CN1643311A - 空调装置的热源单元及空调装置 - Google Patents

空调装置的热源单元及空调装置 Download PDF

Info

Publication number
CN1643311A
CN1643311A CNA038064898A CN03806489A CN1643311A CN 1643311 A CN1643311 A CN 1643311A CN A038064898 A CNA038064898 A CN A038064898A CN 03806489 A CN03806489 A CN 03806489A CN 1643311 A CN1643311 A CN 1643311A
Authority
CN
China
Prior art keywords
refrigerant
refrigerant loop
heat source
heat exchanger
pipe arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038064898A
Other languages
English (en)
Other versions
CN1285866C (zh
Inventor
松冈慎也
佐田真理
井上博之
渕上博
梅田淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of CN1643311A publication Critical patent/CN1643311A/zh
Application granted granted Critical
Publication of CN1285866C publication Critical patent/CN1285866C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0215Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being used parallel to the outdoor heat exchanger during heating operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02323Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02334Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调装置的热源单元,空调装置(1)主要具备:1台热源单元(2)、数个利用单元(3)及与利用单元(3)对应设置的连接单元(4)。热源单元(2)以水为热源,主要具备:压缩机构(21)、主热交换器(22)、第1切换机构(V1)、主制冷剂开闭机构(V2)、与主热交换器(22)并联连接的辅助热交换器(23)、第2切换机构(V3)、辅助制冷剂开闭机构(V4)及受液器(24)。辅助热交换器(23)可用第2切换机构(V3)切换成蒸发器或冷凝器。本发明的热源单元在冷暖切换运行用空调装置及冷暖同时运行用空调装置中都可使用。

