CN1539793A - 用纳米磁性氧化铁颗粒包覆有机微球制备复合亚微米磁性颗粒的方法 - Google Patents

用纳米磁性氧化铁颗粒包覆有机微球制备复合亚微米磁性颗粒的方法 Download PDF

Info

Publication number
CN1539793A
CN1539793A CNA031098002A CN03109800A CN1539793A CN 1539793 A CN1539793 A CN 1539793A CN A031098002 A CNA031098002 A CN A031098002A CN 03109800 A CN03109800 A CN 03109800A CN 1539793 A CN1539793 A CN 1539793A
Authority
CN
China
Prior art keywords
iron salt
hexamethylenetetramine
nanometers
saltpetre
divalent iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA031098002A
Other languages
English (en)
Other versions
CN1269769C (zh
Inventor
唐芳琼
黄忠兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN 03109800 priority Critical patent/CN1269769C/zh
Publication of CN1539793A publication Critical patent/CN1539793A/zh
Application granted granted Critical
Publication of CN1269769C publication Critical patent/CN1269769C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明属于用铁溶胶水解法快速包覆有机亚微米颗粒的技术领域,特别涉及用纳米磁性氧化铁颗粒包覆有机微球制备复合亚微米颗粒的方法。本发明采用无皂乳液方法得到不同粒径大小的聚苯乙烯等有机微球,使用二价铁盐溶液,通过慢注射方法来控制二价铁盐溶液在这些微球包覆体系中的浓度,可得到不同壳层厚度的,且具有核/壳结构的磁性复合微球,这样的复合微球的磁性核壳尺寸可以得到很有效的控制。

