE102010053054A DE102010053054A DE102010053054A1 DE 102010053054 A1 DE102010053054 A1 DE 102010053054A1 DE 102010053054 A DE102010053054 A DE 102010053054A DE 102010053054 A DE102010053054 A DE 102010053054A DE 102010053054 A1 DE102010053054 A1 DE 102010053054A1
Authority
DE
Germany
Prior art keywords
grinding
synthesis
mill
zeolite
silicon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102010053054A
Other languages
English (en)
Inventor
Josef Schönlinner
Dr. Ladebeck Jürgen
Dr. Koy Jürgen
Dr. Wellach Stephan
Dr. Burgfels Götz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sued Chemie IP GmbH and Co KG
Original Assignee
Sued Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sued Chemie AG filed Critical Sued Chemie AG
Priority to DE102010053054A priority Critical patent/DE102010053054A1/de
Priority to PCT/EP2011/071099 priority patent/WO2012072527A2/de
Priority to US13/988,598 priority patent/US20130266507A1/en
Priority to JP2013541310A priority patent/JP2014501683A/ja
Priority to EP11788450.2A priority patent/EP2646367A2/de
Priority to CN2011800573934A priority patent/CN103269978A/zh
Publication of DE102010053054A1 publication Critical patent/DE102010053054A1/de
Priority to ZA2013/03567A priority patent/ZA201303567B/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Synthese von Zeolithen, umfassend die folgenden Schritte: a) Bereitstellen einer Silizium-Quelle; b) Bereitstellen einer Aluminium-Quelle; c) gegebenenfalls Bereitstellen mindestens eines Templats; d) Mischen der Silizium-Quelle, der Aluminium-Quelle und des optionalen Templats zur Erzeugung eines Synthesegels; e) Vermahlung des Synthesegels; f) Behandlung des vermahlenen Synthesegels unter hydrothermalen Bedingungen zur Erzeugung von kristallinem Zeolith, sowie nach diesem Verfahren erhältliche Zeolithe. Die nach dem Verfahren erhaltenen Produkte können als Katalysatoren oder Katalysatorträger verwendet werden.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Zeolithen, sowie durch dieses Verfahren erhältliche Zeolithe.
  • Hintergrund der Erfindung
  • Zeolith-Materialien können durch hydrothermale Synthese, d. h. durch Synthese im wässrigen Medium unter Druck und bei erhöhter Temperatur, hergestellt werden. Über die hydrothermale Synthese werden Synthesegele zur Kristallisation der entsprechenden Zeolithe gebracht. Die Synthesegele umfassen zumeist eine Silizium-Quelle (z. B. Kieselsäure), eine Aluminium-Quelle (z. B. Natriumaluminat, Aluminiumhydroxid, Aluminiumsulfat, usw.), ein Templat (vorzugsweise eine quartäre Ammoniumverbindung, die als strukturdirigierendes Agens dient) und Wasser.
  • Die bekannten Synthese-Verfahren haben jedoch den Nachteil, dass die Kristallisationszeit der Zeolithe bei der hydrothermalen Synthese verhältnismäßig lang ist und die erhaltenen Zeolithe häufig keine einheitlichen Substanzen, sondern Gemische darstellen.
  • Der Erfindung lag daher die Aufgabe zugrunde, ein Verfahren bereitzustellen, das es ermöglicht mit einem einfachen Verfahren und kurzen Kristallisationszeiten kristallinen Zeolith, insbesondere solchen mit hoher Phasenreinheit zu erhalten.
  • Es wurden durch die Erfinder zahlreiche Versuche durchgeführt, um ein derartiges Verfahren aufzufinden. Dabei wurde überraschenderweise festgestellt, dass ein zusätzlicher Vermahlungsschritt, der im Anschluss an die Herstellung des Synthesegels durchgeführt wird, die Kristallisationszeit verkürzt und zu Zeolithen hoher Phasenreinheit führt. Alternativ erlaubt dieser zusätzliche Verfahrensschritt die Verringerung der eingesetzten Menge an Templat ohne die Phasenreinheit zu schädigen, was die Herstellungskosten erheblich reduziert. Auf Basis dieser Erkenntnis wurde die vorliegende Erfindung verwirklicht.
  • Die Erfindung betrifft ein Verfahren zur Synthese von Zeolithen, das die folgenden Schritte umfasst: a) Bereitstellen einer Silizium-Quelle; b) Bereitstellen einer Aluminium-Quelle; c) gegebenenfalls Bereitstellen mindestens eines Templats; d) Mischen der Silizium-Quelle, der Aluminium-Quelle und des optionalen Templats zur Erzeugung eines Synthesegels; e) Vermahlung des Synthesegels; f) Behandlung des vermahlenen Synthesegels unter hydrothermalen Bedingungen zur Erzeugung von kristallinem Zeolith.
  • In einem weiteren Aspekt betrifft die vorliegende Erfindung Zeolithe, die mit dem erfindungsgemäßen Verfahren erhältlich sind. Bevorzugt ist die Herstellung von Beta-Zeolith und MFI-Zeolith.; besonders bevorzugt von Beta-Zeolith mit einem molaren Verhältnis Si:Al von 10 bis 400, noch bevorzugter von 20 bis 50, von MFI-Zeolith mit einem molaren Verhältnis Si:Al von 12 bis 800, noch bevorzugter von 24 bis 500 und besonders bevorzugt von 75 bis 250.
  • Darüber hinaus lehrt die vorliegende Erfindung die Verwendung mindestens einer Mahlvorrichtung zur Behandlung eines Synthesegels, umfassend eine Silizium-Quelle, eine Aluminium-Quelle und gegebenenfalls mindestens ein Templat, vor der Erzeugung von kristallinem Zeolith unter hydrothermalen Bedingungen.
  • Weiterhin lehrt die vorliegende Erfindung die Verwendung der nach dem erfindungsgemäßen Verfahren erhältlichen Zeolithe als Katalysatoren oder Katalysatorträger, insbesondere für sauer katalysierte Reaktionen, Oxidationen, Reduktionen und Adsorptionen. Besonders bevorzugt ist die Verwendung für katalytisches Spalten von Kohlenwasserstoffen (Cracken) und hydrierendes Spalten von Kohlenwasserstoffen (Hydrocracken, mildes Hydrocracken und/oder Dewaxing); Alkylierung von Aromaten mit Olefinen, Alkoholen oder halogenhaltigen Paraffinen; Alkylierung von Aromaten; Alkylierung von Isoparaffinen mit Olefinen; Transalkylierung (insbesondere von Aromaten); Disproportionierung; Isomerisierung; Hydroisomerisierung; Dimerisierung; Oligomerisierung; Polymerisation; Veretherung; Veresterung; Hydratisierung; Dehydratisierung; Adsorption; Kondensation; Oxidation; Acetalisierung; Dealkylierung und Zyklisierung.