Description

空调装置的热源单元及空调装置
技术领域
本发明涉及空调装置的热源单元及空调装置,尤其涉及在数个利用侧制冷剂回路中具备通过连接用制冷剂回路连接的热源侧制冷剂回路的空调装置的热源单元及空调装置。
背景技术
以往有的空调装置具备数台利用单元及热源单元,可进行冷暖气切换运行或冷暖气同时运行。利用单元具备利用侧制冷剂回路,包括利用侧热交换器及利用侧膨胀机构。热源单元具备热源侧制冷剂回路,包括对制冷剂进行压缩的压缩机构、主热交换器、用于使主热交换器作为蒸发器及冷凝器发挥作用的第1切换机构、及可对主热交换器的制冷剂流量进行调节的由电动膨胀阀构成的主制冷剂开闭机构等。利用侧制冷剂回路与热源侧制冷剂回路通过连接用制冷剂回路而连接。这种空调装置根据数个利用单元的负荷对热源单元的负荷进行调节,以满足冷冻循环整体的热收支平衡。例如,在暖气运行或冷暖同时运行时,由于主热交换器作为蒸发器工作,通过主制冷剂开闭机构的开度调节来增减主热交换器中制冷剂的蒸发量,使利用单元的负荷与热源单元的负荷取得平衡。此时,主热交换器的蒸发量的增减通过将热源单元的压缩机构排出侧的高压制冷剂压力保持稳、同时对主制冷剂开闭机构进行开度调节而实现的。即,当主热交换器中制冷剂的蒸发量比与利用单元的负荷对应的制冷剂的蒸发量大时,由于热源单元的压缩机构的排出侧的高压制冷剂压力具有增高的倾向,因而将主制冷剂开闭机构的开度调小以减少制冷剂的蒸发量。相反,当主热交换器中制冷剂的蒸发量比与利用单元的负荷对应的制冷剂的蒸发量小时,由于热源单元的压缩机构的排出侧的高压制冷剂压力有降低的倾向,因而将主制冷剂开闭机构的开度调大以增加制冷剂的蒸发量。
还有的空调装置是在热源单元内具备与主热交换器并设、作为冷凝器发挥作用的辅助热交换器。该空调装置通过使辅助热交换器工作·停止来调节热源单元整体的热收支,使利用单元的负荷与热源单元的负荷达到平衡。即,当主热交换器中制冷剂的蒸发量比与利用单元的负荷对应的制冷剂的蒸发量大时,由于热源单元的压缩机构的排出侧的高压制冷剂压力具有增高的倾向,因而通过使辅助热交换器工作以增加冷凝量且与主热交换器的制冷剂的蒸发量相抵消而对热源单元整体的热收支进行调节。相反,当主热交换器中制冷剂的蒸发量比与利用单元的负荷对应的制冷剂的蒸发量小时,由于热源单元的压缩机构的排出侧的高压制冷剂压力有降低的倾向,因而使辅助热交换器停止工作以减少冷凝量,从而对热源单元整体的热收支进行调节。
还有的空调装置兼备上述的主制冷剂开闭机构与辅助热交换器双方。该种空调装置基本上是通过使辅助热交换器工作·停止而对热源单元整体的热收支进行调节,使与利用单元的负荷取得平衡,同时通过主制冷剂开闭机构的开度调节进行微调。
在用热源单元的主制冷剂开闭机构及辅助热交换器对热收支进行调节、以取得利用单元的负荷与热源单元的负荷间的平衡的空调装置上,针对主热交换器的蒸发容量而决定的辅助热交换器的冷凝容量的大小限定了热源单元针对利用单元的负荷变动而进行调节的范围。例如,如果增大辅助热交换器的容量,有时会使由辅助热交换器的工作·停止引起的高压侧制冷剂压力的变动增大。反之,若减小辅助热交换器的容量,则使必须用主制冷剂开闭机构进行调节的范围变大,因此,尤其是在利用单元的暖气负荷小的场合,有时无法将主热交换器的蒸发量充分调小。
如上所述,以往的可进行切换运行或冷暖气同时运行的空调装置,难以保持控制性能而使利用单元的暖气负荷与热源单元的蒸发能力间的热收支达到最佳化。
另外,以往的冷暖气切换运行用空调装置及冷暖气同时运行用空调装置,其利用单元的机种是通用的,而热源单元却为不同的机种,因而,引起制造成本的增加。
发明内容
本发明的目的在于,提供一种在冷暖气切换运行用空调装置及冷暖气同时运行用空调装置中都能使用的热源单元。
技术方案1中的空调装置的热源单元,具备通过连接用制冷剂回路与数个利用侧制冷剂回路连接的热源侧制冷剂回路,具有压缩机构、主热交换器、辅助热交换器、制冷剂液体配管、第1制冷剂气体配管、第2制冷剂气体配管、主制冷剂开闭机构、辅助制冷剂开闭机构、第1切换机构及第2切换机构。压缩机构用于压缩制冷剂气体。主热交换器作为制冷剂的蒸发器及冷凝器发挥作用。辅助热交换器与主热交换器并联连接,作为制冷剂的蒸发器及冷凝器发挥作用。制冷剂液体配管与连接用制冷剂回路连接。第1制冷剂气体配管与连接用制冷剂回路连接。第2制冷剂气体配管将来自连接用制冷剂回路的制冷剂气体送往压缩机构的吸入侧。主制冷剂开闭机构连接于制冷剂液体配管与主热交换器之间。辅助制冷剂开闭机构连接于制冷剂液体配管与辅助热交换器之间。第1切换机构可切换成将主热交换器的制冷剂气体侧与压缩机构的排出侧连接并将压缩机构的吸入侧与第1制冷剂气体配管连接以使低压制冷剂气体吸入压缩机构的状态、以及将主热交换器的制冷剂气体侧与压缩机构的吸入侧连接并将压缩机构的排出侧与第1制冷剂气体配管连接以使高压制冷剂气体从压缩机构排出的状态。第2切换机构可切换成将辅助热交换器的制冷剂气体侧与压缩机构的排出侧连接的状态、以及将辅助热交换器的制冷剂气体侧与压缩机构的吸入侧连接的状态。第1制冷剂气体配管可使来自连接用制冷剂回路的制冷剂气体流向第1切换机构,并可使来自第1切换机构的制冷剂气体流向连接用制冷剂回路。
以往的冷暖同时运行机用的热源单元具备与主热交换器并联连接、仅作为冷凝器发挥作用的辅助热交换器。该热源单元有时对数个利用单元主要进行冷气运行,且当仅有一部分利用单元进行低负荷暖气运行时,使主热交换器作为冷凝器工作,以一边从制冷剂液体配管供给制冷剂液体,一边向第1制冷剂气体配管供给由压缩机构排出的制冷剂气体,以对热源单元的负荷进行调节。为了使这种运行成为可能,以往的热源单元设有可用电磁阀开闭的送出配管,该电磁阀用于将压缩机构排出的制冷剂气体的一部分送往第1制冷剂气体配管。在第1制冷剂气体配管上,设有只能使制冷剂气体从第1切换机构侧流向连接用制冷剂回路侧的止逆阀。使用该送出配管时,压缩机构排出侧的制冷剂气体不会从第1制冷剂气体配管通过第1切换机构而流向压缩机构的吸入侧。由于不能将第1制冷剂气体配管作为冷暖切换运行机用的制冷剂气体配管使用,所以不能将以往的冷暖同时运行机用的热源单元作为冷暖切换运行机用的热源单元使用。
而本发明的空调装置的热源单元是将以往仅用作冷凝器的辅助热交换器作为蒸发器使用。具体地说,是设置第2切换机构,可对辅助热交换器进行切换,使之作为蒸发器或冷凝器发挥功能。因此,该热源单元不必如以往的冷暖同时运行机用的热源单元那样在使主热交换器作为冷凝器工作的同时将压缩机构排出的制冷剂气体向第1制冷剂气体配管供给,而可在使主热交换器作为冷凝器工作的同时使辅助热交换器作为蒸发器工作,以对热源单元的负荷进行调节。因此,该热源单元不再需要以往的热源单元中所设的送出配管及第1制冷剂气体配管的止逆阀。
由此,该空调装置的热源单元在第1制冷剂气体配管中可使来自连接用制冷剂回路的制冷剂气体流向第1切换机构,且可使来自第1切换机构的制冷剂气体流向连接用制冷剂回路,且可将第1制冷剂气体配管作为冷暖切换运行机用的制冷剂气体配管使用,因而,在冷暖切换运行用空调装置及冷暖同时运行用空调装置中都可使用。