Description

用纳米磁性氧化铁颗粒包覆有机微球制备复合亚微米磁性颗粒的方法
                       发明领域
本发明属于用铁溶胶水解法快速包覆有机亚微米颗粒的技术领域,特别涉及用纳米磁性氧化铁颗粒包覆有机微球制备复合亚微米颗粒的方法。
                       背景技术
近来,人们在致力于具有特殊功能纳米结构材料的设计和研究方面取得了很大的进展,纳米材料的价值在于它具有光、电、磁、力学、化学等性质,这些性质是由于纳米材料的尺寸、组成的有序结构决定的。磁性纳米材料由于其特有的磁性质,首先被用于生物领域,如分离基因的生化药物和磁性引导治疗药物;现在也被大量用于信息储存材料。因此磁性纳米复合材料已经广泛在通讯工程、制药、生物等领域中应用。一般是以亚微米球为核心,纳米晶体做为壳层包覆在球外,以此组成复合亚微米球。近十年来形貌、尺寸、结构可随意控制的核/壳形磁性纳米材料,已开始应用在电子通讯、催化、生物分离、医学图象诊断、磁致冷和磁流体等领域。
用纳米粒子包覆微球的制备技术多与颗粒表面物理和化学性质有关,有许多复杂的因素影响包覆技术,如外壳层的电荷变化,核表面化学功能基团的化学反应能力,核的分散性和稳定性。包覆层的物理性质也决定了复合颗粒的分散稳定性,而影响复合颗粒的磁性,光性,催化性。现在人们最关心的问题是如何提高包覆层的均匀性和分散稳定性以及包覆的可控制性。最近几年,国际上有科研小组也在用这种磁性复合材料构建光子晶体和三维多孔材料,以期得到最新的光通讯材料。以前对复合微球的研究多集中在以聚苯乙烯为模版、以二氧化硅和金属氧化物纳米晶体作为壳材料来制备它们。如在聚苯乙烯微球上包覆纳米二氧化硅、二氧化钛、氧化钇或氧化铁。这样使聚合物微球在高技术的许多领域中得到了应用。
美国J.Ughelstad等人在US Patent PCT/NO83/00014中公开了2.8微米至4.5微米磁性聚合物颗粒的合成工艺,其所得到的是磁性颗粒无规则地分布在聚合物球的内部。最近在制备纳米磁性氧化铁颗粒包覆有机球制备复合亚微球的技术中,以Frank Caruso等人在《化学材料》(2001年13卷109页)和《科学》(1998年282卷1111页)上用层-层包覆法(请参见Frank Caruso,Marina Spasova,Andrei Susha.Chem.Mater..2001,13,109-116.and Caruso,F.;Caruso,R.A.;Mohwald,H.Science 1998,282,1111),及Benedikt Lindlar的磁粒均匀聚合法(请参见《材料进展》,2002年14卷1656页;Benedikt Lindlar,Monica Boldt,StefanieEiden-Assmann,Georg Maret,Adv.Mater.2002,14,1656.)为最新方法。前者是以聚电解质改变聚苯乙烯微球的表面电荷,再通过静电引力吸附纳米磁性氧化铁颗粒形成包覆壳层,这样可反复多次进行包覆控制壳层厚度。但在该方法中,纳米磁性氧化铁颗粒制备需要提前进行;且在控制包覆壳层的厚度时,需要许多次用不同的聚电解质对微球的表面进行改性,以反复改变其表面电荷性质,从而使得包覆工艺及步骤非常繁琐,无法在实际中应用。后者采用磁粒均匀聚合方法,同样需要提前制备纳米磁性颗粒,而且磁性颗粒被均匀地分布在复合颗粒内部;这种烦琐的工艺还无法得到外部均匀包覆磁性壳体的复合颗粒。总之,烦琐的制备工艺将使这些氧化铁包覆技术在实际中无法得到有效的应用。
                       发明内容
本发明的目的在于提供用纳米磁性氧化铁颗粒包覆有机微球制备复合亚微米颗粒的方法。该方法的工艺简单,并可有效控制包覆层的厚度。
本发明的目的是通过下述技术方案实现的:
本发明是使用二价铁盐溶液控制水解方法来制备磁性氧化铁颗粒同时使其包覆在聚苯乙烯等有机微球上,从而得到核/壳结构的磁性氧化铁复合微球。
本发明通过慢注射方法来控制二价铁盐溶液在这些微球包覆体系中的浓度,可得到不同壳层厚度的复合微球,这样复合微球的核壳尺寸都可以得到很有效的控制。
具体方法的步骤包括:
包覆制备复合球:取自制或市售的共聚有机微球乳液,加入是聚苯乙烯微球乳液体积8~15倍的去离子水稀释并搅拌均匀,然后加入硝酸钾、六次甲基四胺和去离子水,搅拌并混合均匀,在惰性气体保护下用注射泵滴加二价铁盐溶液,慢慢升温至70~120℃,连续反应1~数小时,得到铁溶胶;离心沉淀,洗涤烘干,即得到用纳米磁性氧化铁颗粒包覆的有机微球的复合亚微米颗粒。
所述的聚苯乙烯微球乳液的浓度为10~15wt%。
所述的铁溶胶中的二价铁盐∶硝酸钾∶六次甲基四胺∶水的摩尔比是0.01~0.16∶0.003~0.01∶0.001~0.01∶50~170;优选二价铁盐∶硝酸钾∶六次甲基四胺∶水的摩尔比是0.05~0.12∶0.005~0.01∶0.005~0.01∶55~160;优选二价铁盐∶硝酸钾∶六次甲基四胺∶水的摩尔比是0.05~0.12∶0.004~0.009∶0.005~0.01∶60~150。
所述的纳米磁性氧化铁晶体颗粒的粒径为10~130纳米;优选纳米晶体颗粒的粒径为30~80纳米。
所述的聚苯乙烯的亚微米颗粒的粒径为80~900纳米,优选为100~260纳米。
所述的注射泵的滴加速度为0.01~1.0毫升/分钟,优选为0.1~0.5毫升/分钟。
所述的二价铁盐为氯化亚铁或醋酸亚铁等。
所述的惰性气体是氮气、氩气或氦气。