  • Die Erfindung betrifft allgemein ein Verfahren zur Herstellung von Zeolithen, wobei zunächst aus einer Silizium-Quelle, einer Aluminium-Quelle und gegebenenfalls mindestens einem Templat ein Synthesegel hergestellt wird. Die Erzeugung des Synthesegels durch Mischen von Silizium-Quelle, Aluminium-Quelle und gegebenenfalls einem oder mehreren Templaten kann in einer dem Fachmann bekannten Weise auf Basis der Lehre der vorliegenden Erfindung erfolgen. Silizium-Quelle, Aluminium-Quelle und das eine oder die mehreren Template können dabei als solche oder in Form eines Fluids, beispielsweise als Lösung, Suspension oder Gel, miteinander vermischt werden oder einem Lösungsmittel oder Lösungsmittelgemisch zugesetzt werden. Vorzugsweise wird als Lösungsmittel Wasser oder ein wässriges Lösungsmittelgemisch verwendet. Insbesondere kann die Silizium-Quelle, die Aluminium-Quelle, das optionale Templat und/oder das Synthesegel in wässrigem Medium vorliegen.
  • Vorzugsweise erfolgt bei dem Schritt des Mischens von Silizium-Quelle, Aluminium-Quelle und gegebenenfalls einem oder mehreren Templaten ein Durchmischen bzw. Homogenisieren.
  • Besonders gute Ergebnisse können erzielt werden, wenn es sich bei der Silizium-Quelle um eine Silizium-Quelle handelt, die ausgewählt ist aus der Gruppe, bestehend aus gefällter Kieselsäure, kolloidaler Kieselsäure und deren Gemischen. Insbesondere kann die Silizium-Quelle gefällte Kieselsäure umfassen oder aus dieser bestehen. Bei der Aluminium-Quelle kann es sich um eine Aluminium-Quelle handeln, die ausgewählt ist aus der Gruppe bestehend aus Aluminaten (insbesondere Natriumaluminat), Aluminiumhydroxid, Aluminiumsulfat und deren Gemischen. Als Templat kann jedes Templat, auf Basis des allgemeinen Fachwissens bzw. der Lehre der vorliegenden Erfindung, verwendet werden, wobei vorzugsweise quarternäre Ammoniumverbindungen, die als strukturdirigierende Agentien dienen können, als Templat eingesetzt werden. Beispiele von Templaten, die verwendet werden können, sind Tetraalkylammoniumsalze. Bevorzugt ist die Verwendung von Tetraalkylammoniumhydroxiden und/oder Tetraalkylammoniumbromiden, wobei es sich bei den Alkylgruppen vorzugsweise um gleiche oder unterschiedliche, geradkettige oder verzweigte Alkylgruppen mit ein bis zehn (bevorzugt ein bis vier) Kohlenstoffatomen handelt. Besonders bevorzugt ist die Verwendung von Tetraethylammoniumhydroxid (TEAOH) oder Tetrapropylammoniumbromid (TPABr). Das Templat wird beispielsweise in einer Menge von 1 bis 50 Mol-%, insbesondere in einer Menge von 10 bis 30 Mol-%, vorzugsweise in einer Menge von 4 bis 20 Mol-%, bezogen auf die molare Menge an Si der Silizium-Quelle eingesetzt. Es kann ein Templat oder es können mehrere Template verwendet werden, bevorzugt ist die Verwendung eines Templats.
  • Bei der Synthese von MFI-Zeolith (Zeolith ZSM-5) kann das Synthesegel ein molares Verhältnis von Al zu Si beispielsweise im Bereich von 0,00125:1 bis 0,0833:1, vorzugsweise im Bereich von 0,002:1 bis 0,0416:1, besonders bevorzugt im Bereich vom 0,004:1 bis 0,0133:1 und/oder ein molares Verhältnis von Na zu Si im Bereich von 0,01:1 bis 0,2:1, vorzugsweise von 0,02:1 bis 0,15:1, besonders bevorzugt 0,04:1 bis 0,14:1 aufweisen. Vorzugsweise umfasst das Synthesegel pro 1 mol an SiO2 mindestens 10 mol Wasser, noch bevorzugter 18 bis 30 mol Wasser.
  • Bei der Synthese von Beta-Zeolith (BEA) kann das Synthesegel ein molares Verhältnis von Al zu Si beispielsweise im Bereich von 0,0025:1 bis 0,1:1, vorzugsweise im Bereich von 0,02:1 bis 0,08:1 und/oder ein molares Verhältnis von Na zu Si im Bereich von 0,001:1 bis 0,1:1, vorzugsweise im Bereich von 0,01:1 bis 0,08:1 aufweisen. Vorzugsweise umfasst das Synthesegel pro 1 mol an SiO2 mindestens 5 mol Wasser, noch bevorzugter 10 bis 50 mol Wasser.
  • Nach der Erzeugung des Synthesegels erfolgt eine Vermahlung des Synthesegels, wie nachstehend detailliert erläutert. Der Begriff ”Synthesegel” umfasst im Rahmen der vorliegenden Erfindung sowohl Synthesegele, die in Form einer gel- oder gallertartigen Masse, als auch in fluider Form, beispielsweise in Form einer Suspension vorliegen. Das vermahlene Synthesegel wird anschließend unter hydrothermalen Bedingungen in den kristallinen Zeolith überführt, worauf der kristalline Zeolith von der wässrigen Phase abgetrennt und gegebenenfalls getrocknet und kalziniert werden kann.
  • Das erfindungsgemäße Verfahren ist nachstehend anhand der Synthese von Beta-Zeolith und MFI-Zeolith erläutert, ist jedoch nicht auf die Synthese dieser Zeolithe beschränkt.
  • Die durch das erfindungsgemäße Verfahren erhältlichen Zeolithe weisen vorzugsweise eine Phasenreinheit von mehr als 80%, bevorzugt von mehr als 90%, bevorzugt von mehr als 95%, insbesondere von mehr als 98% auf. Die Phasenreinheit wird dabei bestimmt durch die Messung eines Röntgendiffraktogramms und bezogen auf eine zu 100% reine Probe.
  • Die Mahlung des Synthesegels vor der Behandlung unter hydrothermalen Bedingungen kann zu einer Dispersionserhöhung der eingesetzten Silizium-Quelle führen, z. B. einer gefällten Kieselsäure, was wiederum zu einer Beschleunigung des Kristallisationsvorganges führen kann. Überraschenderweise kann zudem die Bildung von Fremdphasen gehemmt oder unterdrückt werden. Auf diese Weise kann gegebenenfalls auch die zur Synthese notwendige Menge an Templat vermindert werden, was zu einer Reduzierung der Produktionskosten führt.