技术方案2的空调装置具备技术方案1的热源单元的热源侧制冷剂回路、包括利用侧热交换器及利用侧膨胀机构的数个利用侧制冷剂回路、及用于连接热源侧制冷剂回路与利用侧制冷剂回路的连接用制冷剂回路,热源侧制冷剂回路的制冷剂液体配管通过连接用制冷剂回路与上述利用侧膨胀机构的制冷剂液体侧连接,热源侧制冷剂回路的第1制冷剂气体配管连接成可通过连接用制冷剂回路将高压制冷剂气体送往利用侧热交换器的制冷剂气体侧的状态,热源侧制冷剂回路的第2制冷剂气体配管连接成可通过连接用制冷剂回路使低压的制冷剂气体从利用侧制冷剂回路返回热源侧制冷剂回路的状态。
在该空调装置上,由于热源侧制冷剂回路的制冷剂液体配管、第1制冷剂气体配管及第2制冷剂气体配管通过连接用制冷剂回路与数个利用侧制冷剂回路连接,因而可构成能够进行冷暖同时运行的空调装置。
技术方案3的空调装置具备技术方案1的热源单元的热源侧制冷剂回路、包括利用侧热交换器及利用侧膨胀机构的数个利用侧制冷剂回路、及用于连接热源侧制冷剂回路与利用侧制冷剂回路的连接用制冷剂回路,热源侧制冷剂回路的制冷剂液体配管通过连接用制冷剂回路与上述利用侧膨胀机构的制冷剂液体侧连接,热源侧制冷剂回路的第1制冷剂气体配管通过连接用制冷剂回路与利用侧制冷剂回路的利用侧热交换器连接,热源侧制冷剂回路的第2制冷剂气体配管则不与连接用制冷剂回路连接,成为制冷剂气体不流动的状态。
该空调装置的热源侧制冷剂回路的制冷剂液体配管及第1制冷剂气体配管通过连接用制冷剂回路而与数个利用侧制冷剂回路连接,第2制冷剂气体配管则不与任何回路连接。并且,制冷剂气体可通过第1制冷剂气体配管而在热源侧制冷剂回路与利用侧制冷剂回路之间流动。由此,可构成能够进行冷暖切换运行的空调装置。
技术方案4的空调装置具备技术方案1的热源单元的热源侧制冷剂回路、包括利用侧热交换器及利用侧膨胀机构的数个利用侧制冷剂回路,及用于连接热源侧制冷剂回路与利用侧制冷剂回路的连接用制冷剂回路,热源侧制冷剂回路的制冷剂液体配管通过连接用制冷剂回路分别与各利用侧制冷剂回路的利用侧膨胀机构的制冷剂液体侧连接。热源侧制冷剂回路的第2制冷剂气体配管通过连接用制冷剂回路与数个利用侧制冷剂回路中的一部分利用侧热交换器连接。热源侧制冷剂回路的第1制冷剂气体配管通过连接用制冷剂回路与另外的利用侧制冷剂回路的利用侧热交换器连接。
该空调装置的回路构成为,数个利用侧制冷剂回路中除一部分外,通过连接用制冷剂回路与热源侧制冷剂回路的制冷剂液体配管及第1制冷剂气体配管连接,而数个利用侧制冷剂回路中的一部分则是热源侧制冷剂回路的制冷剂液体配管及第2制冷剂气体配管通过连接用制冷剂回路与利用侧制冷剂回路连接。且,利用侧制冷剂回路中的一部分,无论热源侧制冷剂回路的运行状态如何,均从制冷剂液体配管或连接用制冷剂回路供给制冷剂液体,且在通过利用侧膨胀机构及利用侧热交换器后使低压的制冷剂气体返回第2制冷剂气体配管。另一方面,另外的利用侧制冷剂回路在从制冷剂液体配管供给制冷剂液体之际,在通过利用侧膨胀机构及利用侧热交换器之后,使低压的制冷剂气体返回第1制冷剂气体配管,且在从第1制冷剂气体配管供给高压的制冷剂气体之际,在通过利用侧热交换器及利用侧膨胀机构之后使制冷剂液体返回制冷剂液体配管的运行。由此可构成数个利用侧制冷剂回路中的一部分仅用作冷气运行、而另外的利用侧制冷剂回路用作冷暖气切换运行的空调装置。
技术方案5空调装置是在技术方案2~4的任一项中,主热交换器及辅助热交换器是以水作为热源而与制冷剂进行热交换的热交换器。主热交换器的水侧与辅助热交换器的水侧串联连接。
该空调装置的主热交换器的制冷剂侧与辅助热交换器的制冷剂侧并联连接,而水侧则串联连接。由此,即使在仅有主热交换器进行热交换的场合,也可确保充分的水量。
技术方案6的空调装置是在技术方案2~5的任一项中,在主热交换器及辅助热交换器的上侧设置热源水的入口,且在主热交换器及辅助热交换器的下侧设置热源水的出口。
由于该空调装置在各热交换器的上侧设置水入口,在各热交换器的下侧设置水出口,因而可使水在各热交换器内自上向下流动。由此使水中所含腐蚀成分等不易滞留于热交换器内,可抑制锈垢的发生。
附图说明
图1为本发明的实施例1的空调装置的制冷剂回路图。
图2表示实施例1的空调装置制冷剂回路的主要部分,为暖气运行模式的说明图。
图3表示实施例1的空调装置制冷剂回路的主要部分,为低负荷暖气运行模式说明图。
图4表示实施例1的空调装置制冷剂回路的主要部分,为低负荷暖气运行模式说明图。
图5表示实施例1的空调装置制冷剂回路的主要部分,为冷暖气同时运行模式说明图。
图6表示实施例1的空调装置制冷剂回路的主要部分,为冷气运行模式说明图。
图7表示本发明的实施例2的空调装置制冷剂回路的主要部分,与图2相当。
图8表示本发明的实施例3的空调装置制冷剂回路的主要部分,与图2相当。
图9表示本发明的实施例1的空调装置制冷剂回路的主要部分,是使主热交换器作为冷凝器工作、并且使辅助热交换器作为蒸发器工作的状态的说明图。
图10表示实施例4的空调装置制冷剂回路的主要部分,与图2相当。
具体实施方式
[实施例1]
以下,依据附图对本发明的实施例1进行说明。
(1)空调装置的构成
图1为本发明的实施例1的空调装置的制冷剂回路图。
空调装置1可进行冷暖气同时运行,具备:1台热源单元2、数台(本实施例中为3台)利用单元3、与利用单元3对应设置的连接单元4、连接热源单元2及连接单元4的第1联络配管群5、连接连接单元4及利用单元3的第2联络配管群6。
①热源单元
热源单元2以水为热源,主要具备:压缩机构21、主热交换器22、第1切换机构V1、主制冷剂开闭机构V2、辅助热交换器23、第2切换机构V3、辅助制冷剂开闭机构V4及受液器24。这些设备通过制冷剂配管而连接,构成热源侧制冷剂回路2a。
压缩机构21用于对制冷剂气体进行压缩,由第1压缩机21a及第2压缩机21b相互并联连接而成。
在各压缩机21a、21b的吸入侧设有储压器21c。在储压器21c的出口设有用于测定压缩机21a、21b的制冷剂气体吸入温度的测温器T1。而在第2压缩机21b的吸入侧,设有用于测定压缩机21a、21b的制冷剂气体吸入压力的压力传感器P1。另外,储压器21c通过第2制冷剂气体配管28及第1联络配管群5与连接单元4连接。
在各压缩机21a、21b的排出侧设有用于分离被压缩的制冷剂气体中的油的油分离器21d。在各压缩机21a、21b与油分离器21d之间,对应于各压缩机21a、21b分别设有用于压缩机21a、21b的壳体保护的高压压力开闭器PH1、PH2。另外,在第2压缩机21b的排出侧,设有用于测定压缩机21a、21b的制冷剂气体排出压力的压力传感器P2。在各压缩机21a、21b的排出侧还设有用于测定压缩机21a、21b的制冷剂气体排出温度的测温器T2、T3。
经油分离器21d分离的制冷剂气体流向第1切换机构V1及第2切换机构V3,分离后的油通过回油管21e返回吸入侧。回油管21e具备相互并联连接的毛细管C1及电磁阀V5。在第1压缩机21a与第2压缩机21b的吸入侧之间,设有用于从第1压缩机21a向第2压缩机21b的吸入侧供油的送油配管21f。送油配管21f具备相互串联连接的电磁阀V6及毛细管C2。