本发明所使用的原料和工艺过程均对环境没有不良影响,本发明的方法省时高效,简单易行,易于推广应用,并可有效控制复合亚微米颗粒包覆层的厚度。
本发明的用途:本发明产品用途广泛,是高功能磁流体、磁制冷、信息储存及生物分离和催化材料的基本原料,可应用于催化剂材料、高性能搅拌密封、生物制药和磁导电浆料等领域。
本发明的方法不仅能耗低,产品纯度高,分散性好,且聚合物微球表面磁颗粒的包覆状态可通过改变反应条件加以控制。
采用本发明的方法得到多种包覆状态的聚合物微球/磁粒复合材料,如附图1和附图2所示。
                      附图说明
图1.本发明的实施例1的聚合物微球/磁粒复合材料电镜照片。
图2.本发明的实施例4的聚合物微球/磁粒复合材料电镜照片。
具体实施方式
实施例1:
取240纳米聚苯乙烯微球乳液60~80毫升,加入1.5升双蒸水稀释并搅拌均匀。将30~100mmol硝酸钾加入其中,在搅拌下慢慢升温至80~100℃;将10~100mmol六次甲基四胺和10~160mmol氯化亚铁分别装入注射管中,在通入氮气保护下以0.1~0.5毫升/分钟的注射速度缓慢将其加到体系中,连续反应。注射结束后继续反应30~90分钟。然后离心沉淀,转速为1000~6000转/分钟;去掉上清液后,再加入1.5毫升双蒸水洗涤,再次离心分离。最后在70℃下烘烤24小时,即得到核的粒径为240纳米、壳层为40~60纳米的复合颗粒。
实施例2:
取340纳米的聚苯乙烯微球乳液80~100毫升,加入2.0升双蒸水稀释并搅拌均匀。将50~80mmol硝酸钾加入其中,在搅拌下慢慢升温至80~100℃;将10~100mmol六次甲基四胺和50~120mmol二氯化铁分别装入注射管中,在通入氮气保护下以0.1~0.5毫升/分钟的注射速度缓慢将其加到体系中,连续反应。注射结束后继续反应30分钟。然后离心沉淀,转速为1000~4000转/分钟;去掉上清液后,再加入2.0升双蒸水洗涤,再次离心分离。最后在70℃下烘烤24小时,即得到核的粒径为340纳米、壳层为50~120纳米的复合颗粒。
实施例3:
取320~380纳米的聚苯乙烯微球乳液80~110毫升,加入2800毫升双蒸水稀释并搅拌均匀。将50~80mmol硝酸钾加入其中,在搅拌下慢慢升温至80℃;将10~100mmol六次甲基四胺和50~90mmol二氯化铁分别装入注射管中,在通入氮气保护下以0.3~0.6毫升/分钟的注射速度缓慢将其加到体系中,连续反应。注射结束后继续反应30~90分钟。然后离心沉淀,转速为1000~2000转/分钟;去掉上清液后,再加入3000毫升双蒸水洗涤,再次离心分离。最后在70℃下烘烤24小时,即得到核的粒径为320~380纳米、壳层为30~60纳米的复合颗粒。
实施例4:
取300纳米聚苯乙烯微球乳液80毫升,加入3.0升双蒸水稀释并搅拌均匀。将50~80mmol硝酸钾加入其中,在搅拌下慢慢升温至70~95℃;将10~100mmol六次甲基四胺和60~120mmol二氯化铁分别装入注射管中,在通入氮气保护下以0.1~0.5毫升/分钟的注射速度缓慢将其加到体系中,连续反应。注射结束后,再将10~50mmol六次甲基四胺和30~50mmol二氯化铁分别装入注射管中,以0.1~0.5毫升/分钟的速度注入,注完后继续反应30~40分钟。然后离心沉淀,转速为1000~3000转/分钟;去掉上清液后,再加入3.0升双蒸水洗涤,再次离心分离。最后在70℃下烘烤24小时,即得到核的粒径为300纳米、壳层为80~150纳米厚的复合颗粒。
实施例5:
取160纳米聚苯乙烯微球乳液30~40毫升,加入1.5升双蒸水稀释并搅拌均匀。将20~60mmol硝酸钾加入其中,在搅拌下慢慢升温至80~100℃;将10~60mmol六次甲基四胺和10~100mmol氯化亚铁分别装入注射管中,在通入氮气保护下以0.1~0.5毫升/分钟的注射速度缓慢将其加到体系中,连续反应。注射结束后继续反应30~90分钟。然后离心沉淀,转速为1000~6000转/分钟;去掉上清液后,再加入1.5毫升双蒸水洗涤,再次离心分离。最后在70℃下烘烤24小时,即得到核的粒径为160纳米、壳层为20~50纳米的复合颗粒。
实施例6:
取240纳米聚苯乙烯微球乳液60~80毫升,加入1.5升双蒸水稀释并搅拌均匀。将30~100mmol硝酸钾加入其中,在搅拌下慢慢升温至80~100℃;将10~100mmol六次甲基四胺和10~160mmol醋酸亚铁分别装入注射管中,在通入氮气保护下以0.1~0.5毫升/分钟的注射速度缓慢将其加到体系中,连续反应。注射结束后继续反应30~90分钟。然后离心沉淀,转速为1000~6000转/分钟;去掉上清液后,再加入1.5毫升双蒸水洗涤,再次离心分离。最后在70℃下烘烤24小时,即得到核的粒径为240纳米、壳层为40~60纳米的复合颗粒。
实施例7:
取240纳米聚苯乙烯微球乳液60~80毫升,加入1.5升双蒸水稀释并搅拌均匀。将30~100mmol硝酸钾加入其中,在搅拌下慢慢升温至80~100℃;将10~100mmol六次甲基四胺和10~180mmol醋酸亚铁分别装入注射管中,在通入氮气保护下以1.0~2.5毫升/分钟的注射速度缓慢将其加到体系中,连续反应。注射结束后继续反应30~90分钟。然后离心沉淀,转速为1000~6000转/分钟;去掉上清液后,再加入1.5毫升双蒸水洗涤,再次离心分离。最后在70℃下烘烤24小时,即得到核的粒径为240纳米、壳层为20~60纳米的复合颗粒。

Claims (10)

1.一种用纳米磁性氧化铁颗粒包覆有机微球制备复合亚微米磁性颗粒的方法,其特征是:
取聚苯乙烯微球乳液,加入是聚苯乙烯微球乳液体积8~15倍的去离子水稀释并搅拌均匀,然后加入硝酸钾、六次甲基四胺和去离子水,搅拌,滴加二价铁盐溶液,慢慢升温至70~120℃,连续反应,得到铁溶胶;离心沉淀,洗涤烘干,即得到核/壳结构的,用纳米磁性氧化铁晶体颗粒包覆的有机微球的复合亚微米颗粒;
所述的聚苯乙烯微球乳液的浓度为10~15wt%;
所述的铁溶胶中的二价铁盐∶硝酸钾∶六次甲基四胺∶水的摩尔比是0.01~0.16∶0.003~0.01∶0.001~0.01∶50~170。
2.如权利要求1所述的方法,其特征是:所述的铁溶胶中的二价铁盐∶硝酸钾∶六次甲基四胺∶水的摩尔比是0.05~0.12∶0.005~0.01∶0.005~0.01∶55~160。
3.如权利要求2所述的方法,其特征是:所述的铁溶胶中的二价铁盐∶硝酸钾∶六次甲基四胺∶水的摩尔比是0.05~0.12∶0.004~0.009∶0.005~0.01∶60~150。
4.如权利要求1所述的方法,其特征是:所述的滴加二价铁盐溶液是在通入惰性气体保护下进行的。
5.如权利要求4所述的方法,其特征是:所述的惰性气体是氮气、氩气或氦气。
6.如权利要求1所述的方法,其特征是:所述的纳米磁性氧化铁颗粒的粒径为10~130纳米。
7.如权利要求6所述的方法,其特征是:所述的纳米磁性氧化铁颗粒的粒径为30~80纳米。
8.如权利要求1所述的方法,其特征是:所述的滴加二价铁盐溶液速度为0.01~1.0毫升/分钟。
9.如权利要求1、2、3、4或8所述的方法,其特征是:所述的二价铁盐为氯化亚铁或醋酸亚铁。
10.如权利要求1所述的方法,其特征是:所述的聚苯乙烯微球颗粒的尺寸为80~900纳米。
CN 03109800 2003-04-21 2003-04-21 用纳米磁性氧化铁颗粒包覆有机微球制备复合亚微米磁性颗粒的方法 Expired - Fee Related CN1269769C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03109800 CN1269769C (zh) 2003-04-21 2003-04-21 用纳米磁性氧化铁颗粒包覆有机微球制备复合亚微米磁性颗粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03109800 CN1269769C (zh) 2003-04-21 2003-04-21 用纳米磁性氧化铁颗粒包覆有机微球制备复合亚微米磁性颗粒的方法

Publications (2)

Publication Number Publication Date
CN1539793A true CN1539793A (zh) 2004-10-27
CN1269769C CN1269769C (zh) 2006-08-16

Family

ID=34319524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03109800 Expired - Fee Related CN1269769C (zh) 2003-04-21 2003-04-21 用纳米磁性氧化铁颗粒包覆有机微球制备复合亚微米磁性颗粒的方法

Country Status (1)

Country Link
CN (1) CN1269769C (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303136C (zh) * 2004-11-18 2007-03-07 同济大学 采用聚苯乙烯微球制备磁流变液用空心磁性复合微粒的方法
CN100505116C (zh) * 2004-11-19 2009-06-24 南京大学 高稳定性的Fe/(SiO2+C)核/壳复合纳米粒子及其制备方法
CN1971780B (zh) * 2005-11-23 2010-04-21 北京化工大学 纳米四氧化三铁包覆碳纳米管磁性复合材料的制备方法
CN101735367B (zh) * 2008-11-24 2011-05-25 中国石油天然气股份有限公司 一种纳米磁性聚合物复合微球的制备方法
CN101555166B (zh) * 2009-05-12 2012-07-04 东北大学 一种三维网络碳化硅表面制备氧化铁陶瓷薄膜的方法
CN103134926A (zh) * 2013-02-27 2013-06-05 上海交通大学 一种磁性微球载体及其制备方法
CN110187104A (zh) * 2019-06-13 2019-08-30 华中农业大学 基于生物正交反应的横向弛豫时间免疫传感器的制备方法、传感器及其应用
TWI782633B (zh) * 2021-07-21 2022-11-01 竹笙化奈米科技有限公司 高分子微粒被覆磁性金屬殼層及其抗電磁波紡織紗線之製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100408233C (zh) * 2006-08-23 2008-08-06 北京科技大学 大尺寸稀土各向异性粘结磁体的磁场凝胶注模成型方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303136C (zh) * 2004-11-18 2007-03-07 同济大学 采用聚苯乙烯微球制备磁流变液用空心磁性复合微粒的方法
CN100505116C (zh) * 2004-11-19 2009-06-24 南京大学 高稳定性的Fe/(SiO2+C)核/壳复合纳米粒子及其制备方法
CN1971780B (zh) * 2005-11-23 2010-04-21 北京化工大学 纳米四氧化三铁包覆碳纳米管磁性复合材料的制备方法
CN101735367B (zh) * 2008-11-24 2011-05-25 中国石油天然气股份有限公司 一种纳米磁性聚合物复合微球的制备方法
CN101555166B (zh) * 2009-05-12 2012-07-04 东北大学 一种三维网络碳化硅表面制备氧化铁陶瓷薄膜的方法
CN103134926A (zh) * 2013-02-27 2013-06-05 上海交通大学 一种磁性微球载体及其制备方法
CN110187104A (zh) * 2019-06-13 2019-08-30 华中农业大学 基于生物正交反应的横向弛豫时间免疫传感器的制备方法、传感器及其应用
CN110187104B (zh) * 2019-06-13 2021-09-14 华中农业大学 基于生物正交反应的横向弛豫时间免疫传感器的制备方法、传感器及其应用
TWI782633B (zh) * 2021-07-21 2022-11-01 竹笙化奈米科技有限公司 高分子微粒被覆磁性金屬殼層及其抗電磁波紡織紗線之製造方法

Also Published As

Publication number Publication date
CN1269769C (zh) 2006-08-16

Similar Documents

Publication Publication Date Title
CN1269769C (zh) 用纳米磁性氧化铁颗粒包覆有机微球制备复合亚微米磁性颗粒的方法
CN1186377C (zh) 一种多功能有机-无机复合高分子微球及其制备方法
CN101220187A (zh) 一种具有核壳结构的磁性复合微球及其制备方法
WO2015021920A1 (zh) 一种高强度交联型聚合物光子晶体膜的制备方法
CN102142310A (zh) 一种纳米磁性聚合物复合微球的制备方法
CN101767205A (zh) 一种镍纳米空心球的制备方法
CN1944471A (zh) 具有快速磁场响应性的功能高分子复合微球的制备方法
CN1250618C (zh) 用氧化铁纳米晶体颗粒包覆有机微球制备复合亚微米颗粒的方法
CN1279554C (zh) 具有介孔结构的磁性氧化铁中空微球颗粒及其制法和用途
CN103923656A (zh) 一种氧化钆包裹四氧化三铁磁性荧光纳米空心球的制备方法
CN102059347B (zh) 一种可分散在疏水型体系中的纳米银及其制备方法与应用
CN101630555B (zh) 以纳米球形聚电解质刷为微反应器制备磁性粒子的方法
CN1193383C (zh) 具有强磁场响应能力的磁性核壳微粒及其制备方法
CN1616165A (zh) 一种纳米金属和双金属空心球的制备方法
CN1298791C (zh) 一步法合成聚合物修饰的超顺磁Fe3O4纳米粒子
CN106141172A (zh) 三维“相框与相片”结构纳米金材料、其合成方法及应用
CN1262686C (zh) 纳米金属膜的亚微米非金属微球及其制备方法
CN1775694A (zh) 制备可溶于极性溶剂的纳米四氧化三铁颗粒的方法
CN1276006C (zh) 复乳法制备磁性高分子微球
CN110739143B (zh) 基于蒸馏沉淀法制备磁性壳核微球的方法
CN1239430C (zh) 用核/壳结构的氧化铁-有机复合颗粒制备氧化铁中空颗粒的方法
Tang et al. Structure‐Induced Enhanced Dissolving Properties of Mg (OH) 2 Prepared by Glycine‐Assisted MgO Hydration
Wang et al. Facile synthesis of urchin-like and bouquet-like silver nanoparticles using gas assisted wet chemistry method
He et al. Synthesis of nanocrystals of gadolinium carbonate by reaction crystallization
JPH01259108A (ja) 銅超微粉末の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060816

Termination date: 20130421