  • Weiterhin können nach einer bevorzugten Ausführungsform die kolloidalen Kieselsäuren auf Grund des sich an die Synthesegel-Herstellung anschließenden Mahlvorgangs teilweise oder vollständig durch die wesentlich kostengünstigeren gefällten Kieselsäuren ersetzt werden. Hierdurch kann eine weitere deutliche Reduzierung der Herstellungskosten derjenigen Zeolithe erreicht werden, bei deren Herstellung als Rohmaterial üblicherweise kolloidale Kieselsäure-Quellen verwendet werden. Weiterhin werden vorzugsweise keine Zeolith-Impfkristalle benötigt, insbesondere der Herstellung von Beta-Zeolith, wodurch die Produktionskosten ebenfalls gesenkt werden können.
  • Außerdem können bei der Herstellung des Synthesegels anstelle von hochreinen Ausgangsstoffen auch Mutterlaugen eingesetzt werden. Als Mutterlauge wird das erste Filtrat nach der Abtrennung des Feststoffes aus dem Synthesegel nach Beendigung der Zeolithsynthese bezeichnet. Dieses erste Filtrat enthält noch Rohstoffe, die während der Zeolithsynthese nicht umgesetzt wurden, sowie einen Anteil an Feststoff.
  • Eine Vermahlung erfolgt vorzugsweise derart, dass die durchschnittliche Teilchengröße d50 des Synthesegels nach Abschluss der Vermahlung um mindestens 10%, weiter vorzugsweise um mindestens 15%, bevorzugt um mindestens 20%, geringer als die durchschnittliche Teilchengröße d50 des Synthesegels bei Beginn der Vermahlung ist.
  • Die Vermahlung kann allgemein mit jeglicher geeigneten Mahlvorrichtung erfolgen. Bei der Vermahlung wird eine hohe Energiemenge (beispielsweise etwa 0,5 bis 10 kW/Liter, vorzugsweise etwa 1 bis 10 kW/Liter) über die mechanische Energie in das System eingebracht. Im Endstadium der Vermahlung kann nach einer bevorzugten Ausführungsform die Energiemenge verringert werden, beispielsweise auf 2 bis 5 kW/Liter.
  • Während der Vermahlung kann eine deutliche Abnahme der Viskosität erfolgen, wobei nach einer bevorzugten erfindungsgemäßen Ausführungsform die Viskosität des Synthesegels nach Abschluss der Vermahlung beispielsweise um mindestens 10%, bevorzugt um mindestens 15%, weiter bevorzugt um mindestens 20% geringer als die Viskosität des Synthesegels bei Beginn der Vermahlung ist.
  • Nach einer weiteren Ausführungsform werden die Ausgangsmaterialien, insbesondere die in der wässrigen Phase unlöslichen Ausgangsmaterialien, ebenfalls vor der Herstellung des Synthesegels einer intensiven Vermahlung unterzogen. Es ist weiter bevorzugt, dass vor der Herstellung des Synthesegels die Silizium-Quelle und/oder die Aluminium-Quelle, soweit diese nicht in Form einer Lösung vorliegen, einer Vermahlung unterzogen werden.
  • Bei der Erzeugung des Synthesegels durch Mischen und bis zum Beginn der Vermahlung, optional auch während eines Teils oder während der gesamten Dauer der Vermahlung wird das Synthesegel vorzugsweise unter einen Druck von nicht mehr als 2,4 bar, weiter vorzugsweise unter einen Druck von nicht mehr als 1,9 bar, noch bevorzugter unter einen Druck von nicht mehr als 1,5 bar, am bevorzugtesten unter einen Druck von nicht mehr als 1,1 bar gesetzt und/oder vorzugsweise auf eine Temperatur von nicht mehr als 128°C, weiter vorzugsweise auf nicht mehr als 110°C, noch bevorzugter auf nicht mehr als 100°C, am bevorzugtesten auf nicht mehr als 70°C, und ganz besonders bevorzugt auf nicht mehr als 35°C erhitzt.
  • Die Vermahlung wird vorzugsweise bei einer Temperatur zwischen etwa 0°C und 100°C, insbesondere zwischen etwa 0°C und 50°C durchgeführt, wobei das Synthesegel beispielsweise durch einen mit Mahlkugeln gefüllten Mahlraum gepumpt wird.
  • Nach einer bevorzugten Ausführungsform führt man die Mahlung in einer Mühle durch, die einen mit Mahlkugeln gefüllten Mahlraum umfasst, beispielsweise in einer Kugelmühle, in einer Ringspaltmühle, einer Perlmühle, einer Manton-Gaulin-Mühle oder in einer Mahlvorrichtungskombination, die eine oder mehrere dieser Mahlvorrichtungen umfasst. Vorzugsweise kann eine mehrstufige Mahlvorrichtung, beispielsweise eine mehrstufige Kugel- oder Ringspaltmühle, verwendet werden, bei der die Grobanteile aus der letzten Stufe wieder in die erste Stufe zurückgeleitet werden. Weiter vorzugsweise kann die eine oder können die mehreren Mahlvorrichtungen mindestens eine Mahlvorrichtung umfassen, ausgewählt aus der Gruppe bestehend aus Mühlen, die einen mit Mahlkugeln gefüllten Mahlraum umfassen, insbesondere ausgewählt aus Kugelmühlen, Ringspaltmühlen, Perlmühlen, Manton-Gaulin-Mühlen und Kombinationen hiervon. Eine Manton-Gaulin-Mühle ist beispielsweise in der US 4,664,842 detailliert erläutert, wobei die diesbezügliche Offenbarung der Schrift durch Bezugnahme in die vorliegende Anmeldung aufgenommen wird.
  • Alternative Mahlvorrichtungen kann ein Fachmann auf Basis seines allgemeinen Fachwissens auswählen. Wenn erwünscht, können auch mehrere unterschiedliche oder gleiche Mahlvorrichtungen nacheinander oder gleichzeitig verwendet werden.
  • Höhere Temperaturen, d. h. von mehr als 100°C sind gegebenenfalls ebenfalls möglich, wenn der Mahlprozess bei Überdruck durchgeführt wird. In diesem Fall muss auch der Zu- und Ablauf des Synthesegels in bzw. aus dem Mahlraum geregelt werden.
  • Der pH-Wert des Synthesegels wird entsprechend den Synthesebedingungen eingestellt und beträgt im Allgemeinen etwa 9 bis 14. Insbesondere kann die Vermahlung bei einem pH-Wert im Bereich von etwa 9 bis 14, bevorzugt von etwa 10 bis 13 durchgeführt werden. Eine Einstellung des pH-Werts kann gemäß einer dem Fachmann bekannten Vorgehensweise, beispielsweise durch Zusatz von Säuren, Basen und/oder Puffersalzgemischen erfolgen.
  • Das Synthesegel beziehungsweise das hieraus erhaltende Reaktionsgemisch kann in mehreren Durchläufen oder mit einer längeren Verweilzeit durch den Mahlraum gefördert werden. Das Synthesegel bzw. das hieraus gebildete Reaktionsgemisch kann zusätzlich Zeolith-Vorläufer als Kristallisationskeime enthalten und kann dann einer hydrothermalen Nachbehandlung unterzogen werden, wobei das erhaltene Produkt gegebenenfalls von dem Reaktionsgemisch abgetrennt, getrocknet und gegebenenfalls kalziniert wird. Insbesondere kann man den erhaltenen kristallinen Zeolith nach der Erzeugung unter hydrothermalen Bedingungen abtrennen, trocknen und gegebenenfalls kalzinieren.