主热交换器22是以水为热源、使制冷剂蒸发及冷凝的热交换器,本实施例中采用板式热交换器。在主热交换器22的制冷剂液体侧与受液器24之间,设有由电动膨胀阀构成的主制冷剂开闭机构V2,可对在主热交换器22中流动的制冷剂量进行调节。受液器24通过制冷剂液体配管25及第1联络配管群5与连接单元4连接。制冷剂液体配管25上设有用于测定制冷剂液体温度的测温器T4。主热交换器22的制冷剂气体侧与第1切换机构V1连接。在主热交换器22的制冷剂气体侧设有用于测定制冷剂气体温度的测温器T5,在主热交换器22的制冷剂液体侧设有用于测定制冷剂液体温度的测温器T6。
第1切换机构V1是为使主热交换器22作为蒸发器及冷凝器发挥作用而设置的四路切换阀。第1切换机构V1与主热交换器22的制冷剂气体侧、压缩机构21吸入侧的储压器21c、压缩机构21的排出侧的油分离器21d、以及通过第1联络配管群5而与连接单元4连接的第1制冷剂气体配管26连接。且在使主热交换器22作为冷凝器发挥作用时,可在将压缩机构21的排出侧与主热交换器22的制冷剂气体侧连接的同时将压缩机构21吸入侧的储压器21c与第1制冷剂气体配管26连接。反之,当将主热交换器22作为蒸发器发挥作用时,可在将主热交换器22的制冷剂气体侧与压缩机构21吸入侧的储压器21c连接的同时将压缩机构21的排出侧与第1制冷剂气体配管26连接。
辅助热交换器23是使与主热交换器22并联连接的制冷剂蒸发及冷凝的热交换器,本实施例中与主热交换器22同样,采用板式热交换器。在辅助热交换器23的制冷剂液体侧与受液器24之间设有由电磁阀构成的辅助制冷剂开闭机构V4。辅助热交换器23的制冷剂气体侧与第2切换机构V3连接。在辅助热交换器23的制冷剂气体侧设有用于测定制冷剂气体温度的测温器T7,在辅助热交换器23的制冷剂液体侧设有用于测定制冷剂液体温度的测温器T8。并且当所有利用单元3都进行暖气运行时,可将主热交换器22及辅助热交换器23作为蒸发器发挥作用,以对应将所有利用单元3都进行暖气运行时的最大蒸发负荷。本实施例中,将主热交换器22的蒸发容量设定为最大蒸发负荷与辅助热交换器23的容量之差。
另外,成为热源的水由设于空调装置1外部的冷水塔及锅炉等供给。在本实施例中,热源水从冷水塔及锅炉通过水入口配管29送至主热交换器22后与制冷剂进行热交换。该热源水被送至水侧与主热交换器22串联连接的辅助热交换器23后与制冷剂进行热交换。并且,当在主热交换器22及辅助热交换器23中用于与制冷剂进行热交换后,通过水出口配管30返回冷水塔及锅炉。此处,各热交换器22、23的水入口设于各热交换器22、23的上侧,水出口设于各热交换器22、23的下侧。即,热源水在各热交换器22、23的内部从上向下流动。另外,水入口配管29上设有用于测定热源水的入口温度的测温器T9,水出口配管30上设有用于测定热源水的出口温度的测温器T10。
第2切换机构V3是为了将辅助热交换器23作为蒸发器及冷凝器发挥作用而设置的四路切换阀。第2切换机构V3与辅助热交换器23的制冷剂气体侧、压缩机构21吸入侧的储压器21c、压缩机构21排出侧的油分离器21d、以及与压缩机构21吸入侧的储压器21c连接的旁通配管27连接。旁通配管27具备毛细管C3。并且,在将辅助热交换器23作为冷凝器发挥作用时,将压缩机构21的排出侧与辅助热交换器23的制冷剂气体侧连接。反之,在将辅助热交换器23作为蒸发器发挥作用时,将辅助热交换器23的制冷剂气体侧与压缩机构21吸入侧的储压器21c连接。
②利用单元
数个利用单元3主要具备:风扇31、利用侧热交换器32、及利用侧膨胀机构V7。这些设备通过制冷剂配管连接,构成利用侧制冷剂回路3a。风扇31将空调室内的空气吸入利用单元3与利用侧热交换器32热交换,然后吹入室内。利用侧热交换器32在暖气运行时作为制冷剂的冷凝器发挥作用,在冷气运行时作为蒸发器发挥作用。利用侧膨胀机构V7是在冷气运行时对制冷剂液体减压的电动膨胀阀。并且,利用侧制冷剂回路3a通过第2联络配管群6与连接单元4连接。
③连接单元
数个连接单元4主要具备:过冷却热交换器41。连接单元4可将利用单元3作冷气运行时从热源侧制冷剂回路2a的制冷剂液体配管25通过第1联络配管群5供给的制冷剂液体向利用侧制冷剂回路3a的利用侧膨胀机构V7供给,并使在利用侧热交换器32蒸发的制冷剂气体通过电磁阀V8及第1联络配管群5而返回第2制冷剂气体配管28,且可在利用单元3作暖气运行将从热源侧制冷剂回路2a的第1制冷剂气体配管26通过第1联络配管群5及电磁阀V9供给的制冷剂气体向利用侧制冷剂回路3a的利用侧热交换器32供给,并使在利用侧热交换器32冷凝的制冷剂液体通过过冷却热交换器41及第1联络配管群5而返回制冷剂液体配管25。在利用单元3进行冷暖气同时运行时,将返回制冷剂液体配管25的制冷剂液体中的一部分通过减压配管42送入过冷却热交换器41,将返回制冷剂液体配管25的制冷剂液体进行过冷却。导入该过冷却热交换器41的制冷剂液体的一部分因热交换而蒸发,并通过第1联络配管群5及第2制冷剂气体配管28而返回热源侧制冷剂回路2a。减压配管42的电磁阀V10与毛细管C4串联连接。
此处,第1联络配管群5具备:将热源单元2的制冷剂液体配管25与各连接单元4的过冷却热交换器41连接的制冷剂液体联络配管5a、将热源单元2的第1制冷剂气体配管26与各连接单元4的电磁阀V9连接的第1制冷剂气体联络配管5b、以及将热源单元2的第2制冷剂气体配管28与各连接单元4的电磁阀V8连接的第2制冷剂气体联络配管5c。第2联络配管群6具备:将连接单元4的电磁阀V8、V9与利用单元3的利用侧热交换器32连接的第3制冷剂气体联络配管6a、将连接单元4的过冷却热交换器41与利用单元3的利用侧膨胀机构V7连接的第2制冷剂液体连接配管6b。由上述第1联络配管群5、连接单元4的制冷剂回路以及第2联络配管群6构成连接用制冷剂回路7。
如上所述,热源侧制冷剂回路2a和利用侧制冷剂回路3a经过连接用制冷剂回路4a连接,构成可进行冷暖气同时运行的空调装置1的制冷剂回路。
(2)空调装置的动作
以下对本实施例的空调装置1的动作进行说明。
本实施例的空调装置1根据利用单元3的冷暖气负荷,可区分为下列不同的运行模式:所有利用单元3进行暖气运行的暖气运行模式、暖气运行负荷小时的低负荷暖气运行模式、暖气运行的利用单元3与冷气运行的利用单元3并存的冷暖气同时运行模式、以及所有利用单元3进行冷气运行的冷气运行模式。
①暖气运行模式
在所有的利用单元3进行暖气运行时,空调装置1的制冷剂回路的构成如图2所示(以箭头表示制冷剂流向)。
具体地说,在热源单元2的热源侧制冷剂回路2a中,将第1切换机构V1及第2切换机构V3切换成如图2所示的状态,同时,使主制冷剂开闭机构V2及辅助制冷剂开闭机构V4处于开启状态,使主热交换器22及辅助热交换器23作为蒸发器工作。在利用单元3的利用侧制冷剂回路3a中,使利用侧膨胀机构V7处于开启状态,为对室内供应暖气,使各利用侧热交换器32作为制冷剂的冷凝器工作。在连接单元4中,使电磁阀V8、V10处于关闭状态,使电磁阀V9处于开启状态。
在这样的制冷剂回路构成中,经压缩机构21压缩的制冷剂气体通过第1切换机构V1、第1制冷剂气体配管26及第1联络配管群5被送往连接单元4。并且,该制冷剂气体通过电磁阀V9被送往利用侧热交换器32,经与室内空气热交换而冷凝成制冷剂液体。该制冷剂液体通过利用侧膨胀机构V7被送往过冷却热交换器41。并且,经过过冷却的制冷剂液体通过制冷剂液体配管25、主制冷剂开闭机构V2及辅助制冷剂开闭机构V4而被送往主热交换器22及辅助热交换器23。送入主热交换器22及辅助热交换器23的制冷剂液体经蒸发后,通过第1切换机构V1及第2切换机构V3被送往压缩机构21的吸入侧。
②低负荷暖气运行模式
一旦利用单元3的暖气运行负荷减小,热源单元2侧的蒸发负荷即过剩,压缩机构21的排出侧的高压侧制冷剂压力(压力传感器P2)上升。对此,在图2的制冷剂回路状态,关闭主制冷剂开闭机构V2,减少主热交换器22中制冷剂的蒸发量,以防止高压侧的制冷剂压力(压力传感器P2)上升。
在利用单元3的暖气运行负荷减小、主制冷剂开闭机构V2已缩小至所定的开度时,将空调装置1的制冷剂回路切换成图3所示的状态(以箭头表示制冷剂的流向)。
具体地说,在热源单元2的热源侧制冷剂回路2a中,在关闭辅助制冷剂开闭机构V4而使辅助热交换器23停止后,将第2切换机构V3切换成图3的状态,以便能够在再次开启辅助制冷剂开闭机构V4时使之作为冷凝器工作。
在这样的制冷剂回路构成中,随着辅助热交换器23的停止,制冷剂的蒸发量呈阶梯状减少,因此压缩机构21排出侧的制冷剂压力具有降低的趋势。为此,开启主制冷剂开闭机构V2,以使主热交换器22的制冷剂蒸发量增加。由此使热源单元2的蒸发负荷与利用单元3的暖气负荷取得平衡,使压缩机构21的排出侧的制冷剂压力达到稳定。
进而,一旦利用单元3的暖气运行负荷减小(例如3台利用单元3中的1台停止),热源单元2侧的蒸发负荷即过剩,高压侧的制冷剂压力具有上升倾向。对此,再次缩小主制冷剂开闭机构V2的开度,使主热交换器22的制冷剂的蒸发量减少,以防止高压侧的制冷剂压力上升。并且,当主制冷剂开闭机构V2再次缩小到所定的开度的时刻,将空调装置1的制冷剂回路切换成图4所示的状态(以箭头表示制冷剂流向)。
具体地说,在热源单元2的热源侧制冷剂回路2a中,使辅助制冷剂开闭机构V4处于开启状态,将压缩机构21排出的制冷剂气体的一部分通过第2切换机构V3送往辅助热交换器23,使作为冷凝器工作。利用单元3中,仅使1台进行暖气运行,另2台则关闭利用侧膨胀机构V7、电磁阀V9而停止。
在这样的制冷剂回路构成中,通过使辅助热交换器23作为冷凝器工作而使制冷剂的冷凝量呈阶梯状增加,使蒸发量相对减少,因而压缩机构21排出侧的制冷剂压力呈降低倾向。对此,开启主制冷剂开闭机构V2,以增加主热交换器22的制冷剂的蒸发量。由此可使热源单元2的蒸发负荷与利用单元3的暖气负荷取得平衡,使压缩机构21的排出侧的制冷剂压力稳定。然后,若利用单元3的暖气运行负荷进一步减小(例如3台利用单元3中有2台停止),再度缩小主制冷剂开闭机构V2的开度,使主热交换器22的制冷剂的蒸发量减少,使利用单元3的暖气负荷与热源单元2的蒸发负荷取得平衡。
③冷暖气同时运行模式
此处对3台利用单元3中1台进行冷气运行、另2台进行暖气运行的情形加以说明。在该运行模式中,空调装置1制冷剂回路如图5那样构成(以箭头表示制冷剂的流向)。
具体地说,在热源单元2的热源侧制冷剂回路2a中,使主热交换器22作为蒸发器工作,且使辅助热交换器23作为冷凝器工作,与图4所示的低负荷暖气运行模式的制冷剂回路构成相同。关于利用单元3,在进行冷气运行的利用单元3的利用侧制冷剂回路3a中,利用侧膨胀机构V7作为减压阀工作,且为了对室内供应冷气而使各利用侧热交换器32作为制冷剂的蒸发器工作。在连接单元4的制冷剂回路中,电磁阀V8处于开启状态,电磁阀V9、V10处于关闭状态。
在这样的制冷剂回路构成中,经压缩机构21压缩的制冷剂气体,分歧成通过第1切换机构V1、第1制冷剂气体配管26及第1联络配管群5而送往连接单元4的部分,以及通过第2切换机构V3而送往辅助热交换器23部分。而且,送往连接单元4的制冷剂气体通过电磁阀V9送往进行暖气运行的2台利用单元3的利用侧制冷剂回路3a的利用侧热交换器32,与室内空气进行热交换而冷凝成制冷剂液体。该制冷剂液体通过利用侧膨胀机构V7送往过冷却热交换器41,并在过冷却热交换器41被过冷却。然后,经过过冷却的制冷剂液体通过制冷剂液体配管25及主制冷剂开闭机构V2而被送往主热交换器22。此外,在冷却热交换器41上过冷却后的制冷剂液体的一部分在减压配管42减压后,被送往过冷却热交换器41进行热交换而蒸发,并通过第1联络配管群5及第2制冷剂气体配管28而送往压缩机构21的吸入侧。被送往辅助热交换器23的制冷剂气体在辅助热交换器23冷凝后,通过辅助制冷剂开闭机构V4而与主热交换器22的液体侧合流。合流后的制冷剂液体在主热交换器22蒸发后,通过第1切换机构V1被送往压缩机构21的吸入侧。另一方面,在进行冷气运行的利用单元3的利用侧制冷剂回路3a中,将在进行暖气运行的另外2台的利用侧制冷剂回路3a中冷凝并通过制冷剂液体配管25返回热源侧制冷剂回路2a的制冷剂液体中的一部分,通过利用单元3的利用侧制冷剂回路3a的利用侧膨胀机构V7而送往利用侧热交换器32,并与室内空气进行热交换而蒸发成制冷剂气体。该制冷剂气体通过电磁阀V8返回第2制冷剂气体配管28。
④冷气运行模式
在所有的利用单元3都进行冷气运行时,空调装置1的制冷剂回路如图6那样构成(以箭头表示制冷剂的流向)。
具体地说,在热源单元2的热源侧制冷剂回路2a中,将第1切换机构V1及第2切换机构V3切换成图6所示的状态,同时使主制冷剂开闭机构V2及辅助制冷剂开闭机构V4处于开启状态,使主热交换器22及辅助热交换器23作为冷凝器工作。在利用单元3的利用侧制冷剂回路3a中,使利用侧膨胀机构V7处于开启状态,且为了对室内供给冷气而使各利用侧热交换器32作为制冷剂的蒸发器工作。在连接单元4的制冷剂回路中,使电磁阀V8处于开启状态,使电磁阀V9、V10处于关闭状态。
在这样的制冷剂回路构成中,经压缩机构21压缩的制冷剂气体通过第1切换机构V1及第2切换机构V3而被送往主热交换器22及辅助热交换器23冷凝。然后,该制冷剂液体通过制冷剂液体配管25及第1联络配管群5被送往连接单元4。然后,该制冷剂液体在利用侧膨胀机构V7减压后,被送往利用侧热交换器32,与室内空气进行热交换而蒸发成制冷剂气体。该制冷剂气体经电磁阀V8及第2制冷剂气体配管28被送往压缩机构21的吸入侧。
(3)空调装置的特征
本实施例的空调装置1具备下列特征:
①可使辅助热交换器作为蒸发器发挥作用的制冷剂回路