  • Nach einer weiteren Ausführungsform erfolgt die Vermahlung zweimal oder häufiger, z. B. zweimal, dreimal oder viermal.
  • Durch die Vermahlung der Edukte beziehungsweise der entstandenen Kristallisationskeime werden der Ablauf der hydrothermalen Zeolithsynthese im Hinblick auf Synthesezeit, Flexibilität bei der Auswahl der Edukte, Ausbeute, Kristallisationsgrad und Phasenreinheit optimiert. Die Einführung des Mahlprozesses ermöglicht nach einer bevorzugten Ausführungsform die Zeolithsynthese mit geringem Templateinsatz.
  • Das Synthesegel beziehungsweise das hieraus erhaltende Reaktionsgemisch kann durch den Mahlraum gepumpt werden. Die nach dem Vermahlen erhaltende Suspension mit den Kristallisationskeimen wird dann nach einer Ausführungsform in herkömmlicher Weise unter hydrothermalen Bedingungen weiterverarbeitet und zum fertigen Produkt aufgearbeitet. Nach einer möglichen Ausführungsform werden ein Fällungsprozess und ein Alterungsprozess (Kristallisation der Katalysator-Vorstufe) durch den Einsatz von Kristallisationskeimen optimiert.
  • Bei dem erfindungsgemäßen Verfahren werden beispielsweise die Rohstoffe (eine Silizium-Quelle, eine Aluminium-Quelle und eine Alkaliquelle) zusammen mit einem Templat und voll entsalztem Wasser zu einer Suspension verrührt. Die Suspension wird durch eine oder mehrere Mahlvorrichtungen wie hierin angegeben geleitet.
  • Die mechanisch aktivierten Feinanteile wirken als Kristallisationskeime bei der anschließenden hydrothermalen Behandlung. Nach dieser Behandlung wird der kristalline Zeolith von der Suspension abgetrennt, getrocknet und gegebenenfalls kalziniert. Die Trocknung kann bei einer Temperatur von etwa 60 bis 200°C, vorzugsweise von etwa 80 bis 150°C, für z. B. 0,5 bis 10 Stunden, und die Kalzinierung, soweit vorgesehen, bei etwa 250 bis 750°C, vorzugsweise bei 300 bis 550°C, für z. B. 1 bis 10 Stunden durchführt werden.
  • Das so erhaltene Produkt kann als Katalysator oder Katalysatorträger verwendet werden.
  • Die vorliegende Erfindung lehrt insbesondere die Verwendung mindestens einer Mahlvorrichtung zur Behandlung eines Synthesegels, umfassend eine Silizium-Quelle, eine Aluminium-Quelle und gegebenenfalls mindestens ein Templat, in einem Schritt vor der Erzeugung von kristallinem Zeolith unter hydrothermalen Bedingungen. Diese Verwendung kann zur Verbesserung der Phasenreinheit und/oder der Kristallinität des erzeugten Zeoliths dienen.
  • Gemäß einem weiteren Aspekt stellt die vorliegende Erfindung einen Zeolith bereit, der nach dem erfindungsgemäßen Verfahren erhältlich ist. Insbesondere kann es sich bei dem Zeolith um einen MFI-Zeolith, insbesondere mit einem molaren Si:Al-Verhältnis im Bereich von 12 bis 800, vorzugsweise von 24 bis 500, besonders bevorzugt von 75 bis 250 bzw. einen Beta-Zeolith handeln.
  • Katalytisch aktive Formen der Zeolithe, beispielsweise des Beta-Zeoliths und des MFI-Zeoliths können zusätzlich Metalle der Gruppen IA, IIA, IIIA bis VIIIA, IB, IIB oder IIIB des Periodensystems sowie B, Al, Ga, Si, Ge oder P, vorzugsweise Li, Na, K, Mg, Ca, Ba, La, Ce, Ti, Zr, Nb, Ta, Mo, W, Mn, Re, Fe, Ru, Co, Rh, Ni, Pd, Pt, Cu, Zn, B, Al, Ga, Si, Ge oder P enthalten. Besonders bevorzugt enthalten die katalytisch aktiven Zeolithe eines oder mehrere der folgenden Pt, Pd, Cu, Fe, Rh, Ru, P und Ni. Beispielsweise kann der Austausch mit Hilfe von Ionenaustauschverfahren, Imprägnierung oder physikalischen Mischverfahren erfolgen. Weitere Verfahren zum Austausch der ursprünglichen Kationen sind dem Fachmann geläufig und werden daher hier nicht näher erläutert.
  • Je nach gewünschter Verwendung können die nach dem erfindungsgemäßen Verfahren erhaltenen Zeolithe mit weiteren Komponenten vermischt bzw. weiterverarbeitet werden. Bevorzugte Weiterverarbeitungen des Zeolithen betreffen wässrigen Ionenaustausch, Festkörperionenaustausch (wie beispielsweise in der EP 0 955 080 A beschrieben), Dealuminierung beispielsweise durch Behandlung mit verdünnter Mineralsäure oder einer verdünnten organischen Säure, sowie durch Hydrothermalbehandlung (siehe z. B. R. Szostak, Studies in Surface Science Catalysis, 137 (2001) 261–297), Herstellen von Formkörpern beliebiger Größe und Form nach herkömmlichen Verfahren wie Extrudieren, Tablettieren oder Sprühtrocken, gegebenenfalls unter Zuhilfenahme von Bindemittel, oder Beschichten von Formkörpern, insbesondere Waben, mit einer Suspension aus Zeolith und Bindemittel als sogenannter Washcoat.
  • Die erfindungsgemäßen synthetischen Zeolite sind insbesondere als Katalysatoren verwendbar, wobei beispielsweise die Zeolithe in der H-Form (mit oder ohne Belegung mit Unedlen Metallen und/oder Edelmetallen) als Katalysatoren für sauer katalysierte Reaktionen, Oxidationen, Reduktionen und Adsorptionen eingesetzt werden können.
  • Diese Reaktionen umfassen u. a. katalytisches Cracken (FCC Additiv) und hydrierendes Spalten von Kohlenwasserstoffen (mildes Hydrocracking, Dewaxing, Hydrocracken); Alkylierungen z. B. von Aromaten mit Olefinen, Alkoholen oder halogenhaltigen Paraffinen; Alkylierung von Aromaten; Alkylierung von Isoparaffinen mit Olefinen; Transalkylierung (von Aromaten); Disproportionierung (z. B. Toluol-Disproportionierung, usw.); Isomerisierung und Hydroisomerisierung (z. B. von Paraffinen, Olefinen, Aromaten, Xylol-Isomerisierung, Isodewaxing, usw.); Dimerisierung und Oligomerisierungen; Polymerisationen; Veretherungen und Veresterungen; Hydratisierung und Dehydratisierung; Adsorption; Kondensation; Oxidation; Acetalisierung; Dealkylierung und Zyklisierung; Alkylierung und Hydrodealkylierung (Ethylbenzol zu Benzol); Abgasreinigung; Säurekatalysierte Reaktionen sind beispielsweise auch in der DE-A-4 405 876 angegeben, wobei ein Katalysator auf der Basis eines teilchenförmigen säureaktivierten Schichtsilicats verwendet wird, dessen Teilchen durch ein Bindemittel miteinander verbunden sind.
  • Das erfindungsgemäße Verfahren ist nachstehend anhand von Beispielen in nicht einschränkender Weise erläutert.
  • Methoden
  • a) Viskositätserfassung
  • Die Viskosität der Pasten bzw. Suspensionen oder Dispersionen wurde nach DIN 53019/ISO 3219 gemessen. Dabei wurde ein Rheo-Stress 600 Rheometer der Firma Haake nach den Angaben des Herstellers verwendet.
  • b) Mittlerer Teilchendurchmesser
  • Der mittlere Durchmesser d50 ist so definiert, dass 50% des Gesamtteilchenvolumens aus Teilchen mit einem kleineren Durchmesser bestehen. Eine geeignete Methode zur Bestimmung der Teilchengrößenverteilung ist beispielsweise die Laserbeugung nach ISO 13320-1.
  • c) Glühverlust
  • Der Glühverlust wird folgendermaßen bestimmt: Saubere Porzellantiegel werden bei 600°C ausgeglüht und anschließend im Exsikkator aufbewahrt bis zur Nutzung. Die homogenisierte Probe wird in einen Porzellantiegel eingewogen und der Tiegel dann 3 h bei 1000°C in einem laborüblichen Muffelofen geglüht. Im Anschluss wird der Tiegel zum Abkühlen in einen Exsikkator gestellt. Durch den Vergleich der Einwaage und Auswaage lässt sich der Glühverlust berechnen. Der Glühverlust wird immer durch eine Doppelbestimmung ermittelt.
  • d) Chemische Zusammensetzung der Zeolithe
  • Zur Ermittlung der chemischen Zusammensetzung der Zeolithe werden Zeolithe verwendet, die zuvor bei 1000°C bis zur Gewichtskonstanz erhitzt und anschließend auf 20°C abgekühlt wurden. Zur Ermittlung des Gehalts an Si und Al kann eine herkömmliche Elementar-Analyse durchgeführt werden.
  • Der Wert nSi/nAl gibt das Verhältnis der Stoffmenge an Si in mol zur Stoffmenge an Al in mol an, wobei der jeweilige Zeolith zuvor einem Erhitzen bei 1000°C bis zur Gewichtskonstanz unterzogen wurde.
  • Falls von einer Norm (z. B. DIN-, ISO-, ASTM-Norm usw.) mehrere Fassungen vorliegen sollten, so wird in dieser Anmeldung auf die am 1.10.2008 aktuelle Norm Bezug genommen, wenn nicht explizit abweichend eine andere Fassung angegeben ist.
  • e) Phasen- und/oder Kristallisationsbestimmung von Zeolithen
  • Mit dieser Methode werden kristalline Feststoffe bzgl. Ihrer Gitterstruktur untersucht. Von der zu untersuchenden Probe und der entsprechenden Referenzprobe wird jeweils ein Röntgendiffraktogamm, in unmittelbarer zeitlicher Folge, aufgenommen. Der Vergleich der Reflexe des gesamten Spektrums, insbesondere anhand der Linienbreite des Reflexes bei ca. 22,4° 2 Theta gibt eine Aussage über die Phasenreinheit und/oder Kristallisationgrad der Probe. Zur Bestimmung des Röntgendiffraktogramm wurde ein D4 Endeavor Gerät der Firma Bruker verwendet.
  • Beispiele
  • a) Bereitstellen der Aluminium-Quelle
  • Als Aluminium-Quelle wurde Natriumaluminat verwendet, wobei eine wässrige Aluminium-Quelle durch Lösen von Natriumaluminat (und im Falle von Bsp. bzw. Vgl.-Bsp. 4 zusätzlich NaOH-Perlen) in Wasser hergestellt wurde. Um das Natriumaluminat vollständig zu lösen, wurde das Gemisch auf 60–100°C erhitzt. Nachdem sich der Feststoff gelöst hatte, wurde das gelbliche, leicht trübe Fluid auf Raumtemperatur abgekühlt und der Masseverlust durch Zugabe von demineralisiertem Wasser korrigiert.
  • b) Bereitstellen der Silizium-Quelle und des (mindestens einen) Templats
  • Bei der Herstellung der Silizium-Quelle wurde zunächst bei Raumtemperatur im Falle des Beta-Zeoliths (BEA) das Templat Tetraethylammoniumhydroxid (TEAOH, SACHEM) mit Wasser gemischt bzw. im Falle des MFI-Zeoliths das Templat Tetrapropylammoniumbromid (TPABr, SACHEM) in Wasser gelöst. Das verwendete Templat Tetraethylammoniumhydroxid wurde als Lösung mit 35 Gew.-% TEAOH eingesetzt. Das Tetrapropylammoniumbromid wurde als Feststoff mit > 99 Gew.-% TPABr eingesetzt. Anschließend wurde gefällte Kieselsäure (FK320, Degussa) eingeschlämmt.
  • c) Mischen der Aluminium- und Silizium-Quelle und Herstellung des Synthesegels
  • In diesem Syntheseschritt wurde die Aluminium-Quelle bei Raumtemperatur (20°C) unter Mischen stetig zu der Silizium-Quelle in einem Reaktionsbehälter gegeben. Die erhaltene Suspension wurde weitere 140 Minuten (bei der Herstellung von Beta-Zeolith) bzw. 30 Minuten (bei der Herstellung von MFI-Zeolith) bei Raumtemperatur (20°C) vermischt.
  • Bis zu diesem Arbeitsschritt verliefen alle 10 Syntheseversuche identisch. Die Syntheseansätze gemäß den Beispielen 1 bis 4 wurde im Gegensatz zu den Vergleichsbeispielen 1 bis 4 einem weiteren Produktionsschritt, dem Vermahlen in einer Rührwerkskugelmühle unterworfen.
  • d) Vermahlen in der Rührwerkskugelmühle
  • Dazu wurden die entsprechenden Synthesegele mit einer Schlauchpumpe in den Mahlraum der Kugelmühle (Typ Fryma M32) gefördert. Nachdem der Mahlraum gefüllt war, wurde der Rotor der Mühle gestartet und das komplette Synthesegel durch den Mahlraum bei laufendem Rotor gepumpt. Das gemahlene Produkt wurde in einem Behälter aufgefangen und einem zweiten Mahldurchgang unterworfen. Die Pumprate betrug 3 Liter/Minute (BEA und MFI).
  • Hierbei war zu beobachten, dass sich die Viskosität des Synthesegels bei Beta-Zeolith drastisch veränderte. Im Fall von Beta-Zeolith wurde mit einer mittelviskosen Suspension begonnen und man erhielt nach dem Mahlen eine Suspension mit niedrigerer Viskosität.
  • e) Befüllen des Autoklaven und Kristallisation
  • Zur Synthese der Zeolithe wurde ein 10-Liter-Autoklav mit jeweils 9 kg der Synthesegele aufgefüllt. Anschließend wurde der Autoklav geschlossen, das Rührwerk gestartet und mit der Aufheizung der Synthesegele begonnen.