本实施例的空调装置1将以往仅作为冷凝器使用的辅助热交换器作为蒸发器使用(参照图2)。具体地说,设置第2切换机构V3,从而可将辅助热交换器23作为蒸发器及冷凝器进行切换。因此,在进行暖气运行时或冷暖气同时运行时使主热交换器22作为蒸发器工作的场合,可使辅助热交换器23作为蒸发器发挥作用,而所有的利用单元3都进行暖气运行时所需的最大蒸发负荷则用主热交换器22的蒸发容量与辅助热交换器23的蒸发容量的合计蒸发容量来解决。即,无须如以往那样仅用主热交换器22的蒸发容量来对应所有利用单元3都进行暖气运行时的蒸发负荷,因而可将主热交换器22的蒸发容量设定得较小,以减小可由主制冷剂开闭机构V2调节的蒸发负荷的下限值。由此使热源单元2的蒸发负荷的调节范围增大,能够实现暖气运行或冷暖气同时运行时利用单元3的暖气负荷与热源单元2的蒸发负荷之间的热收支最佳化。
另外,通过缩小主热交换器22的蒸发容量,使主热交换器22及辅助热交换器的合计热交换容量小于以往的热源单元的合计热交换容量。由此可实现装置的成本下降及省空间化。
②主热交换器的水侧与辅助热交换器的水侧的串联连接
在本实施例的空调装置1中,主热交换器22的制冷剂侧与辅助热交换器23的制冷剂侧并联连接,而水侧则串联连接。由此,即使只有主热交换器22运行,也可确保充分的水量。
③将主热交换器及辅助热交换器的水入口设于上侧
本实施例的空调装置1的各热交换器22、23在上侧设置水入口,在下侧设置水出口,因而可使水在各热交换器22、23内从上向下流动。使水中所含的腐蚀成分等不易滞留于热交换器22、23内,可抑制锈垢的发生。
④将主热交换器及辅助热交换器做成板式热交换器
本实施例的空调装置1采用板式热交换器作为热交换器22、23,因而与使用二重管式热交换器等的场合相比,可使热源单元2紧凑化。
[实施例2]
图7表示本发明实施例2的空调装置101的制冷剂回路的主要部分。
空调装置101的基本构成与实施例1的空调装置1相同,不同之处仅在于,将实施例1中作为辅助制冷剂开闭机构V4采用的电磁阀变更为可进行制冷剂流量控制的电动膨胀阀。因而,本实施例的空调装置101除具有实施例1的空调装置1的特征外,还具有下述特征。
本实施例的空调装置101采用可进行制冷剂流量控制的电动膨胀阀作为热源侧制冷剂回路102a的辅助制冷剂开闭机构V104,因而,可对辅助热交换器23的蒸发量·冷凝量进行连续调节。由此可减小因辅助热交换器23的工作·停止引起的制冷剂蒸发量·冷凝量的阶梯状变化,以抑制压缩机构21的排出侧的压力变动。
[实施例3]
图8表示本发明的实施例3的空调装置201的制冷剂回路的主要部分。
空调装置201是将实施例1的冷暖同时运行机用的热源单元2作为冷暖切换运行机用的热源单元使用。此处热源单元2及利用单元3的构成与实施例1相同。另外,冷暖同时运行机用的连接单元4被削除。而且,热源单元2的第1制冷剂气体配管26与利用单元3的利用侧热交换器32通过连接用制冷剂回路207而连接,热源单元2的制冷剂液体配管25与利用单元3的利用侧膨胀机构V7通过连接用制冷剂回路207连接。此处,第2制冷剂气体配管28因在制冷剂切换机中不需要而未使用。
在空调装置201的热源单元2中,以往仅作为冷凝器使用的辅助热交换器23也可作为蒸发器使用。因此,该热源单元2无须如以往的冷暖同时运行机用的热源单元那样在使主热交换器作为冷凝器工作的同时将压缩机构排出的制冷剂气体向第1制冷剂气体配管供给,可在使主热交换器22作为冷凝器工作的同时使辅助热交换器23作为蒸发器工作,以对热源单元2的负荷进行调节。因此在该热源单元2中,不需要设在以往的热源单元的第1制冷剂气体配管中的止逆阀(参照图9)。
由此,该空调装置的热源单元2在第1制冷剂气体配管26中,可使来自连接用制冷剂回路207的制冷剂气体流向第1切换机构V1,且可使来自第1切换机构V1的制冷剂气体流向连接用制冷剂回路207,可将第1制冷剂气体配管26作为冷暖切换运行机用的制冷剂气体配管使用,因此在冷暖切换运行用空调装置及冷暖同时运行用空调装置中都可使用。
[实施例4]
图10表示本发明的实施例4的空调装置301的制冷剂回路的主要部分。
空调装置301是在实施例3的空调装置201中将作为冷暖切换运行机使用的数个利用单元中的一部分作为冷气专用机使用。此处,热源单元2及利用单元的构成与实施例3相同,但成为冷气专用机的利用单元的符号为303(即利用单元303)。
具体地说,除了成为冷气专用机的利用单元303以外的利用单元3,其热源单元2的第1制冷剂气体配管26与利用单元3的利用侧热交换器32通过连接用制冷剂回路307连接,热源单元2的制冷剂液体配管25与利用单元3的利用侧膨胀机构V7通过连接用制冷剂回路307连接。而利用单元303,其热源单元2的第2制冷剂气体配管28与利用单元3的利用侧热交换器332通过连接用制冷剂回路307连接,热源单元2的制冷剂液体配管25与利用单元303的利用侧膨胀机构V307通过连接用制冷剂回路307连接。即,本实施例的空调装置301是将作为冷气专用机使用的利用单元303与第2制冷剂气体配管28连接,而不是与第1制冷剂气体配管26连接,这是与实施例3不同之处。
该空调装置301如图10的制冷剂回路中表示制冷剂流动的箭头所示,可在对利用单元3进行暖气运行的同时,对利用单元303进行冷气运行。具体地说,在利用单元3中,通过第1制冷剂气体配管26向利用单元3的利用侧制冷剂回路3a供给高压的制冷剂气体,并在利用侧热交换器32中使制冷剂冷凝,同时对室内空气进行加热,使冷凝后的制冷剂液体返回制冷剂液体配管25。在利用单元303中,通过制冷剂液体配管25或连接用制冷剂回路307,向利用单元303的利用侧制冷剂回路303a供给制冷剂液体,在利用侧热交换器332使制冷剂蒸发,同时对室内空气进行冷却,使蒸发后的低压制冷剂气体返回第2制冷剂气体配管28。
如上所述,本实施例的空调装置301可在不使用实施例1的连接单元4的情况下进行利用单元3、303的冷暖同时运行,因而不需要用于冷暖切换的阀操作(例如实施例1中V8、V9、V10的操作),可缩短冷暖切换操作的时间。另外,由于还可减少空调装置301起动时的阀操作,也缩短了起动时间。
此外,当在大楼等建筑物中设置空调装置时,有时将设于服务员房间(serverroom)的利用单元作为冷气专用机使用,此时只要利用单元303那样将利用单元与热源单元2的液制冷剂配管25及第2制冷剂气体配管28连接,即可不受其他利用单元的运行状态影响而作为始终可进行冷气运行的冷气专用机使用。
[其他实施例]
以上,依据附图对本发明的实施例进行了说明,本发明的具体构成并不限定于这些实施例,可在不脱离发明要旨的范围内进行变更。
例如,实施例1及实施例2中,是对冷暖同时运行机的制冷剂回路进行了说明,但若是不包括连接单元的冷暖气切换运行机,也能获得同样效果。
产业上利用的可能性
运用本发明,由于设置第2切换机构,使辅助热交换器也可作为蒸发器工作,因而可削除以往的冷暖同时运行机用的热源单元的第1制冷剂气体配管中设置的止逆阀。由此可提供在冷暖切换运行用空调装置及冷暖同时运行用空调装置中都可使用的热源单元。

Claims (6)

1.一种空调装置的热源单元(2、102),具备经过连接用制冷剂回路(7、207、307)  与数个利用侧制冷剂回路(3a、303a)连接的热源侧制冷剂回路(2a、102a),其特征在于,还具备:
用于压缩制冷剂气体的压缩机构(21);
作为制冷剂的蒸发器及冷凝器发挥作用的主热交换器(22);
与所述主热交换器(22)并联连接、作为制冷剂的蒸发器及冷凝器发挥作用的辅助热交换器(23);
与所述连接用制冷剂回路(7、207、307)连接的制冷剂液体配管(25);
与所述连接用制冷剂回路(7、207、307)连接的第1制冷剂气体配管(26);
用于将来自所述连接用制冷剂回路(7)的制冷剂气体送往所述压缩机构(21)的吸入侧的第2制冷剂气体配管(28);
连接于所述制冷剂液体配管(25)与所述主热交换器(22)之间的主制冷剂开闭机构(V2);
连接于所述制冷剂液体配管(25)与所述辅助热交换器(23)之间的辅助制冷剂开闭机构(V4);
可在以下状态之间进行切换的第1切换机构(V1):将所述主热交换器(22)的制冷剂气体侧与所述压缩机构(21)的排出侧连接且将所述压缩机构(21)的吸入侧与所述第1制冷剂气体配管(26)连接、以使低压的制冷剂气体吸入压缩机构(21)的状态,以及将所述主热交换器(22)的制冷剂气体侧与所述压缩机构(21)的吸入侧连接且将所述压缩机构(21)的排出侧与所述第1制冷剂气体配管(26)连接、以使高压的制冷剂气体从压缩机构(21)排出的状态;
可在以下状态之间进行切换的第2切换机构(V3):将所述辅助热交换器(23)的制冷剂气体侧与所述压缩机构(21)的排出侧连接的状态,以及将所述辅助热交换器(23)的制冷剂气体侧与所述压缩机构(21)的吸入侧连接的状态,
所述第1制冷剂气体配管(26)可使来自所述连接用制冷剂回路(7、207、307)的制冷剂气体流向所述第1切换机构(V1),并且可使来自所述第1切换机构(V1)的制冷剂气体流向所述连接用制冷剂回路(7、207、307)。
2.一种空调装置(1、101),其特征在于,具备:
权利要求1所述的热源单元(2、102)的热源侧制冷剂回路(2a、102a)、包括利用侧热交换器(32)和利用侧膨胀机构(V7)在内的数个利用侧制冷剂回路(3a)、
用于将所述热源侧制冷剂回路(2a、102a)与所述利用侧制冷剂回路(3a)连接的连接用制冷剂回路(7),
所述热源侧制冷剂回路(2a、102a)的制冷剂液体配管(25)经过所述连接用制冷剂回路(7)与所述利用侧膨胀机构(V7)的制冷剂液体侧连接,
所述热源侧制冷剂回路(2a、102a)的第1制冷剂气体配管(26)被连接成可将高压的制冷剂气体经过所述连接用制冷剂回路(7)送至所述利用侧热交换器(32)的制冷剂气体侧的状态,
所述热源侧制冷剂回路(2a、102a)的第2制冷剂气体配管(28)被连接成可使低压的制冷剂气体经过所述连接用制冷剂回路(7)从所述利用侧制冷剂回路(3a)返回热源侧制冷剂回路(2a、102a)的状态。
3.一种空调装置(201),其特征在于,具备:
权利要求1所述的热源单元(2、102)的热源侧制冷剂回路(2a、102a)、
包括利用侧热交换器(32)和利用侧膨胀机构(V7)在内的数个利用侧制冷剂回路(3a)、
用于将所述热源侧制冷剂回路(2a、102a)与所述利用侧制冷剂回路(3a)连接的连接用制冷剂回路(207),
所述热源侧制冷剂回路(2a、102a)的制冷剂液体配管(25)经过所述连接用制冷剂回路(207)与所述利用侧制冷剂回路(3a)的所述利用侧膨胀机构(V7)的制冷剂液体侧连接,
所述热源侧制冷剂回路(2a、102a)的第1制冷剂气体配管(26)经过所述连接用制冷剂回路(207)与所述利用侧制冷剂回路(3a)的所述利用侧热交换器(32)连接,
所述热源侧制冷剂回路(2a、102a)的第2制冷剂气体配管(28)不与所述连接用制冷剂回路(207)连接,成为制冷剂气体无法流动的状态。
4.一种空调装置(301),其特征在于,具备:
权利要求1所述的热源单元(2、102)的热源侧制冷剂回路(2a、102a)、
包括利用侧热交换器(32、332)和利用侧膨胀机构(V7、V307)在内的数个利用侧制冷剂回路(3a、303a)、
用于将所述热源侧制冷剂回路(2a、102a)与所述利用侧制冷剂回路(3a、303a)连接的连接用制冷剂回路(307),
所述热源侧制冷剂回路(2a、102a)的制冷剂液体配管(25)经过所述连接用制冷剂回路(307)分别与所述各利用侧制冷剂回路(3a、303a)的所述利用侧膨胀机构(V7、V307)的制冷剂液体侧连接,
所述热源侧制冷剂回路(2a、102a)的第2制冷剂气体配管(28)经过所述连接用制冷剂回路(307)与所述数个利用侧制冷剂回路中的一部分(303a)的利用侧热交换器(332)连接,
所述热源侧制冷剂回路(2a、102a)的第1制冷剂气体配管(26)经过所述连接用制冷剂回路(307)与所述其它利用侧制冷剂回路(3a)的所述利用侧热交换器(32)连接。
5.根据权利要求2~4中任一项所述的空调装置(1、101、201、301),其特征在于,
所述主热交换器(22)及所述辅助热交换器(23)为以水为热源而与制冷剂进行热交换的热交换器,
所述主热交换器(22)的水侧及所述辅助热交换器(23)的水侧串联连接。
6.根据权利要求2~5中任一项所述的空调装置(1、101、201、301),其特征在于,
在所述主热交换器(22)及所述辅助热交换器(23)的上侧设置热源水的入口,在所述主热交换器(22)及所述辅助热交换器(23)的下侧设置热源水的出口。
CNB038064898A 2002-03-29 2003-03-28 空调装置的热源单元及空调装置 Expired - Fee Related CN1285866C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP96707/2002 2002-03-29
JP2002096707 2002-03-29

Publications (2)

Publication Number Publication Date
CN1643311A true CN1643311A (zh) 2005-07-20
CN1285866C CN1285866C (zh) 2006-11-22

Family

ID=29239622

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038064898A Expired - Fee Related CN1285866C (zh) 2002-03-29 2003-03-28 空调装置的热源单元及空调装置

Country Status (8)

Country Link
US (1) US7380411B2 (zh)
EP (1) EP1498668B1 (zh)
JP (1) JP3575484B2 (zh)
KR (1) KR100569554B1 (zh)
CN (1) CN1285866C (zh)
AU (1) AU2003220985B2 (zh)
ES (1) ES2443645T3 (zh)
WO (1) WO2003087681A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110741211A (zh) * 2017-07-20 2020-01-31 大金工业株式会社 制冷机
CN114076346A (zh) * 2020-08-11 2022-02-22 Lg电子株式会社 一拖多空调机

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677266B1 (ko) * 2005-02-17 2007-02-02 엘지전자 주식회사 냉난방 동시형 멀티 에어컨
ES2318941B1 (es) * 2006-02-21 2010-01-21 Aproalia, S.L. Sistema combinado de refrigeracion y climatizacion.
JP5055965B2 (ja) * 2006-11-13 2012-10-24 ダイキン工業株式会社 空気調和装置
JP4254863B2 (ja) * 2007-01-23 2009-04-15 ダイキン工業株式会社 空気調和装置
JP4780479B2 (ja) * 2008-02-13 2011-09-28 株式会社日立プラントテクノロジー 電子機器の冷却システム
WO2009103470A1 (en) * 2008-02-21 2009-08-27 Carrier Corporation Refrigerating system
WO2010050663A1 (ko) * 2008-10-29 2010-05-06 Lee Hyoung Moon 하이브리드 히트펌프식 냉난방장치
KR100946381B1 (ko) 2008-10-29 2010-03-09 이형문 하이브리드 히트펌프식 냉난방장치
US20120222440A1 (en) * 2009-11-18 2012-09-06 Mitsubishi Electric Corporation Regrigeration cycle apparatus and information transfer method used therein
KR101636328B1 (ko) * 2009-12-22 2016-07-05 삼성전자주식회사 히트 펌프 장치 및 그 실외기
KR101153513B1 (ko) * 2010-01-15 2012-06-11 엘지전자 주식회사 냉매시스템 및 그 제어방법
WO2011117922A1 (ja) * 2010-03-25 2011-09-29 三菱電機株式会社 空気調和装置
JP5752148B2 (ja) * 2010-12-09 2015-07-22 三菱電機株式会社 空気調和装置
KR101320189B1 (ko) 2011-11-02 2013-10-23 대성히트펌프 주식회사 보일러와 공조기 일체형 히트펌프 시스템 및 그 히트펌프 시스템의 작동방법
JP5897154B2 (ja) * 2013-01-08 2016-03-30 三菱電機株式会社 空気調和装置
US10429083B2 (en) * 2013-08-30 2019-10-01 Qingdao Hisense Hitachi Air-conditioning Systems Co., Ltd. Multi-type air conditioner system
CN104501452B (zh) * 2014-11-24 2017-03-01 广东美的制冷设备有限公司 冷暖型空调器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2839343B2 (ja) * 1990-08-10 1998-12-16 株式会社日立製作所 マルチエアコン
JP3042797B2 (ja) * 1991-03-22 2000-05-22 株式会社日立製作所 空気調和機
JP3719296B2 (ja) * 1996-12-13 2005-11-24 三菱電機株式会社 冷凍サイクル装置
NO20005576D0 (no) * 2000-09-01 2000-11-03 Sinvent As Reversibel fordampningsprosess

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110741211A (zh) * 2017-07-20 2020-01-31 大金工业株式会社 制冷机
CN110741211B (zh) * 2017-07-20 2021-12-10 大金工业株式会社 制冷机
CN114076346A (zh) * 2020-08-11 2022-02-22 Lg电子株式会社 一拖多空调机

Also Published As

Publication number Publication date
WO2003087681A1 (fr) 2003-10-23
JPWO2003087681A1 (ja) 2005-08-18
CN1285866C (zh) 2006-11-22
EP1498668A4 (en) 2012-09-05
US20050150243A1 (en) 2005-07-14
EP1498668B1 (en) 2013-11-06
KR20040091774A (ko) 2004-10-28
AU2003220985A1 (en) 2003-10-27
US7380411B2 (en) 2008-06-03
KR100569554B1 (ko) 2006-04-10
JP3575484B2 (ja) 2004-10-13
ES2443645T3 (es) 2014-02-20
AU2003220985B2 (en) 2006-01-19
EP1498668A1 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
CN1285866C (zh) 空调装置的热源单元及空调装置
CN1224810C (zh) 空调装置的压力调整装置及具有压力调整装置的空调装置
CN1062948C (zh) 空调装置
CN1255652C (zh) 多型空调器及其操作方法
CN1906452A (zh) 空调裝置
CN1735779A (zh) 制冷装置
CN1244785C (zh) 空调***和控制该***的方法
CN1957211A (zh) 发动机热泵
CN1821680A (zh) 具有喷射器的蒸汽压缩循环
CN1318145A (zh) 制冷装置
CN1910409A (zh) 空调装置
CN1283961C (zh) 冷冻装置
CN1757991A (zh) 具有双致冷剂循环的空调
CN1786624A (zh) 空调
CN1825031A (zh) 冷暖气可同时运转的利用地热的冷暖气***及其控制方法
CN101078583A (zh) 可调节冷媒流量的空调器及其调节方法
CN1757979A (zh) 空调
CN100343599C (zh) 内燃机驱动热泵式空调装置
CN1773206A (zh) 双壁管及其制造方法和设有双壁管的制冷剂循环装置
CN1840989A (zh) 发动机驱动式空气调节机
CN1223802C (zh) 空气调节装置
CN1672002A (zh) 冷冻装置
CN1692259A (zh) 空调装置
CN1555476A (zh) 制冷***以及减压管***用冷凝器
CN101080597A (zh) 空调器及其驱动方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061122

Termination date: 20150328

EXPY Termination of patent right or utility model