  • f) Kristallisationsbedingungen
  • Die Synthesen wurden im Autoklaven unter dynamischen Bedingungen bei 150°C durchgeführt. Die Kristallisationszeiten betrugen je nach Ansatz zwischen 1 h und 160 h.
    BEA MFI
    Aufheizdauer (h): 10 12
    Rührgeschwindigkeit (UpM): 73 73
    Synthesedruck (bar): > 10 3,7–4,5
    Kristallisationstemperatur (°C): 150 150
    Kristallisationsdauer (h): 10–160 1–10
    Rührertyp: Anker Anker
  • g) Aufarbeitung der Syntheseprodukte
  • Alle Syntheseprodukte wurden durch wiederholtes Waschen mit demineralisiertem Wasser auf dem Büchner-Trichter, Resuspendieren (Leitfähigkeit < 90 μS/cm) und Trocknen bei 120°C über 16 h aufgearbeitet.
  • Ergebnisse
  • Tabelle I gibt eine Übersicht über die verschiedenen Templat-Gehalte der gemahlenen bzw. ungemahlenen Synthesegele und die erhaltenen Produkte.
  • Molare Zusammensetzung der verwendeten Synthesegele:
  • BEA:
    • (0,08–0,18) TEAOH: 0,04 Na2O: 0,04 Al2O3: 1 SiO2: 12 H2O
  • MFI:
    • 0,055 TPABr: 0,0675 Na2O: 0,0014 Al2O3: 1 SiO2: 24,5 H2O
  • Tabelle I Templat-Gehalt der Synthesegele und Produkte
    Molarer*) Templat-Gehalt gemahlenes Synthesegel Produkt
    Bsp. 1 0,08 ja BEA
    Vgl.-Bsp. 1 0,08 nein BEA**)
    Bsp. 2 0,12 ja BEA
    Vgl.-Bsp. 2 0,12 nein BEA
    Bsp. 3 0,18 ja BEA
    Vgl.-Bsp. 3 0,18 nein BEA
    Bsp. 4 0,055 ja MFI
    Vgl.-Bsp. 4 0,055 nein MFI
    *) Der molare Templatgehalt, wie in Tabelle I angegeben, ist auf den molaren Si-Gehalt bezogen angegeben. Ein molarer Templatgehalt von 0,18 besagt beispielsweise, dass das Verhältnis der Menge an Templat in mol zu der Menge an Si in mol 0,18:1 = 0,18 d. h. 18 Mol-% beträgt.
    **) Beta-Zeolith mit geringen Verunreinigungen an MFI-Zeolith, bestimmt durch die Messung eines Röntgendiffraktogramms.
  • Die Synthesen mit gemahlenen Synthesegelen führten zu phasenreinen Zeolithen. Die Zeolithe aus den ungemahlenen Synthesegelen enthielten in einem Fall Verunreinigungen. Die Synthesen nach den Beispielen 1 bis 4 bzw. Vergleichsbeispielen 2 bis 4 führten zu dem jeweils gewünschten Synthese-Produkten BEA und MFI. Bei Beta-Zeolith ergab die Verwendung von nicht vermahlenem Synthesegel in einem Fall eine geringe Verunreinigung an MFI-Zeolith (Vgl.-Bsp. 1).
  • 1 zeigt eine deutliche Verringerung der Kristallisationszeit bei Verwendung von gemahlenem Synthesegel (Beispiel 4) im Vergleich zu ungemahlenem Synthesegel (Vergleichsbeispiel 4) von 1 h verglichen mit 9 h bei der Synthese von MFI-Zeolith. Der Verlauf der Kristallisation wurde dabei durch Erfassung der Peak-Intensität einer Synthesegel- bzw. Reaktionsgemisch-Probe mittels Messung des Röntgendiffraktogramms bestimmt. Das Produkt von Beispiel 4 (MFI-Zeolith) zeigt weiterhin eine deutliche Verringerung der Kristallitgröße der Primärkristallite. Zwar bleibt die Form der Primärkristallite erhalten, jedoch verringert sich die Kristallitlänge von etwa 3,8 μm auf etwa 1,2 μm, d. h. auf etwa 32%. Dieser Effekt kann darauf zurückgeführt werden, dass durch die Vermahlung des Synthesegels eine größere Anzahl an Keimkristallen gebildet wird, auf die der eigentliche Zeolith in der Kristallwachstumsphase aufwächst.
  • Die chemische Zusammensetzung der erhaltenen Produkte ist in Tabelle II angegeben. Tabelle II Chemische Zusammensetzung der Produkte
    Probe GVa) 1000°C Sib) [Gew.-%] Alb) [Gew.-%] nSi/nAl Nab) Feb) [ppm] Cb)
    Bsp. 1 18,9 44,02 3,45 12,25 2040 ppm 410 12,4 Gew.-%
    Vgl.-Bsp. 1 18,4 43,14 3,48 11,91 1920 ppm 310 12,1 Gew.-%
    Bsp. 2 20,0 43,13 3,26 12,70 490 ppm 440 13,8 Gew.-%
    Vgl.-Bsp. 2 29,8 45,73 3,38 13,01 610 ppm 260 14,0 Gew.-%
    Bsp. 3 19,9 44,57 3,45 12,43 800 ppm 570 13,7 Gew.-%
    Vgl.-Bsp. 3 21,3 43,71 3,43 12,24 560 ppm 250 14,4 Gew.-%
    Bsp. 4 14,4 47,43 0,25 185,7 0,84 Gew.-% 690 9,79 Gew.-%
    Vgl.-Bsp. 4 14,2 47,09 0,20 228,3 0,84 Gew.-% 260 9,50 Gew.-%
    a) Gewichtsverlust bei 1000°C
    b) basierend auf Gewichtsverlust bei 1000°C.
  • Anhand der erhaltenen Ergebnisse wird deutlich, dass sowohl das Vermahlen als auch der Templat-Gehalt im Synthesegel einen deutlichen Einfluss auf die Kristallisationszeiten der Zeolithe besitzen. Durch das Vermahlen der Synthesegele, sowie durch einen höheren Templat-Gehalt kann eine Verkürzung der Kristallisationsdauer erzielt werden. Durch das Vermahlen der Synthesegele kann, verglichen zur direkten Synthese ohne Mahlprozess, eine beispielsweise um 5 bis 80% geringere, häufig eine um mindestens 50% geringere Kristallisationszeit erreicht werden.
  • 2 zeigt einen Vergleich der Kristallisationszeiten bei Synthesen mit vermahlenen (Beispiel 1) und unvermahlenen (Vergleichsbeispiel 1) Synthesegelen (molarer Templat-Gehalt bezogen auf den molaren Si-Gehalt = 0,08) und 3 zeigt einen Vergleich der Kristallisationszeiten bei Synthesen mit vermahlenen (Beispiel 2) und unvermahlenen (Vergleichsbeispiel 2) Synthesegelen (molarer Templat-Gehalt bezogen auf den molaren Si-Gehalt = 0,12).
  • Der Verlauf der Kristallisation wurde dabei durch Erfassung der Peak-Anzahl einer Synthesegel-Probe mittels Messung des Röntgendiffraktogramms bestimmt.
  • Bei Verwendung einer gefällten Kieselsäure (FK320) lassen sich fast genauso gute Ergebnisse erzielen wie bei Verwendung einer kolloidalen Kieselsäure (LUDOX® von Dupont). Aufgrund des Mahlvorganges können also Zeolithe mit gefällten anstatt kolloidalen Kieselsäuren verwendet werden, was zu bedeutenden Kostensenkungen führt, da gefällte Kieselsäuren billiger sind als kolloidale Kieselsäuren.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 4664842 [0027]
    • EP 0955080 A [0041]
    • DE 4405876 A [0043]
  • Zitierte Nicht-Patentliteratur
    • R. Szostak, Studies in Surface Science Catalysis, 137 (2001) 261–297 [0041]
    • DIN 53019 [0045]
    • ISO 3219 [0045]
    • ISO 13320-1 [0046]

Claims (14)

  1. Verfahren zur Synthese von Zeolithen, umfassend die folgenden Schritte: a) Bereitstellen einer Silizium-Quelle; b) Bereitstellen einer Aluminium-Quelle; c) gegebenenfalls Bereitstellen eines oder mehrerer Template; d) Mischen der Silizium-Quelle, der Aluminium-Quelle und des optionalen mindestens einen Templats zur Erzeugung eines Synthesegels; e) Vermahlung des Synthesegels; f) Behandlung des vermahlenen Synthesegels unter hydrothermalen Bedingungen zur Erzeugung von kristallinem Zeolith.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Silizium-Quelle, die Aluminium-Quelle, das optionale mindestens eine Templat und/oder das Synthesegel in wässrigem Medium vorzugsweise Wasser vorliegen.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Silizium-Quelle gefällte Kieselsäure umfasst oder aus dieser besteht.
  4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass man die Silizium-Quelle und/oder die Aluminium-Quelle einer Vermahlung unterzieht.
  5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Vermahlung mit mindestens einer Mahlvorrichtung durchgeführt wird, wobei die mindestens eine Mahlvorrichtung vorzugsweise ausgewählt ist, aus der Gruppe bestehend aus einer Mühle, die einen mit Mahlkugeln gefüllten Mahlraum umfasst, insbesondere einer Kugelmühle, einer Ringspaltmühle, einer Perlmühle, und einer Manton-Gaulin-Mühle; und Kombinationen hiervon.
  6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass man die Vermahlung bei einem pH-Wert im Bereich von etwa 9 bis 14 durchführt.
  7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass man das Templat in einer Menge von 1 bis 50 Mol-%, insbesondere von 10 bis 30 Mol-%, noch bevorzugter von 4 bis 20 Mol-%, bezogen auf die molare Menge an Si der Silizium-Quelle, einsetzt.
  8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass man den erhaltenen kristallinen Zeolith nach der Erzeugung unter hydrothermalen Bedingungen abtrennt, trocknet und gegebenenfalls kalziniert.
  9. Verfahren nach einem Anspruch 8, dadurch gekennzeichnet, dass man die Trocknung bei einer Temperatur von etwa 60 bis 200°C, vorzugsweise bei einer Temperatur von 80 bis 150°C und die optionale Kalzinierung bei 250 bis 750°C, vorzugsweise bei 300 bis 550°C durchführt.
  10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die durchschnittliche Teilchengröße d50 des Synthesegels nach Abschluss der Vermahlung um mindestens 10%, vorzugsweise um mindestens 15%, bevorzugt um mindestens 20%, geringer als die durchschnittliche Teilchengröße d50 des Synthesegels vor der Vermahlung ist.
  11. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Synthesegel ein molares Verhältnis von Al zu Si im Bereich von 0,00125:1 bis 0,1:1 und/oder ein molares Verhältnis von Na zu Si im Bereich von 0,001:1 bis 0,2:1, vorzugsweise ein molares Verhältnis von Al zu Si im Bereich von 0,00125:1 bis 0,1:1 und ein molares Verhältnis von Na zu Si im Bereich von 0,001:1 bis 0,2:1 aufweist.
  12. Verwendung der nach dem Verfahren nach einem der Ansprüche 1 bis 11 erhältlichen Zeolithe als Katalysatoren oder Katalysatorträger, insbesondere für sauer katalysierte Reaktionen, Oxidationen, Reduktionen und Adsorptionen, besonders bevorzugt für katalytisches Spalten von Kohlenwasserstoffen; hydrierendes katalytisches Spalten von Kohlenwasserstoffen; Alkylierung von Aromaten mit Olefinen, Alkoholen und/oder halogenhaltigen Paraffinen; Alkylierung von Aromaten; Alkylierung von Isoparaffinen mit Olefinen; Transalkylierung, insbesondere von Aromaten; hydrierendes isomerisierendes Entparaffinisieren von höheren Kohlenwasserstoffen; Disproportionierung; Isomerisierung; Hydroisomerisierung; Dimerisierung; Oligomerisierung; Polymerisation; Veretherung; Veresterung; Hydratisierung; Dehydratisierung; Adsorption; Kondensation; Oxidation; Acetalisierung; Dealkylierung und/oder Zyklisierung.
  13. Verwendung mindestens einer Mahlvorrichtung zur Behandlung eines Synthesegels, umfassend eine Silizium-Quelle, eine Aluminium-Quelle und gegebenenfalls mindestens ein Templat, wobei die Mahlvorrichtung vorzugsweise ausgewählt ist aus der Gruppe bestehend aus einer Mühle, die einen mit Mahlkugeln gefüllten Mahlraum umfasst, insbesondere einer Kugelmühle, einer Ringspaltmühle, einer Perlmühle, und einer Manton-Gaulin-Mühle, und Kombinationen hiervon.
  14. Zeolith, erhältlich gemäß einem Verfahren nach einem der Ansprüche 1 bis 11, insbesondere MFI-Zeolith und BETA-Zeolith.
DE102010053054A 2010-12-01 2010-12-01 Mechanochemische Herstellung von Zeolithen Withdrawn DE102010053054A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102010053054A DE102010053054A1 (de) 2010-12-01 2010-12-01 Mechanochemische Herstellung von Zeolithen
PCT/EP2011/071099 WO2012072527A2 (de) 2010-12-01 2011-11-28 Mechanochemische herstellung von zeolithen
US13/988,598 US20130266507A1 (en) 2010-12-01 2011-11-28 Mechanochemical production of zeolites
JP2013541310A JP2014501683A (ja) 2010-12-01 2011-11-28 ゼオライトのメカノケミカル製造
EP11788450.2A EP2646367A2 (de) 2010-12-01 2011-11-28 Mechanochemische herstellung von zeolithen
CN2011800573934A CN103269978A (zh) 2010-12-01 2011-11-28 沸石的机械化学生产
ZA2013/03567A ZA201303567B (en) 2010-12-01 2013-05-16 Mechanochemical production of zeolites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010053054A DE102010053054A1 (de) 2010-12-01 2010-12-01 Mechanochemische Herstellung von Zeolithen

Publications (1)

Publication Number Publication Date
DE102010053054A1 true DE102010053054A1 (de) 2012-06-06

Family

ID=45047780

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010053054A Withdrawn DE102010053054A1 (de) 2010-12-01 2010-12-01 Mechanochemische Herstellung von Zeolithen

Country Status (7)

Country Link
US (1) US20130266507A1 (de)
EP (1) EP2646367A2 (de)
JP (1) JP2014501683A (de)
CN (1) CN103269978A (de)
DE (1) DE102010053054A1 (de)
WO (1) WO2012072527A2 (de)
ZA (1) ZA201303567B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110893491A (zh) * 2019-12-13 2020-03-20 谢海春 一种铝模板铣槽固定装置
US20210179437A1 (en) * 2018-07-27 2021-06-17 Sk Innovation Co., Ltd. Mordenite Zeolite Having Excellent Particle Uniformity and Method for Preparing Same
US11932545B2 (en) 2018-09-21 2024-03-19 Sk Innovation Co., Ltd. Method for preparing mordenite zeolite having controllable particle size

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102951656B (zh) * 2012-10-16 2014-06-04 大连瑞克科技有限公司 一种颗粒均匀zsm-5分子筛的合成方法
JP6173196B2 (ja) * 2012-12-21 2017-08-02 日揮触媒化成株式会社 ナノサイズゼオライトの合成方法
CN104860332A (zh) * 2014-02-21 2015-08-26 中国石油化工股份有限公司 一种制备NaY分子筛的方法
CN109665541B (zh) * 2017-10-17 2022-04-01 中国石油化工股份有限公司 低硅铝比zsm-12型沸石分子筛的合成方法
CN108408737A (zh) * 2018-05-29 2018-08-17 王子韩 一种快速制备y型分子筛的方法
WO2020108482A1 (en) * 2018-11-27 2020-06-04 Basf Se Mechanochemical activation in solvent-free zeolite synthesis
WO2020109290A1 (en) 2018-11-27 2020-06-04 Basf Se Solvent-free mechanochemical activation in zeolite synthesis
WO2020109292A1 (en) 2018-11-27 2020-06-04 Basf Se Mechanochemical activation in zeolite synthesis
JP2022550674A (ja) * 2019-09-30 2022-12-05 ダウ グローバル テクノロジーズ エルエルシー エーテル化の方法
CN111001265B (zh) * 2019-12-26 2021-11-12 维珂瑞(北京)环境科技有限公司 高质量沸石转轮生产工艺及其生产设备
CN116102032A (zh) * 2023-02-06 2023-05-12 淄博恒亿化工科技有限公司 一种zsm-5分子筛的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664842A (en) 1983-12-13 1987-05-12 Southern Clay Products, Inc. Process for manufacturing organoclays having enhanced gelling properties
DE4405876A1 (de) 1994-02-23 1995-10-05 Sued Chemie Ag Katalysator- bzw. Katalysatorträger-Formkörper
EP0187522B2 (de) * 1984-12-31 1999-07-07 Exxon Research And Engineering Company Herstellung von beta-Zeolith
EP0955080A1 (de) 1998-05-08 1999-11-10 AlSi-PENTA Zeolithe GmbH Verfahren zur Herstellung eines Katalysators für die Reinigung von Abgasen
US20020090337A1 (en) * 1999-06-17 2002-07-11 Avelino Corma Canos Synthesis of zeolites
US7119245B1 (en) * 2001-10-25 2006-10-10 Sandia Corporation Synthesis of an un-supported, high-flow ZSM-22 zeolite membrane
CN101096274A (zh) * 2006-06-29 2008-01-02 中国石油化工股份有限公司 一种富铝beta沸石的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA933879B (en) * 1992-06-05 1993-12-27 Exxon Chemical Patents Inc ZSM-5-zeolite
DE19632133A1 (de) * 1996-08-09 1998-04-09 Uwe Vieregge Teleskoprohr für insbesondere Sprinkleranlagen
JP3986186B2 (ja) * 1997-11-07 2007-10-03 日本碍子株式会社 高耐熱性β−ゼオライト及びそれを用いた自動車排ガス浄化用吸着材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664842A (en) 1983-12-13 1987-05-12 Southern Clay Products, Inc. Process for manufacturing organoclays having enhanced gelling properties
EP0187522B2 (de) * 1984-12-31 1999-07-07 Exxon Research And Engineering Company Herstellung von beta-Zeolith
DE4405876A1 (de) 1994-02-23 1995-10-05 Sued Chemie Ag Katalysator- bzw. Katalysatorträger-Formkörper
EP0955080A1 (de) 1998-05-08 1999-11-10 AlSi-PENTA Zeolithe GmbH Verfahren zur Herstellung eines Katalysators für die Reinigung von Abgasen
US20020090337A1 (en) * 1999-06-17 2002-07-11 Avelino Corma Canos Synthesis of zeolites
US7119245B1 (en) * 2001-10-25 2006-10-10 Sandia Corporation Synthesis of an un-supported, high-flow ZSM-22 zeolite membrane
CN101096274A (zh) * 2006-06-29 2008-01-02 中国石油化工股份有限公司 一种富铝beta沸石的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DIN 53019
ISO 13320-1
ISO 3219
R. Szostak, Studies in Surface Science Catalysis, 137 (2001) 261-297

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210179437A1 (en) * 2018-07-27 2021-06-17 Sk Innovation Co., Ltd. Mordenite Zeolite Having Excellent Particle Uniformity and Method for Preparing Same
US11932545B2 (en) 2018-09-21 2024-03-19 Sk Innovation Co., Ltd. Method for preparing mordenite zeolite having controllable particle size
CN110893491A (zh) * 2019-12-13 2020-03-20 谢海春 一种铝模板铣槽固定装置
CN110893491B (zh) * 2019-12-13 2021-07-27 湖南中镆科技有限公司 一种铝模板铣槽固定装置

Also Published As

Publication number Publication date
ZA201303567B (en) 2014-07-30
JP2014501683A (ja) 2014-01-23
WO2012072527A2 (de) 2012-06-07
CN103269978A (zh) 2013-08-28
WO2012072527A3 (de) 2012-10-11
US20130266507A1 (en) 2013-10-10
EP2646367A2 (de) 2013-10-09

Similar Documents

Publication Publication Date Title
DE102010053054A1 (de) Mechanochemische Herstellung von Zeolithen
DE60006765T2 (de) Verfahren zur Herstellung von Zeolith des MTT-Typs mittels spezifischen Vorläufern des Strukturbildners
DE60006771T2 (de) Verfahren zur Herstellung eines Zeoliths des EUO-Typs unter Verwendung von zeolithischen Keimen
DE2643928C2 (de)
DE69906545T2 (de) Kristalline molekularsiebe
DE60309836T2 (de) Kristalline zeolithische aluminosilikat-zusammensetzung: uzm-9
DE69819989T2 (de) Zusammensetzung, die Molekularsiebe vom Pentasil-Typ enthält, sowie ihre Herstellung und Verwendung
DE60206914T2 (de) Synthetisches poröses kristallines material itq-3 und synthese sowie verwendung davon
DE60006058T2 (de) Mikro- und Mesoporöser Silikoaluminatfestoff, Verfahren zu dessen Herstellung, Verwendung als Katalysator und bei der Umwandlung von Kohlenwasserstoffverbindungen
DE4310792C2 (de) Zeolithisches Material, dessen Verwendung sowie Verfahren zum Herstellen eines solchen zeolithhaltigen Materials
DE2119723C2 (de)
AT401620B (de) Synthetisches poröses kristallines material und seine synthese
DE69911896T2 (de) Stannosilikat Molekular-Siebe mit Beta-typ Struktur
EP1230157B1 (de) Verfahren zur herstellung von synthetischen zeolithen mit mfi-struktur
DE69916582T2 (de) Synthese von zsm-48
DE60310898T2 (de) Chabazit mit hohem gehalt an siliciumdioxid, dessen synthese und verwendung zur umwandlung von sauerstoffverbindungen zu olefinen
EP1809576B1 (de) Verfahren zur synthese von zeolith beta mit diethylentriamin
DE60006964T2 (de) Synthetisches poröses kristallines mcm-68, synthese und verwendung desselben
DE2742971A1 (de) Kristalline zeolithe, verfahren zu deren herstellung und deren verwendung
DE60013778T2 (de) Syntheseverfahren von zsm-5-zeolithen
DE3119160A1 (de) Caesiumhaltiger zeolith und verfahren zu dessen herstellung
EP3536666A1 (de) Verfahren zur herstellung eines silikates
EP1424128B1 (de) Verwendung eines Katalysators auf der Basis von kristallinem Alumosilicat
JP2022524679A (ja) ナノサイズのメソポーラスベータ型ゼオライトの合成方法およびその使用
DE1792631C3 (de) Verfahren zur Herstellung von Mordenit durch Erhitzen amorpher Silicium-Aluminiumoxid-Gemische

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: SUED-CHEMIE IP GMBH & CO. KG, DE

Free format text: FORMER OWNER: SUED-CHEMIE AG, 80333 MUENCHEN, DE

Effective date: 20120628

R082 Change of representative

Representative=s name: KUBA, STEFAN, DE

Effective date: 20120628

Representative=s name: ABITZ & PARTNER, DE

Effective date: 20120628

Representative=s name: KUBA, STEFAN, LL.M, DE

Effective date: 20120628

Representative=s name: KUBA, STEFAN, LL.M., DE

Effective date: 20120628

R082 Change of representative

Representative=s name: KUBA, STEFAN, DE

Representative=s name: KUBA, STEFAN, LL.M, DE

Representative=s name: KUBA, STEFAN, LL.M., DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee