CN1427284A - 电光装置、电光装置用基板及其制造方法和电子机器 - Google Patents

电光装置、电光装置用基板及其制造方法和电子机器 Download PDF

Info

Publication number
CN1427284A
CN1427284A CN02154087A CN02154087A CN1427284A CN 1427284 A CN1427284 A CN 1427284A CN 02154087 A CN02154087 A CN 02154087A CN 02154087 A CN02154087 A CN 02154087A CN 1427284 A CN1427284 A CN 1427284A
Authority
CN
China
Prior art keywords
mentioned
basalis
base material
layer
painted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02154087A
Other languages
English (en)
Other versions
CN1191488C (zh
Inventor
泷泽圭二
小田切赖广
中野智之
金子英树
松尾睦
大竹俊裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
BOE Technology HK Ltd
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN1427284A publication Critical patent/CN1427284A/zh
Application granted granted Critical
Publication of CN1191488C publication Critical patent/CN1191488C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/48Flattening arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

在液晶装置等的基板结构中,在多个显示用点与点间区域之间,抑制在表面形成凹凸。另外,确保遮光层与由该层包围的层例如着色层之间的平坦性。是具有形成多个显示用点D的基材1、设置在基材1上的基底层4、设置在基底层4上的发射层2和设置在发射层2上的着色层3r、g、b。基底层4设置在与显示用点D对应的区域,不设置在多个显示用点D间的区域。在该点D间区域形成凹陷,遮光层3k填入到该凹陷中,所以,遮光层3k与着色层3r、g、b成为平坦的。

Description

电光装置、电光装置用基板 及其制造方法和电子机器
技术领域
本发明涉及液晶装置等这样的电光装置使用的基板、该基板的制造方法、使用该基板构成的电光装置和使用该电光装置的电子机器。
背景技术
近年来,电光装置已广泛地应用于手机、便携式电脑等这样的电子机器。作为电光装置之一,已知的有可以进行反射型显示和透过型显示的反射半透过型液晶装置。
在该液晶装置中进行反射型显示时,是自然光或室内光等这样的外部光入射到液晶装置的内部,该光由设置在液晶装置的内部的反射层反射,通过该反射光再次向外部出射而进行显示。这时,为了实现透过型显示的功能,反射层还必须具有使光透过的功能,因此,即使如上述那样由反射层反射外部光,所能反射的也不是外部光的全部,而是其一部分。
但是,使用上述那样的反射层的外部光的反射结构本身与不具有透过型显示的功能的液晶装置即结构为由反射层反射外部光的全部的液晶装置即反射型液晶装置的情况是一样的。
然而,在反射半透过型的液晶装置中,或者不论是否为反射型的液晶装置但可以进行反射型的显示的液晶装置中,如果反射层的表面是镜面状,在观察者观看的像中将反映出背景或室内照明,从而难于观看所显示的像。
为了解决这一问题,迄今所知道的技术就是,通过在反射层之下设置表面具有大量的微细的凹凸形状,在该反射层的表面形成多个微细的突起部,使其表面粗糙化,借此使反射光适度地散射(例如,参见专利文献1)。
【专利文献1】
特开2002-258270号公报
然而,在液晶装置中,广泛采用的方法是,将大量的作为显示的最小单位的显示用点进行平面排列,例如排列成矩阵状,通过有选择地使这些显示用点发光而显示所希望的像。并且,这时,也广泛地采用通过在多个显示用点间的区域设置遮蔽光的层即遮光层形成称为所谓的黑掩模或黑底的区域从而可以显示对比度高的像的这样的结构。
这样在显示用点间设置遮光层时,以往是增加设置该遮光层的部分的厚度,于是,单元间隙的偏差就增大,因此,存在不能对取向膜很好地进行摩擦处理等问题。在液晶装置中,通常与遮光层重叠地形成取向膜或覆盖层,借助于这些层,基板的表面在某种程度上成为平坦的,但是,即使如此,仍然不能消除上述单元间隙的偏差等。
发明内容
本发明就是鉴于上述问题而提案的,目的旨在抑制在多个显示用点区域与这些显示用点间的区域之间表面形成凹凸。另外,本发明的目的旨在确保遮光层与由该层包围的层例如着色层间的平坦性。
(1)为了达到上述目的,本发明的电光装置用基板的特征在于:具有形成多个显示用点的基材、设置在该基材上的基底层、设置在该基底层上的反射层和设置在该反射层上的着色层,上述基底层设置在与上述显示用点对应的区域,不设置在上述多个显示用点间的区域。
在该结构的液晶装置中,进行反射型显示时,外部光透过着色层后由反射层反射,向观察者传播。由于在着色层的下方设置了基底层和反射层,所以,外部光以适度的散射状态进行反射,从而可以进行视野宽的显示。
另一方面,由于基底层不设置在显示用点间的区域,即基底层不设置在设置遮光层的区域,所以,设置遮光层的部分的厚度就减少了基底层的厚度部分。这样,就可以防止遮光层的突出,从而可以抑制在基板的表面形成凹凸。即,可以投稿基板的表面的平坦性。
(2)在上述结构的电光装置用基板中,上述基底层的平面形状最好与上述显示用点的平面形状大致相同。这样,在进行反射型显示时,就可以以充分的宽度从基底层向着色层供给适度的散射光,从而可以进行视野角宽的反射型显示。
(3)另外,上述结构的电光装置用基板最好在上述显示用延以外的区域具有遮光层。这样,由于在不设置基底层的区域设置了遮光层,所以,可以投稿基板全体的平坦性。
(4)另外,在上述结构的电光装置用基板中,不设置上述基底层的区域最好与设置上述遮光层的区域基本上相同。这样,由于设置遮光层而引起的的基板的厚度的增加部分可以通过省略基底层而相抵消,所以,可以投稿基板的表面的平坦性。
(5)其次,本发明的电光装置的特征在于:具有所述的结构的电光装置用基板、与该电光装置用基板相对而设置的其他基板和设置在上述电光装置用基板与上述其他基板之间的电光物质层。按照工序结构的电光装置,由于在显示用点以外的区域不设置基底层,所以,可以使基板的厚度总体上是平坦的,因此,可以实现更薄的液晶装置。
(6)其次,本发明的电子机器的特征在于:具有上述结构的电光装置。由于上述结构的液晶装置可以形成得很薄,所以,可以将使用该液晶装置的电子机器也形成得很薄。
(7)其次,本发明的电光装置用基板的制造方法的特征在于:包括在形成了多个显示用点的基材上形成基底层的工序、在上述基底层上形成反射层的工序和在上述反射层上形成着色层的工序,在形成上述着色层的工序中,在与上述显示用点对应的区域形成上述着色层,在上述多个显示用点间的区域不形成着色层。
由于在显示用点间的区域不设置基底层,即在设置遮光层的区域不设置基底层,所以,设置遮光层的部分的厚度就减少了基底层的厚度部分。这样,就可以防止遮光层的突出,因此,可以抑制在基板的表面形成凹凸。即,可以提高基板的表面的平坦性。
(8)在上述结构的电光装置用基板的制造方法中,最好进而具有与设置上述基底层的区域以外的区域对应地在上述反射层上形成遮光层的工序。按照该制造方法,不设置基底层的区域形成遮光层,所以,可以提高基本全体的平坦性。
(9)其次,本发明的其他电光装置用基板的特征在于:具有形成多个显示用点的基材、设置在上述基材上的并且具有不规则地排列的突起部或凹谷部以使在相互相邻的上述显示用点间的区域具有凹部或开口部的基底层、设置在该基底层上的反射层和用以将上述凹部或上述开口部覆盖而设置的遮光层。
在基材上均匀地设置基底层的这种结构的先有的电光装置用基板中,由于例如遮光的厚度增高,即使在其上集层覆盖层等在表面上也会产生凹凸,从而单元间隙的偏差将增大等。与此相反,按照上述结构的电光装置用基板,将基底层设置为在相互相邻的显示用点间的边界区域具有凹部或开口部,同时将遮光层设置为将该凹部或开口部埋没,所以,可以例如降低遮光层的高度,从而可以确保各显示用点与这些显示用点间的边界区域间的表面的平坦性。
(10)另外,在本发明的电光装置用基板中,上述开口部的底部具有除去上述降低层的区域。按照该结构,可以降低除去了降低残的部分例如遮光层的高度从而可以减小单元间隙的偏差等。
(11)另外,在本发明的电光装置用基板中,上述凹部的底部的基底层最好形成为比其他区域的上述基底层薄。如上所述,在开口部的底部如果将降低层完全除去,有时反而损害显示用点和与其相邻的显示用点间区域的平坦性。这时,最好是形成凹部而不是形成开口部,并在该凹部的底部以所希望的厚度形成基底层,这样,就可以确保表面的平坦性,减小单元间隙的偏差,摩擦处理也很容易。
(12)另外,在本发明的电光装置用基板中,上述凹部的底部的基底层最好由设置在上述基板上的第1绝缘层形成,上述其他区域的基底层由上述第1绝缘层和与上述第1绝缘层上的上述其他的区域重叠地设置的第1绝缘层形成。按照该结构,可以不在第1绝缘层的形成中形成凹部而在形成第2绝缘层时形成凹部,所以,可以使形成第1绝缘层的制造工序简单。
(13)这里,上述第1绝缘层和第2绝缘层具有树脂材料。这样,基底层中使用的树脂材料就使光发生散射,所以,可以使显示明亮。
(14)另外,在本发明的电光装置用基板中,上述反射层可以采用在其一部分上具有开口部的结构。这样,就可以形成半透过反射型的电光装置用基板。即,按照本发明,不仅在反射型的电光装置用基板中而且在半透过型电光装置用基板中,也可以确保各显示用点和与其相互相邻的显示用点间的边界区域之间的表面的平坦性,从而可以减小单元间隙的偏差等。
(15)另外,在本发明的电光装置用基板中,上述遮光层的高度最好与上述基底层的高度基本上相同。这样,遮光和基底层的高度相对于基材就大致相同,所以,可以确保各显示用点和与其相互相邻的显示用点间的边界区域之间的表面的平坦性,从而可以减小单元间隙的偏差等。
(16)其次,本发明的电光装置的特征在于:具有相互相对配置的第1基材和第2基材、配置在上述第1基材与上述第2基材间的电光物质、设置在上述第1基材上的第1电极、设置在上述第2基材上的第2电极、在上述第1电极与上述第2电极重叠的区域形成的多个显示用点、设置在上述第1基材上的并且具有不规则地排列的突起部或凹谷部以使在相互相邻的上述显示用点间的区域具有凹部或开口部的基底层、设置在该基底层上的反射层和用以将上述凹部或上述开口部覆盖而设置的遮光层。
在基材上均匀地设置基底层的这种结构的先有的电光装置用基板中,由于例如遮光的厚度增高,即使在其上集层覆盖层等在表面上也会产生凹凸,从而单元间隙的偏差将增大等。与此相反,按照上述结构的电光装置用基板,将基底层设置为在相互相邻的显示用点间的边界区域具有凹部或开口部,同时将遮光层设置为将该凹部或开口部埋没,所以,可以例如降低遮光层的高度,从而可以确保各显示用点与这些显示用点间的边界区域间的表面的平坦性。
(17)另外,在上述结构的电光装置中,上述开口部的底部具有除去上述基底层的区域。按照该结构,可以降低除去了基底层的部分例如遮光层的高度,从而可以确保各显示用点和与其相互相邻的点间区域之间的表面的平坦性。
(18)另外,在上述结构的电光装置中,上述凹部的底部的基底层最好形成为比其他区域的上述基底层薄。如上所述,在开口部的底部如果将基底层完全除去,有时反而损害显示用点和与其相邻的显示用点间区域的平坦性。这时,最好是形成凹部而不是形成开口部,并在该凹部的底部以所希望的厚度形成基底层,这样,就可以确保表面的平坦性,减小单元间隙的偏差,摩擦处理也很容易。
(19)另外,在上述结构的电光装置中,上述凹部的底部的基底层由设置在上述基材上的第1绝缘层形成,上述其他区域的基底层最好由上述第1绝缘层和与上述第1绝缘层上的上述其他区域重叠地设置的第2绝缘层形成。这样,可以不在第1绝缘层的形成中形成凹部而在形成第2绝缘层时形成凹部,所以,可以使形成第1绝缘层的制造工序简单。
(20)这里,最好上述上述第1绝缘层和第2绝缘层具有树脂材料。这样,基底层中使用的树脂材料就使光发生散射,所以,可以使显示明亮。
(21)另外,在上述结构的电光装置中,上述反射层可以采用在其一部分上具有开口部的结构。这样,就可以形成半透过反射型的电光装置用基板。即,按照本发明,不仅在反射型的电光装置用基板中而且在半透过型电光装置用基板中,也可以确保各显示用点和与其相互相邻的显示用点间的边界区域之间的表面的平坦性,从而可以减小单元间隙的偏差等。
(22)另外,在上述结构的电光装置中,上述遮光层的高度最好与上述基底层的高度基本上相同。这样,遮光和基底层的高度相对于基材就大致相同,所以,可以确保各显示用点和与其相互相邻的显示用点间的边界区域之间的表面的平坦性,从而可以减小单元间隙的偏差等。
(23)其次,本发明的电子机器的特征在于:具有以上所述的结构的电光装置。按照本发明的电光装置,可以确保各显示用点和与其相互相邻的点间区域之间的表面的平坦性,所以,通过显示画面的对比度的提高等,该显示面就容易观看。因此,使用该电光装置的电子机器即使像手机或便携式信息终端等这样的电子机器在室外使用时,也可以进行鲜明的显示。
(24)其次,本发明的电光装置用基板的制造方法的特征在于:包括在形成了多个显示用点的基材上形成基底层的工序、在上述基底层上形成反射层的工序和在上述基材上形成遮光层的工序,在形成上述基底层的工序中,在相互相邻的上述显示用点间的区域形成具有凹部或开口部并且具有不规则地形成的突起部或凹谷部的上述基底层,在上述遮光层形成工序中,形成将上述凹部或开口部覆盖的上述遮光层。
在基材上均匀地设置基底层的这种结构的先有的电光装置用基板中,由于例如遮光的厚度增高,即使在其上集层覆盖层等在表面上也会产生凹凸,从而单元间隙的偏差将增大等。与此相反,按照上述结构的电光装置用基板,将基底层设置为在相互相邻的显示用点间的边界区域具有凹部或开口部,同时将遮光层设置为将该凹部或开口部埋没,所以,可以例如降低遮光层的高度,从而可以确保各显示用点与这些显示用点间的边界区域间的表面的平坦性。
(25)另外,在上述结构的电光装置用基板的制造方法中,在形成上述基底层的工序中,在上述开口部的底部形成除去基底层的区域。按照该结构,可以降低除去了基底层的部分例如遮光层的高度从而可以减小单元间隙的偏差等。
(26)另外,在上述结构的电光装置用基板的制造方法中,在形成上述基底层的工序中,上述凹部的底部的基底层最好形成为比其他区域的上述基底层薄。如上所述,在开口部的底部如果将基底层完全除去,有时反而损害显示用点和与其相邻的显示用点间区域的平坦性。这时,最好是形成凹部而不是形成开口部,并在该凹部的底部以所希望的厚度形成基底层,这样,就可以确保表面的平坦性,减小单元间隙的偏差,摩擦处理也很容易。
(27)另外,在上述结构的电光装置用基板的制造方法中,形成上述基底层的工序最好具有在上述基材上形成第1绝缘层的工序和在该第绝缘层上除了相互相邻的显示用点间的边界区域以外的区域形成第2绝缘层的工序。
按照该结构,可以不在第1绝缘层的形成中形成凹部而在第2绝缘层形成时形成凹部,所以,可以简化在形成第1绝缘层的工序中的制造工序。
(28)这里,最好上述第1绝缘层和第2绝缘层具有树脂材料。这样,基底层中使用的树脂材料就使光发生散射,所以,可以使显示明亮。
(29)另外,在上述结构的电光装置用基板的制造方法中,在形成反射层的工序中,可以将上述反射层形成为该反射层在其一部分上具有开口部。这样,就可以形成半透过反射型的电光装置用基板。即,按照本发明,不仅在反射型的电光装置用基板中而且在半透过型电光装置用基板中,也可以确保各显示用点和与其相互相邻的显示用点间的边界区域之间的表面的平坦性,从而可以减小单元间隙的偏差等。
(30)另外,在上述结构的电光装置用基板的制造方法中,在形成遮光层的工序中,上述遮光层的高度最好与上述基底层的高度基本上相同。这样,遮光和基底层的高度相对于基材就大致相同,所以,可以确保各显示用点和与其相互相邻的显示用点间的边界区域之间的表面的平坦性,从而可以减小单元间隙的偏差等。
(31)其次,本发明的电光装置的制造方法的特征在于:包括在形成了多个显示用点的第1基材上形成基底层的工序、在上述基底层上形成反射层的工序、在上述基材上形成遮光层的工序、在上述第1基材上形成第1电极的工序、在与上述第1基材相对的第2基材上形成第2电极的工序和在上述第1基材与上述第2基材之间形成电光物质层的工序,在形成上述基底层的工序中,在相互相邻的上述显示用点间的区域形成具有凹部或开口部并且具有不规则地形成的突起部或凹谷部的上述基底层,在上述遮光层形成工序中,形成将上述凹部或开口部覆盖的上述遮光层。
在基材上均匀地设置基底层的这种结构的先有的电光装置用基板中,由于例如遮光的厚度增高,即使在其上集层覆盖层等在表面上也会产生凹凸,从而单元间隙的偏差将增大等。与此相反,按照上述结构的电光装置用基板,将基底层设置为在相互相邻的显示用点间的边界区域具有凹部或开口部,同时将遮光层设置为将该凹部或开口部埋没,所以,可以例如降低遮光层的高度,从而可以确保各显示用点与这些显示用点间的边界区域间的表面的平坦性,减小单元间隙的偏差,提高对比度。
(32)另外,在上述结构的电光装置的制造方法中,在形成上述基底层的工序中,在上述开口部的底部形成除去基底层的区域。按照该结构,可以降低除去了基底层的部分例如遮光层的高度从而可以减小单元间隙的偏差等。
(33)另外,在上述结构的电光装置的制造方法中,在形成上述基底层的工序中,上述凹部的底部的基底层最好形成为比其他区域的上述基底层薄。如上所述,在开口部的底部如果将基底层完全除去,有时反而损害显示用点和与其相邻的显示用点间区域的平坦性。这时,最好是形成凹部而不是形成开口部,并在该凹部的底部以所希望的厚度形成基底层,这样,就可以确保表面的平坦性,减小单元间隙的偏差,摩擦处理也很容易。
(34)另外,在上述结构的电光装置的制造方法中,形成上述基底层的工序最好具有在上述基材上形成第1绝缘层的工序和在该第绝缘层上除了相互相邻的显示用点间的边界区域以外的区域形成第2绝缘层的工序。
按照该结构,可以不在第1绝缘层的形成中形成凹部而在第2绝缘层形成时形成凹部,所以,可以简化在形成第1绝缘层的工序中的制造工序。
(35)这里,最好上述第1绝缘层和第2绝缘层具有树脂材料。这样,基底层中使用的树脂材料就使光发生散射,所以,可以使显示明亮。
(36)另外,在上述结构的电光装置的制造方法中,在形成反射层的工序中,最好将上述反射层形成为该反射层在其一部分上具有开口部。按照该结构,不仅在反射型的电光装置用基板中而且在半透过型电光装置用基板中,也可以确保各显示用点和与其相互相邻的显示用点间的边界区域之间的表面的平坦性,从而可以减小单元间隙的偏差等。
(37)另外,在上述结构的电光装置的制造方法中,在形成遮光层的工序中,上述遮光层的高度最好与上述基底层的高度基本上相同。这样,遮光和基底层的高度相对于基材就大致相同,所以,可以确保各显示用点和与其相互相邻的显示用点间的边界区域之间的表面的平坦性,从而可以减小单元间隙的偏差等。
附图的简单说明:
图1(a)是表示本发明的电光装置用基板的1个实施例的图,图1(b)是表示比较例的图。
图2(a)是表示本发明的电光装置用基板的其他实施例的图,图2(b)是表示比较例的图。
图3是表示将本发明应用于作为电光装置的一例的液晶装置时的实施例的剖面图。
图4是表示作为图3的液晶装置的主要部分的彩色滤光器基板的主要部分的平面图。
图5是表示本发明的电光装置用基板的制造方法的1个实施例的图。
图6是表示本发明的液晶装置的制造方法的1个实施例的工序图。
图7是表示将本发明应用于作为电光装置的一例的液晶装置时的其他实施例的剖面图。
图8是表示本发明的电光装置用基板的制造方法的其他实施例的图。
图9是表示将本发明应用于作为电光装置的一例的液晶装置时的其他实施例的剖面图。
图10是表示作为本发明的电光装置的1个实施例的液晶装置的主要部分的剖面结构的剖面图。
图11是表示构成图10的液晶装置的彩色滤光器基板的主要部分的剖面图。
图12是将图10的液晶装置的平面结构部分地切断所示的平面图。
图13是表示图11的彩色滤光器基板的主要部分的剖面图。
图14是表示图13所示的结构的变形例的剖面图。
图15是表示制造图10的液晶装置的制造方法的工序图。
图16是表示作为本发明的电光装置的其他实施例的液晶装置的主要部分的剖面结构的剖面图。
图17是表示构成图16的液晶装置的彩色滤光器基板的主要部分的剖面图。
图18是将图16的液晶装置的平面结构部分地切断所示的平面图。
图19是表示图17的彩色滤光器基板的主要部分的剖面图。
图20是表示图19所示的结构的变形例的剖面图。
图21是表示制造图16的液晶装置的制造方法的工序图。
图22是表示作为本发明的电光装置的其他实施例的液晶装置的主要部分的剖面结构的剖面图。
图23是表示乖图22的液晶装置的彩色滤光器基板的主要部分的剖面图。
图24是将图22的液晶装置的平面结构部分地切断所示的平面图。
图25是表示图23的彩色滤光器基板的主要部分的剖面图。
图26是表示图25所示的结构的变形例的剖面图。
图27是表示制造图22的液晶装置的制造方法的工序图。
图28是表示作为本发明的电光装置的其他实施例的液晶装置的主要部分的剖面结构的剖面图。
图29是表示构成图28的液晶装置的彩色滤光器基板的主要部分的剖面图。
图30是将图28的液晶装置的平面结构部分地切断所示的平面图。
图31是表示图29的彩色滤光器基板的主要部分的剖面图。
图32是表示图31所示的结构的变形例的剖面图。
图33是表示制造图28的液晶装置的制造方法的工序图。
图34是表示作为本发明的电光装置的其他实施例的液晶装置的主要部分的剖面结构的剖面图。
图35是表示构成图34的液晶装置的彩色滤光器基板的主要部分的剖面图。
图36是将图34的液晶装置的平面结构部分地切断所示的平面图。
图37是表示图35的彩色滤光器基板的主要部分的剖面图。
图38是表示图37所示的结构的变形例的剖面图。
图39是表示制造图34的液晶装置的制造方法的工序图。
图40是表示作为本发明的电光装置的其他实施例的液晶装置的主要部分的剖面结构的剖面图。
图41是表示构成图40的液晶装置的彩色滤光器基板的主要部分的剖面图。
图42是将图40的液晶装置的平面结构部分地切断所示的平面图。
图43是表示图41的彩色滤光器基板的主要部分的剖面图。
图44是表示图43所示的结构的变形例的剖面图。
图45是表示制造图40的液晶装置的制造方法的工序图。
图46是表示作为本发明的电光装置的其他实施例的液晶装置的主要部分的剖面结构的剖面图。
图47是表示构成图46的液晶装置的彩色滤光器基板的主要部分的剖面图。
图48是将图46的液晶装置的平面结构部分地切断所示的平面图。
图49是表示图47的彩色滤光器基板的主要部分的剖面图。
图50是表示图49所示的结构的变形例的剖面图。
图51是表示制造图46的液晶装置的制造方法的工序图。
图52是表示作为本发明的电光装置的其他实施例的液晶装置的主要部分的剖面结构的剖面图。
图53是表示构成图52的液晶装置的彩色滤光器基板的主要部分的剖面图。
图54是将图52的液晶装置的平面结构部分地切断所示的平面图。
图55是表示图53的彩色滤光器基板的主要部分的剖面图。
图56是表示图55所示的结构的变形例的剖面图。
图57是表示制造图52的液晶装置的制造方法的工序图。
图58是表示作为本发明的电光装置的其他实施例的液晶装置的主要部分的剖面结构的剖面图。
图59是表示构成图58的液晶装置的彩色滤光器基板的主要部分的剖面图。
图60是将图58的液晶装置的平面结构部分地切断所示的平面图。
图61是表示图59的彩色滤光器基板的主要部分的剖面图。
图62是表示图59所示的结构的变形例的剖面图。
图63是制造图58的液晶装置的制造方法的工序图。
图64是表示作为本发明的电子机器的1个实施例的手机的透视图。
图65是表示作为本发明的电子机器的其他实施例的便携式电脑的透视图。
图66是表示作为本发明的电子机器的其他实施例的数码相机的透视图。
图67是表示作为本发明的电子机器的其他实施例的手表的透视图。
图68是表示作为本发明的电子机器的其他实施例的信息机器的透视图。
图69是表示作为本发明的电子机器的其他实施例的投影仪。
发明的具体实施方式
(原理说明)
首先,以液晶装置为例说明本发明的电光装置用基板和使用该基板的电光装置的原理。图1(a)表示应用本发明的液晶装置特别是构成反射型液晶装置的基板的一例中的多个显示用点部分的剖面结构。
在一般的液晶装置中,将一对基板利用密封材料相互粘贴,形成间隙即所谓的单元间隙,进而将液晶放入到该单元间隙内,形成液晶层。在图1(a)中,只表示出了一对基板中设置反射层和着色层的一侧的基板,即所谓的彩色滤光器基板,而且只表示出了该彩色滤光器基板中的数个显示用点部分。
在图1(a)中,在由玻璃、塑料等构成的透光性的基材1上形成作为基底层的树脂散射层4,然后,在该树脂散射层4上由铝合金、银合金等形成反射层2,进而在该反射层2上形成着色层3r、3g、3b。着色层3r是透过红色(R)的层,着色层3g是透过绿色(G)的层,着色层3b是透过蓝色(B)的层。反射层2具有用于使从配置在基材1的下方的照明装置即后照灯(图中未示出)照射的光透过的开口部(即狭缝)6。
在液晶装置中,通常,由将液晶层夹在中间相互相对的一对电极相互重叠的面积部分形成作为显示的最小单位的显示用点。使用R、G、B的三原色进行彩色显示时,3个与各色对应的显示用点聚集形成1个像素。另外,进行黑白等这样的单色显示时,1个显示用点形成像素。在图1(a)中,显示用点用符号D表示。在相互相邻的显示用点D间的区域,通常,大多设置用于抑制不需要的光透过从而提高显示的对比度的遮光层3k。
在本发明中,树脂散射层4设置在与显示用点D对应的区域,但是,在相互相邻的显示用点D之间的区域不设置树脂散射层4。即,在应形成遮光层3k的区域不设置树脂散射层4。图1(a)的结构,遮光层3k是3r、3g、3b的三色相互重叠而形成的情况。这时,由于3个着色层重叠,所以,该部分的厚度就比其他设置一色的着色层的区域大得多。
因此,在本发明中,在形成遮光层3k的区域即显示用点D以外的区域,在反射层2之下不形成树脂散射层4。树脂散射层4是为了使由反射层2反射的外光的反射光适度地散射而形成的,在形成遮光层3k的区域中,外光被遮光层3k所吸收,到达不了反射层2,所以,没有树脂散射层4也没有关系。如上述那样,如果在形成遮光层3k的区域不形成树脂散射层4,就减少了该部分的厚度,所以,可以减小遮光层3k的区域与其他着色层的区域间的厚度的差异,结果,便可提高基板的表面的平坦性。
图1(a)的情况是通过三色的着色层材料3r、3g、3b的相互重叠形成遮光层3k,但是,也可以代之以使用树脂黑形成遮光层3k。使用树脂黑时的各层的厚度随液晶装置的种类而不同,但是,通常树脂散射层4约为2μm、着色层的厚度约为1μm、由树脂黑形成的遮光层3k的厚度约为1.0~1.5μm。因此,如果在遮光层3k的区域不形成树脂散射层4,遮光层3k的厚度就减少了约2μm。
为了比较,图1(b)表示在整个基材料面上形成树脂散射层时的彩色滤光器基板的剖面结构。在该基板上,在基材料1上的整个面上形成树脂散射层4,在该树脂散射层4上形成具有开口部6的反射层2。并且,进而再在其上重叠地形成R、G、B的三色的着色层3r、3g、3b而形成遮光层3k。因此,遮光层3k的区域的厚度比形成单色的着色层的区域厚得多。
与此相反,图1(a)所示的本发明的情况,在遮光层3k的区域不形成树脂散射层4,所以,构成遮光层3k的3个着色层3r、3g、3b仅以该树脂散射层4的厚度在下方形成,结果,遮光层3k的区域的厚度就减小了,从而与相邻的单色的着色层的区域的厚度差异很小或者几乎没有。
在图1(a)和图1(b)中,为了便于说明,将三色的着色层3r、3g、3b的厚度与反射层2的厚度设定为相等,将树脂散射层4的厚度设定为它们的2倍。实际上,反射层2的层厚一般没有那么厚,另外,着色层3r、3g、3b与树脂散射层4的层厚的关系也随设计而变化,但是,通过省略树脂散射层4就减少了该部分的厚度,所以,可以可靠地减少遮光层3k的区域的厚度。
其次,使用树脂黑等形成树脂型黑底即闪光层时的情况示于图2(a)。在本例中,除了遮光层3k作为树脂黑的层而与R、G、B的着色层分别单独形成以外,和图1(a)的情况相同。即,在基材1上形成树脂散射层4,但是,在形成遮光层3k的区域不形成树脂散射层4。在树脂散射层4上,在除了开口部6的区域形成反射层2,在该反射层2上形成各色的着色层3r、3g、3b。
作为比较例,图2(b)表示在基材料1的整个面上形成树脂散射层4时的彩色滤光器基板的剖面结构。如图所示,在遮光层3k下也形成树脂散射层4的结果,就是遮光层3k的区域的厚度比其他着色层3r、3g、3b的区域厚。
与此相反,图2(a)所示的本发明的情况,是在遮光层3k下不设置树脂散射层4,所以,减少了该部分的厚度,结果,遮光层3k的区域的厚度就减小了。在图2(a)中,厚度减小的结果,是遮光层3k的区域成为比与其相邻的着色层向内***的形状,但是,通过调整遮光层3k的厚度或各着色层3r、3g、3b的厚度或反射层2的厚度,进而可以实现平坦化。
本发明通过在形成单一的着色层的区域以外的区域即显示用点D以外的区域亦即形成遮光层3k的区域省略树脂散射层4,使彩色滤光器基板的全体的厚度尽可能平坦化,这样,在遮光层3k的区域和与其相邻的各色的着色层区域之间就不是有意使它们的厚度完全一致。
实际上,各色的着色层、反射层、遮光层和树脂散射层的厚度是根据各种各样的因素而设定的,不一定在遮光层3k的区域与各色的着色层的区域之间必须使厚度一致。但是,通常由于遮光层3k的区域比各色的着色层厚,所以,如果省略该部分的树脂散射层,则遮光层3k的区域与着色层的区域间的厚度差减小是确实的事实,于是,本发明可以得到平坦性高的彩色滤光器基板。
实施例1.
下面,说明将图1(a)所示的彩色滤光器基板应用于半透过反射型的液晶装置时的实施例。在图3中,液晶装置10A具有通过密封材料13相互粘贴的基板11和基板12。这些基板11和12是通过在由例如玻璃、塑料等形成的基材11’和12’上形成各种层要素而制造成的。将液晶放入到基板11与基板12之间,由该液晶形成液晶层14。
另外,在基板12的外表面上顺序配置相位差片15和偏振片16,另一方面,在基板11的外表面上配置相位差片17和偏振片18。在偏振片18的下方,作为后照灯,配置进行透过型显示时发生照明光的照明装置19。将基板11和基板12相互粘贴而成的屏幕构造体具有多个作为显示的最小单位的显示用点D,这些显示用点D从箭头A方向看即从观察侧看排列成矩阵状。
在基材11’上,在应形成R、G、B各色的着色层的区域即应形成遮光层的区域以外的区域亦即与显示用点D对应的区域,作为基底层,利用例如丙烯酰基树脂等形成透明的树脂散射层23。并且,在该树脂散射层23上形成反射层21。因此,在应形成各色的着色层的区域,在树脂散射层23上形成反射层21,在应形成遮光层的区域,直接在基材11’上形成反射层21。在树脂散射层23上,反射层21具有用于透过来自下方的照明光的开口部27。
另外,在形成树脂散射层23的区域,在反射层21上形成各色的着色层22r、22g、22b。另一方面,在不形成树脂散射层23的区域,通过使R、G、B的三色的着色层相互重叠,形成遮光层22k。并且,在各色的着色层22r、22g、22b和遮光层22k上形成用于保护这些层的保护层22p。由这些着色层22r、22g及22b、遮光层22k和保护层22p形成彩色滤光器22。此外,在彩色滤光器22的保护层22p的表面上形成透明电极24。
这样,形成遮光层22k的区域,就重叠地配置了三色的着色层,但是,由于在该区域不设置树脂散射层23,所以,与各色的着色层的区域的厚度差就没有那么大,从而可以提高彩色滤光器22的平坦性。另外,这样也可以减小保护层22p的厚度,结果,也可以减小液晶装置10A本身的厚度。
另一方面,在基材12’的内面上形成透明电极26,该透明电极26与相对的基材11上的透明电极24交叉。在基板11侧的透明电极24上和基板12侧的透明电极26上,根据需要可以设置取向膜以及其他光学要素。
下面,参照图3和图4更详细地说明设置彩色滤光器22的基板11侧的结构。如图3和图4所示,在本实施例中,在与彩色滤光器22的各色的着色层22r、22g、22b对应的区域形成厚度约50nm~250nm的反射层21。该反射层21可以用铝、铝合金、银合金等的薄膜形成。在图4的平面图中,在各色的着色层22r、22g、22b内,在开口部27以外的区域形成反射层21。
在反射层21上,对于例如原色的彩色滤光器的情况,分别形成厚度约0.5μm~2.0μm的R(红)的着色层22、G(绿)的着色层22g和B(篮)的着色层22b。这些着色层按照众所周知的排列例如带状排列、三角形排列、对角线排列等这样的排列在各显示用点中配置。图4所示的平面结构例,表示带状排列的彩色滤光器。
在着色层22r、22g、22b上形成由透明树脂等构成的保护层22p。该保护层22p在彩色滤光器基板的制造工序中由于保护着色层防止药剂等引起的腐蚀或污染,同时,使彩色滤光器22的表面实现平坦化。在本实施例中,在形成保护层22p之前的阶段,由于各色的着色层22r、22g、22b的区域的厚度与遮光层22k的区域的厚度差小,所以,仅形成薄的保护层22p就可以使彩色滤光器22的表面平坦。
在彩色滤光器22上,形成多条由ITO(Indium Tin Oxide)等这样的透明导电体构成的透明电极24。这些透明电极24从箭头A方向看相互平行地排列,全体排列成带状。另外,这些透明电极24在与同样在基材12’上形成为带状的透明电极26正交的方向延伸,包含在透明电极24与透明电极26(在图4中用虚线表示)的交叉区域内的液晶装置10A的结构部分即反射层21、彩色滤光器22、透明电极24、液晶层14和透明电极26的上述交叉区域内的部分构成显示用点D。
在该液晶装置10A中进行反射型显示时,入射到形成反射层21的区域的外部光沿图3所示的反射路径R传播,由反射层21反射后,被观察者进行观察。另一方面,进行透过型显示时,从照明装置19出射的照明光透过树脂在反射层21上的开口部27,如路径T所示的那样传播,由观察者进行观察。
在本实施例中,彩色滤光器22的各着色层22r、22g、22b的排列不限定特定的排列。即,可以设定为带状排列、三角形排列对角线排列等各种排列。
下面,说明以上所述的结构的液晶装置10A的制造方法。首先,参照图5说明图3所示的具有树脂散射层23、反射层21和彩色滤光器22的基板构造体的制造方法。
在图5(a)中,在基材11’的表面上形成树脂散射层23。树脂散射层23仅在应形成单一的着色层的区域即与显示用点D对应的区域形成。换言之,不在应形成遮光层22k的区域形成树脂散射层23。
作为树脂散射层23的形成方法,在通过旋转涂敷形成例如指定的膜厚的抗蚀层后进行预烘,然后,通过配置形成了指定的图形的光掩模并进行曝光和显影处理,在玻璃基板的表面形成微细的凹凸形状。此外,通过对这样在基材11’上形成的凹凸进行热处理,利用热使凹凸形状的角变形,从而形成平滑形状的凹凸形状。作为树脂散射层23的形成方法,当然也可以采用除此以外的方法。
其次,利用蒸发法或溅射法等将铝、铝合金、银合金等这样的金属形成薄膜,通过使用众所周知的光刻法对其进行图形化处理,如图5(b)所示,形成厚度约50nm~250nm的反射层21。这时,反射层21在先形成树脂散射层23的区域(即,与各色的着色层对应的区域)上和不形成树脂散射层23的区域(即与遮光层22k对应的区域)形成,但是,在树脂散射层23上,在除了开口部27的区域形成(参见图4)。
然后,同步分散了呈指定的色相的颜料或染料等而成的着色的感光性树脂(例如,感光性抗蚀剂)。其次,通过按指定的图形进行曝光以及显影而进行图形化处理,顺序形成厚度约0.5μm~2.0μm的着色层22r、22g、22b。在形成了三色的着色层22r、22g、22b时,这3层相互重叠的部分就成为遮光层22k。
在该着色层的形成工序中,作为感光性树脂层,使用调整性高的材料,使用旋转涂敷法等容易得到平坦性的方法涂布该材料。结果,各着色层的表面在显示用点D内就几乎形成为平坦的。
这样,在本发明的液晶装置10A中,由于在遮光层22k的区域不形成树脂散射层23,所以,就减少了遮光层22k的全体的厚度,从而相对于与其相邻的各色的着色层区域的厚度差就减小了。因此,可以提高彩色滤光器22的平坦性。
下面,参照图6说明使用这样得到的彩色滤光器基板制造图3所示的液晶装置10A的方法。图6是表示液晶装置10A的制造工序的流程图。
首先,在工序P1,制造具有树脂散射层23、反射层21和彩色滤光器22的彩色滤光器基板。然后,在工序P2,利用架设法将透明导电体被覆到彩色滤光器基板的彩色滤光器22上,通过利用众所周知的光刻法进行图形化处理,形成透明电极24。然后,在工序P3,在透明电极24上形成由聚酰亚铵树脂等构成的取向膜,进而对该取向膜进行摩擦处理等。这样,就形成了基板11。
另一方面,为了制造相对的基板12,在工序P4,在基材12’]所形成透明电极26。此外,在工序P5,在透明电极26上形成取向膜,进而对该取向膜进行摩擦处理。这样,就形成了基板12。
然后,在工序P6,利用密封材料13将基板11和基板12相互粘贴,形成屏幕结构。基板11和基板12通过分散配置在基板间的图中未示出的隔离片相互粘贴为具有规定的基板间隔。
然后,在工序P7,将由于形成液晶层14的液晶从密封材料13的开口部(图中未示出)注入,并在注入之后利用紫外线硬化树脂等这样的封装材料进行封装。在这样完成主要的屏幕结构之后,在工序P8,根据需要利用粘贴等这样的固定方法将上述相位差片或偏振片安装到屏幕结构的外表面。这样,就完成了图3所示的液晶装置10A。
实施例2.
下面,说明本发明的其他实施例。本实施例如图2(a)所示,是将作为遮光层使用树脂黑的彩色滤光器基板应用于半透过反射型的其他液晶装置的例子,其剖面结构示于图7。
在图7中,液晶装置10B具有通过密封材料33相互粘贴的基板31和基板32。这些基板31和32是通过在由例如玻璃、塑料等形成的基材31’和32’上形成各种层要素而制造的。在基板31与基板32之间注入液晶,由该液晶形成液晶层34。
在基板32的外表面上顺序设置相位差片35和偏振片36。另外,在基板31的外表面上顺序设置相位差片37和偏振片38。在偏振片38的下方,作为后照灯,设置发生照明光的照明装置39。将基板11和基板12相互粘贴而成的屏幕构造体具有多个作为显示的最小单位的显示用点D,这些显示用点D从箭头A方向看即从观察侧看排列成矩阵状。
在基材31’上,在应形成R、G、B各色的着色层的区域即应形成遮光层的区域以外的区域亦即与显示用点D对应的区域,作为基底层利用例如丙烯酰基设置等形成透明的树脂散射层43。并且,在其上形成反射层41。因此,在应形成各色的着色层的区域,在树脂散射层43上形成反射层41,在应形成遮光层的区域,直接在基材31’上形成反射层。在树脂散射层43上,反射层41具有用于透过来自下方的照明光的开口部47。
另外,在形成树脂散射层43的区域,在反射层41上形成各色的着色层42r、42g、42b。另一方面,在不形成树脂散射层43的区域,利用树脂黑等形成遮光层42k。并且,在各色的着色层42r、42g、42b和遮光层42k上,形成用于保护这些层的保护层42p。由这些着色层42r、42g及42b、遮光层42k、保护层42p形成彩色滤光器42。此外,在彩色滤光器42的保护层42p的表面形成透明电极44。
这样,用于在形成遮光层42k的区域不设置树脂散射层43,所以,与各色的着色层的区域的厚度差就没有那么大,从而可以提高彩色滤光器42的平坦性。另外,这样也可以减小保护层42p的厚度,结果,就可以减小液晶装置10B本身的厚度。
另一方面,在基材32’的内面形成透明电极46,该透明电极46与相对的基材31’上的透明电极44交叉。在基板31侧的透明电极44上和基板32侧的透明电极46上,根据需要可以设置取向膜以及其他光学要素。
图7的液晶装置10B的平面结构与图4所示的液晶装置10A基本上相同,所以,省略其说明。另外,在本实施例中,彩色滤光器的各着色层的排列不限定特定的排列。即,可以采用带状排列、三角形排列、对角线排列等各种排列。
下面,说明以上所述的液晶装置10B的制造方法。首先,参照图8说明图7所示的具有树脂散射层43、反射层41和彩色滤光器42的基板构造体的制造方法。
在图8(a)中,在基材31’的表面上形成树脂散射层43。树脂散射层43仅在应形成单一的着色层的区域即与显示用点D对应的区域形成。换言之,在应形成遮光层42k的区域不形成树脂散射层43。树脂散射层43的形成方法与图5所示的实施例的情况相同。
其次,利用蒸发法或溅射法等将铝、铝合金、银合金等这样的金属形成薄膜状,通过使用众所周知的光刻法对其进行图形化处理,如图8(b)所示,形成厚度约50nm~250nm的反射层41。这时,反射层41在先形成树脂散射层43的区域(即,与各色的着色层对应的区域)上和不形成树脂散射层43的区域(即,与遮光层42k对应的区域)形成,但是,在树脂散射层43上,在除了开口部47的区域形成(参见图4)。
然后,涂布分散了呈指定的色相的颜料或染料等而成的着色的感光性树脂(例如,感光性抗蚀剂)。其次,通过按指定的图形进行曝光以及显影而进行图形化处理,如图8(c)所示的那样,顺序形成厚度约0.5μm~2.0μm的着色层42r、42g、42b。然后,利用树脂黑等,如图8(d)所示的那样,形成遮光层42k。最后,再在其上形成保护层42p。
这样,在本实施例的液晶装置10B中,由于在遮光层42k的区域不形成树脂散射层43,所以,就减少了遮光层42k的全体的厚度,对与其相邻的各色的着色层区域的厚度差就减小了。因此,可以提高彩色滤光器42的平坦性。
使用这样得到的彩色滤光器基板制造图7所示的液晶装置10B的方法与参照图6说明的实施例的情况相同,所以,省略其说明。
实施例3.
下面,说明将本发明应用于反射半透过型的无源矩阵方式的液晶装置时的实施例。图9是该液晶装置的剖面图。图10是构成该液晶装置的液晶屏的剖面图。图11是作为构成图10的液晶屏的液晶装置用基板的彩色滤光器基板的剖面图。图12是该液晶屏的部分放大图。图12中的A-A’线的剖面图与图10相当。图13是完全去掉基底层的遮光层的部分剖面放大图。图14是去掉一部分基底层的遮光层的部分剖面放大图。并且,图15是表示本实施例的液晶装置的制造方法的1个实施例的工序图。
液晶装置101包括具有所谓的反射半透过型的结构的液晶屏102、根据需要而设置的照明装置131和支持液晶屏102及照明装置131的壳体132。
如图10所示,液晶屏102是以由玻璃板或合成树脂板等形成的透明的第1基材103为基体的彩色滤光器基板604和以与其相对的第2基材105为基体的对向基板606通过密封材料133(参见图9)相互粘贴并将液晶封入到该彩色滤光器基板604与对向基板606之间形成液晶层607而得到的。另外,在第1基材103的外表面配置相位差片108和偏振片109,在第2基材105的外表面配置相位差片110和偏振片111。
对于彩色滤光器基板604,如图10、图11和图12所示,在第1基材103的液晶层607侧的表面形成基底层112,在该基底层112的表面设置反射层113。另外,基底层112的表面设置反射层113的部分构成反射部125,由在反射层113上形成的开口部122构成透过部。
在反射层113上,按指定的排列图形形成绿色的着色层114G、蓝色的着色层114B和红色的着色层113R。对于这些着色层,在以后的说明中有时按总称用符号“114”表示。在相互相邻的着色层114间的边界区域设置遮光层115。另外,在着色层114和遮光层115上设置保护这些层的覆盖层116。另外,在覆盖层116上,形成由ITO(Indium Tin Oxide:铟锡氧化物)等这样的透明导电体构成的透明电极117,然后,再在其上形成由聚酰亚铵树脂等构成的取向膜118。
另一方面,如图10和图12所示,在对向基板606上,在第2基材105的液晶层607侧的表面,透明电极119形成为沿着与第1基材103侧的透明电极117正交的方向(即图12的X方向)延伸的带状,然后,再在其上形成取向膜120。透明电极117相互并列地构成从A方向看为带状,透明电极119在与其正交的方向相互并列地构成从箭头A方向看为带状。第1基材103侧的透明电极117与第2基材105侧的透明电极119平面重叠的部分构成作为显示的最小单位的显示用点D。
彩色滤光器基板604的基底层112由树脂材料构成,如图13所示,由下层112和上层112b的2层形成。基底层112的下层112a的表面加工为细的凹凸状,然后由相同材料的薄的上层112b被覆到该下层112a的整个表面上。这样,基底层112的表面就形成为光滑的凹凸状。另外,该基底层112使透过光发生散射,这样便可消除难于观看所显示的画面的像的问题。
另外,反射层113是例如铝或银等的单体金属膜,在基底层112上形成,反射层113的表面与基底层112的表面的凹凸对应地也形成细的凹凸。这样,也可以使由反射层113反射的反射光发生散射,从而也可以消除难于观看所显示的画面的像的问题。
在反射层113上,例如图12所示的那样在显示用点D的大致中央形成略呈长方形的开口部122,该开口部122就成为用于使光透过的透过部。从图9的照明装置131出射的面状的光透过该开口部122供给液晶层607。开口部122不限定本例的形状,也可以是其他的形状例如圆孔形状。另外,开口部122的个数不限于1个,也可以是多个。
在图10中,着色层114是通过涂布由包含颜料或染料等着色剂的感光性树脂构成的着色抗蚀剂并利用光刻法等将其进行图形化处理而形成的。通过图形化处理,形成使通过第1基材103的照明装置131的光透过的开口部122和覆盖该开口部122的周围的反射层113的部分。如本实施例那样,设置R、G、B的三色的着色层114时,对各色顺序进行上述图形化处理。
作为着色层114的排列图形,在图12中采用了倾斜的镶嵌排列,但是,除了该倾斜的镶嵌排列外,也可以采用带状排列或数字排列等各种图形形状。
在图10中,遮光层115在各显示用点D间的边界区域形成,将该边界区域遮光。该遮光层115形成为在第1基材103上的透明电极117的长度方向(即图12的Y方向)和与其正交的方向(即图12的X方向)延伸的带状。
另外,遮光层115是由将例如金属铬、碳、钛等分散到光敏抗蚀剂中而形成的设置黑或镍等这样的金属材料等形成的。该遮光层115有时也称为黑底、黑掩膜等。
另外,如图13所示,遮光层115在与相互相邻的显示用点D间的边界区域对应的设置在基底层112上的开口部123中形成。并且,该遮光层115到第1基材103的液晶层607侧的面的高度设定为与该遮光层115相邻的着色层114的表面和该遮光层115的表面大致一致的高度。
例如,在图13中,(1)设相互相邻的着色层114的厚度为h11、反射层113的厚度为h12、基底层112的厚度为h13时,(2)如果将遮光层115的厚度h14与反射层113的厚度h12之和形成为与h11、h12和h13的总和大致相等,则可确保各显示用延D的表面与遮光层115的表面间的平坦性,这样,就可以降低单元间隙的偏差,另外,摩擦处理也容易。结果,液晶装置的画面显示的对比度就比较好。
收容遮光层115的基底层112的凹部不限于图13那样的开口部123,也可以采用图14所示的凹部123。这时,与凹部123的底部124对应的基底层112完全不除去。这时,遮光层115也降低了与凹部123的深度相当的高度。
例如,在图14中,设与凹部123的底部124对应的基底层112的厚度为h15时,通过将遮光层115形成为使遮光层115的厚度h14与反射层的厚度h12之和与着色层114的厚度h11、反射的厚度h12、基底层112的厚度h13的总和大致相等,确保各显示用点D的表面与遮光层115的表面间的平坦性,这样,便可降低单元间隙的偏差,另外,摩擦处理也容易。结果,液晶装置的画面显示的对比度就比较好。
显示用点D是由遮光层115将其周围包围的区域,在该显示用点D的内部,包含R、G、B中的任意1色的着色层114,此外,也包含反射层113和开口部122。1个像素是由包含R、G、B的各色的着色层114的3个显示用点构成的。
在上述那样构成的本实施例中,在图9中将扫描信号或数据信号的一方供给在第2基材105上形成的透明电极119、同时将扫描信号或数据信号的另一方供给在第1基材103侧形成的透明电极117时,可以驱动在透明电极119与透明电极117交叉的区域形成的显示用点D保持的液晶。
考虑反射型的显示时,在图10中,从对向基板606侧入射到液晶层607上的外部光在透过着色层114后由反射层113反射,由液晶层607按各显示用点D进行调制,然后再次透过对向基板606向外部射出。这时,在本实施例中,由于覆盖层116是平坦的,所以,利用向对向基板606的外部出射的光,可以看到对比度锐利的图像。
另一方面,考虑透过型的显示时,从照明装置131(参见图9)出射的光通过第1基材103和透过部122向液晶层607入射。然后,该光由液晶层607按各显示用点D进行调制,通过透明电极119和第2基材105向外部出射。利用该出射光,可以观看对比度锐利的图像。此外,该出射光由覆盖反射层113和透过部122的着色层着色为对应的色。
在本实施例中,在相互相邻的显示用点D间的边界区域形成具有开口部123(图13)或凹部123(图14)等这样的凹陷的基底层112,所以,可以将遮光层115的高度降低与该凹陷相当的高度,因此,可以确保各显示用点D的表面与和其相邻的点间区域的表面之间的平坦性。
如图14所示,与凹部123的底部124对应的基底层112不完全除去时,基底层112可以由第1绝缘层112a和使在该第1绝缘层112a上具有凹部123而设置的第2绝缘层112b形成。这时,可以将覆盖层116上面的凹凸降低,因此,可以降低单元间隙的偏差,从而可以很容易地进行摩擦处理。结果,就可以提高液晶装置的显示画面的对比度。
(液晶装置的制造方法)
下面,根据图15的工序图说明本实施例的液晶装置的制造方法。首先,在图15的工序P1,在第1基材103上形成作为树脂散射层的基底层112。这里,在用于形成遮光层115的显示用点D间的边界区域,使用光敏抗蚀剂对基底层112通过腐蚀进行图形化处理,例如像图13所示的那样,在基底层112上形成开口部123,或者如图14所示的那样,在基底层112上形成凹部123。
若稍详细地说明该工序,就是利用旋转涂敷法将树脂材料均匀地涂布到第1基材103上,进而再在其上涂布抗蚀剂,并从进而形成了指定的图形的光掩模上进行曝光和对抗蚀剂进行显影处理。然后,通过蚀刻在基底层112上形成多个孔。
其次,通过对该基底层112进行加热,使这些孔平滑地发生变形,形成凹凸状的基底层112的下层112a。然后,薄薄地涂布上相同的树脂材料,使该基底层112的凹凸状成为光滑面,从而形成基底层112的上层112b。
此外,将抗蚀剂涂布到该基底层112上,然后,从形成了指定图形的光掩模上进行曝光并对抗蚀剂进行显影处理。然后,通过蚀刻在形成遮光层115的部分的基底层112的地方形成凹部123。
其次,在工序P2,在基底层112上利用蒸发法或溅射法等将铝等形成薄膜状,并通过使用光刻法将其进行图形化处理,例如,如图12所示的那样在各显示用延D的中央设置略呈长方形的开口部122,同时,在除此以外的区域形成反射层113。
然后,在工序P3,在形成了凹部123的基底层112上,从反射层113上涂布遮光材料。该遮光材料由例如将碳黑等分散到树脂中而形成。其次,利用摄影蚀刻技术进行图形化处理,在基底层112的凹部123形成遮光层115。
其次,在工序P4,在反射层113和开口部122上,利用旋转涂敷法涂布各色的着色材料,进而再在其上涂布抗蚀剂,并从形成了指定的图形的光掩模上进行曝光以及对抗蚀剂进行显影处理,然后通过蚀刻处理形成着色层114。这样的一连串的处理,对R、G、B的各色顺序进行,这样,就按所希望的排列图形形成R、G、B的各色的着色层。
然后,在工序P5,在着色层114上形成覆盖层116。在本实施例中,由于在基底层112的凹部123的地方形成遮光层115,所以,可以将遮光层115的高度降低与该凹部123的深度相当的部分。因此,在本工序中形成覆盖层116时,可以将该覆盖层116的表面形成为平坦的。因此,可以降低单元间隙的偏差,从而可以很容易地进行摩擦处理。结果,在液晶装置的显示中可以实现对比度的锐化。
其次,在工序P6,在覆盖层116上,利用溅射法被覆作为透明电极117的材料的ITO等,并利用光刻法进行图形化处理,如图12所示的那样,将电极117在Y方向形成为具有指定的宽度的带状。
然后,在工序P7,在电极117上形成取向膜118,进行摩擦处理后,彩色滤光器基板604的制造即告结束。这样,既可以确保取向膜118的液晶层607侧的面的平坦性,又可以消除单元间隙的偏差,从而可以实现画面的高画质化。
另一方面,对于图10的对向基板606,在图15的工序P11,在第2基材105上,利用溅射法被覆作为透明电极119的材料的ITO等,利用光刻法进行图形化处理,如图12所示的那样,在X方向将透明电极119形成为带状。其次,在工序P12,在电极119上形成取向膜120,并进而进行摩擦处理。这样,就制造成了对向基板606。
然后,在工序P21,在对向基板606上,通过干散等散布间隔部件129(参见图9),利用密封材料133将彩色滤光器基板604与对向基板606相互粘贴。然后,在工序P22,从密封材料133的开口部注入液晶,在完成注入之后,利用由紫外线硬化学会树脂等构成的封装材料将该开口部密封。
其次,在工序P23,利用粘贴等方法将相位差片108及110和偏振片109及111分别安装到第1基材103和第2基材105的外表面上。然后,在工序P24,进行必要的布线,并安装照明装置131和壳体132,就完成了图9所示的液晶装置101。
在本实施例的液晶装置101的制造方法中,在图13中,在降低层112上形成开口部123,并设置遮光层115将该开口部123埋没,所以,可以降低该遮光层115的高度,从而可以确保覆盖层116的平面的平坦性。这样,就可以降低单元间隙的偏差,从而可以很容易地进行摩擦处理,结果,在液晶装置的显示中,可以实现对比度的锐化。
在图13中,通过在基底层112上设置开口部123,在成为遮光层115的区域就将基底层112全部除去了,但是,也可以如图14所示的那样,将基底层112分为第1绝缘层112a和第2绝缘层112b通过2次形成,并且可以设置厚度与第2绝缘层112b的厚度相当的凹部123。
这时,可以采用例如以下的方法。即,在第1次的处理中,在包含作为遮光层115的区域的显示用点D间的边界区域在内的基材103的整个面上形成第1绝缘层112a,并与图13的基底层112的下层112a一样,形成凹凸。并且,在第2次的第2绝缘层112b的形成时,除了成为遮光层115的显示用点D间的边界区域外,在各显示用点D上使用抗蚀剂通过蚀刻形成第2绝缘层112b。
如图13所示的那样,在开口部123的地方将基底层112完全除去时,有时反而损害相互相邻的显示用点D间的边界区域的表面与显示用点D的表面间的平坦性。这时,通过采用图14所示的使用凹部123的结构,按所希望的厚度形成基底层112,可以确保平坦性,除了可以减小单元间隙的偏差外,也可以很容易地进行摩擦处理。
此外,也可以使用半色调形成凹部123。
实施例4.
下面,说明将本发明应用于作为开关元件使用了二端型开关元件的TFD(Thin Film Diode)的反射半透过型的液晶装置时的实施例。
图16是构成本发明的液晶装置的其他实施例的液晶屏的剖面图。图17是构成图16的液晶屏的液晶装置用基板的剖面图。图18是该液晶屏的部分放大图。图18中的B-B’线和C-C’线的剖面图与图16相当。图19是完全除去了树脂散射层时遮光层的部分剖面放大图。图20是除去了一部分树脂散射层时遮光层的部分剖面放大图。并且,图21是本实施例的液晶装置的制造方法的制造工序图。
图16所示的液晶屏202是具有所谓的反射半透过型的结构的液晶屏,使用该液晶屏202构成的液晶装置的结构与图9所示的液晶装置101大致相同。即,根据需要,通过将照明装置131和壳体132安装到液晶屏202上,构成液晶装置。
在图16中,液晶屏幕202具有利用密封材料133(参见图9)相互粘贴的第1基材203和第2基材205。将液晶封入到这些基材间,形成液晶层207。另外,在第1基材203的外表面上配置相位差片208和偏振片209,在第2基材205的外表面上配置相位差片210和偏振片211。
在第1基材203的液晶层207侧的表面,形成基底层212,在该基底层212的表面,设置反射层213。另外,在基底层212的表面设置了反射层213的部分构成反射部225,由在反射层213上形成的开口部222构成透过部。
如图17所示,在反射层213上,按指定的排列图形形成绿色的着色层214G、蓝色的着色层214B和红色的着色层214R。对于这些着色层,在以后的说明中,有时总称用符号“214”表示。在相互相邻的着色层214间的边界区域设置遮光层715。
另外,在着色层214和遮光层715上,设置保护这些层的覆盖层216。另外,在覆盖层216上,形成由ITO(Indium TinOxide:铟锡氧化物)等这样的透明导电体构成的数据线226,然后,再在其上形成由聚酰亚铵树脂等构成的取向膜218。
另外,在第2基材205的液晶层207侧的表面,从箭头A方向看,配置排列为矩阵状的多个点电极227、树脂在各点电极227间的边界区域的多个扫描线228和与点电极227和扫描线228连接的TFD729。另外,在它们之上形成取向膜220。扫描线228在各点电极227间的边界区域以带状向与第1基材203侧的数据线226交叉的方向(即图18的Y方向)延伸。
这里,多个数据线226分别以带状向图16的纸面垂直方向(即图18的X方向)延伸,另外,通过向图16的左右方向按指定间隔相互平行地排列,从箭头A方向看,总体上就形成带状。这些数据线226和点电极227从箭头A方向看,平面重叠的区域就成为显示用延D。
在图16中,彩色滤光器基板204的基底层212由树脂材料构成,此外,由下层212a和上层212b的2层形成。基底层212的下层212a的表面加工成细的凹凸状,该下层212a的表面全体被覆上相同材料的薄的上层212b。这样,基底层212的表面就形成为光滑的凹凸状。另外,由于该凹凸形状,透过基底层212的光发生散射,这样,就可以消除难于观看在液晶装置的显示画面上显示的像的问题。
反射层213是例如铝或银等的单体金属膜,在基底层212的上面形成,反射层213的表面与基底层212的表面的凹凸相应地也形成细的凹凸。这样,也可以使由反射层213反射的光发生散射,从而也可以消除难于观看在液晶装置的显示画面上显示的像的问题。
此外,在反射层213上,例如,如图18所示的那样在显示用延D的大致中央形成略呈长方形的开口部222,该开口部222就成为透过部。从照明装置131(参见图9)射出的光透过该开口部222,供给液晶层207。开口部222不限定本例形状,可以是其他形状,例如圆孔形状。另外,1个显示用点D内的开口部222的个数不限于1个,可以采用多个。
着色层214是通过涂布由包含例如颜料或染料等的着色剂的感光性树脂构成的着色抗蚀剂并利用光刻法等对其进行图形化处理而形成的。通过图形化处理,形成用于使通过第1基材203的照明装置131的光透过的开口部222和覆盖该开口部222的周围的反射层213的部分。如本实施例那样,设置R、G、B的三色的着色层214时,对个色顺序进行上述图形化处理。
遮光层215在各显示用点D间的边界区域形成,将该边界区域遮光。该遮光层215形成为在第2基材205上的扫描线228的长度方向(即图18的Y方向)和与其正交的方向(即图18的X方向)以带状延伸。
另外,如图19所示,在与相互相邻的显示用点D间的边界区域对应的基底层212上设置的开口部223中形成遮光层215。开口部223的底部224通过反射层213在第1基材203上形成。遮光层215设置在开口部223的反射层213上,高度与相邻的着色层214大致相同。
例如,在图19中,设相互相邻的着色层214的厚度为h21、反射层213的厚度为h22、基底层212的厚度为h23时,如果将遮光层215的厚度h24与反射层213的厚度h22之和形成为与h21、h22和h23的总和大致相等,就可以确保各显示用点D的表面与遮光层215的表面间的平坦性,这样,就可以降低单元间隙的偏差,另外,摩擦处理也容易。结果,液晶装置的画面显示的对比度良好。
收容遮光层215的基底层212的凹陷不限于图19那样的开口部223,也可以采用图20所示的凹部223。这时,与凹部223的底部224对应的基底层212完全不除去。这时,遮光层215的高度也降低了与凹部223的深度相当的部分。
例如,在图20中,设与凹部223的底部224对应的基底层212的厚度为h25时,通过将遮光层215形成为使遮光层215的厚度h24与反射层的厚度h22之和与着色层214的厚度h21、反射层的厚度h22、基底层212的厚度h23的总和大致相等,可以确保各显示用点D的表面与遮光层215的表面之间的平坦性,这样,就可以降低单元间隙的偏差,从而摩擦处理容易。结果,液晶装置的画面显示的对比度良好。
显示用延D是由遮光层215将其周围包围的区域,在该显示用点D的内部,包含R、G、B的任意1色的着色层214,此外,也包含反射层213和开口部222。1个像素由包含R、G、B的各色的着色层214的3个显示用点D构成。
其次,点电极22 由例如ITO等这样的透明导电体形成,该点电极227通过TFD729与扫描线228连接。如图16所示,TFD729在第2基材205的表面上成膜的降低层230上形成。另外,TFD729由第1金属层231、在该第1金属层231的表面形成的绝缘膜232和在该绝缘膜232上形成的第2金属层233构成。
这里,第1金属层231由例如厚度约100~500nm的Ta单体膜、Ta合金膜等形成,与扫描线228连接。另外,绝缘膜232由例如厚度约10~35nm的氧化钽等形成。另外,第2金属层233由例如铬(Cr)等金属膜形成为约50~300nm的厚度,与点电极227连接。
在上述结构的本实施例中,向在第2基材205上形成的扫描线供给扫描信号体向在第1基材203侧形成的数据线226供给数据信号时,可以驱动点电极227和数据线226相对的部分保持的液晶。
考虑反射型的显示时,通过第2基材205和点电极227入射到液晶层207上的外部光由反射层213反射后,再次进入液晶层207,按各显示用点D进行调制,并且,通过点电极227和第2基材205向外部出射,利用该出射光向外部显示图像。这时,在本实施例中,由于覆盖层216是平坦的,所以,可以看到对比度锐利的图像。
另外,考虑透过型的显示时,照明装置131(参见图9)的光通过第1基材203和开口部222供给液晶层207,由该液晶层207按各显示用点D进行调制,此外,通过点电极227和第2基材205向外部出射,利用该出射光向外部显示图像。这时,由于覆盖层216是平坦的,所以,可以看到对比度锐利的图像。出射光由覆盖反射层213和透过部222的着色层214着色为对应的色。
在本实施例中,在相互相邻的显示用点D间的边界区域形成具有开口部223(图19)或凹部223(图20)的基底层212,所以,可以降低遮光层215的高度。这样,就可以使着色层214的表面与遮光层215的表面的高度大致相同。
另外,如图20所示,在凹部223的地方完全不除去基底层212时,基底层212可以由第1绝缘层212a和在该第1绝缘层212a上设置的第2绝缘层212b构成。这时,就形成与第2绝缘层212b的厚度相当的凹部223。这时,也可以降低覆盖层216的上面的凹凸,这样,就可以降低单元间隙的偏差,另外,摩擦处理也容易。结果,可以改善液晶装置的显示画面的对比度。
此外,在本实施例中,由于是TFD型的有源矩阵方式,所以,画面明亮而容易观看,而且可以降低耗电和制造成本。
(液晶装置的制造方法)
下面,根据图21的工序图说明本实施例的液晶装置的制造方法。首先,在工序P31,在第1基材203上形成作为基底层的树脂散射层212。这里,在图16中,在形成遮光层215的各显示用点D间的边界区域,使用光敏抗蚀剂对基底层212进行蚀刻处理,例如,如图19所示的那样在基底层212上形成开口部223。
若稍详细地说明该工序,就是利用旋转涂敷法将树脂材料均匀地涂布到第1基材203上,进而再在其上涂布抗蚀剂,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理,并对该抗蚀剂进行蚀刻处理,在基底层212上形成多个孔。其次,通过对该基底层212进行加热,使这些孔平滑地变形,形成凹凸状的基底层212的下层212a。
此外,薄薄地涂布相同的树脂材料,形成基底层212的上层212b,使基底层212的凹凸状成为光滑面。进而,在该基底层212上涂布抗蚀剂,然后从形成了指定的图形的光掩模上进行曝光和对抗蚀剂进行显影处理。然后,通过蚀刻在基底层212上形成开口部223,在应形成遮光层215的部分除去基底层212。
其次,在工序P32,在基底层212上,利用蒸发法或溅射法等将铝等形成薄膜状,通过使用光刻法对其进行图形化处理,例如,如图18所示的那样在各显示用点D的大致中央形成略呈长方形的开口部222,同时,在除此以外的区域形成反射层213。
然后,在工序P33,在形成了开口部223的基底层212上,从反射层213上涂布遮光材料,然后,利用摄影蚀刻技术进行图形化加工,在基底层212的开口部223中形成遮光层215。作为上述遮光材料,可以使用将碳黑等分散到树脂中而形成的材料。
其次,在工序P34,利用旋转涂敷法将1色的着色层材料涂布到图17的反射层213和开口部222上,进而再在其上涂布抗蚀剂,并从形成了指定的图形的光掩模上进行曝光和对抗蚀剂进行显影处理,然后通过蚀刻形成该1色的着色层214。另外,对于其他的2色,重复进行相同的处理,将R、G、B的三色的着色层214形成为所希望的排列图形。
然后,在工序P35,在着色层214上形成覆盖层216。在本实施例中,由于在基底层212的开口部223的地方形成遮光层215,所以,可以将遮光层215的高度降低与该开口部223的深度相当的部分。因此,在本工序中形成覆盖层216时,可以将该覆盖层216的表面形成为平坦的。这样,就可以降低单元间隙的偏差,从而可以很容易地进行摩擦处理。结果,在液晶装置的显示中,可以实现对比度的锐化。
其次,在工序P36,在覆盖层216上利用溅射法被覆作为数据线226的材料的ITO等,并利用光刻法进行图形化处理,如图18所示,将数据线226在X方向形成具有指定的宽度的带状。此外,在数据线226上形成取向膜218,并对该取向膜228进行摩擦处理。这样,就制造成了彩色滤光器基板204。
另一方面,在工序P41,在图16的第2基材205上形成TFD729、扫描线228和点电极227。这里,TFD729是在第2基材205上将Ta氧化物等形成均匀厚度的薄膜从而形成基底层230并利用溅射法再在其上将Ta等形成均匀厚度的薄膜而形成的,此外,使用光刻法同时形成扫描线228和第1金属层231。这时,扫描线228和第1金属层231以桥式连接。
此外,在第1金属层231上,将作为绝缘膜的氧化钽等以均匀的厚度成膜,形成绝缘膜232,进而再在其上利用溅射法等将Cr以均匀的厚度成膜,然后,利用光刻法形成第2金属层233。
其次,在除去点电极227的预定形成区域的基底层230之后,利用溅射法等将ITO以均匀的厚度成膜,然后,利用光刻法等形成与1个显示用点的大小相当的指定形状的点电极227,其一部分与第2金属层233重叠。通过这些一连串的处理,就形成了TFD729和点电极227。
然后,在工序P42,在点电极227等上形成取向膜220,并对该取向膜220进行摩擦处理。这样,就形成了对向基板206。
其次,在工序P51,在对向基板206侧的取向膜220上通过干散等散布间隔部件129(参见图9),利用密封材料133将彩色滤光器基板204和对向基板206相互粘贴。
然后,在工序P52,通过密封材料133的开口部将液晶注入到基板间的间隙即所谓的单元间隙内,在完成注入之后,利用由紫外线硬化性树脂等构成的封装材料将密封材料133的开口部密封。其次,在工序P53,通过粘贴等方法将图16的相位差片208及210和偏振片209及211安装到第1基材203和第2基材205的外表面上。
其次,在工序P54,对图16的烟屏202进行必要的布线,通过安装照明装置131和壳体132等,就完成了图9中用符号101所示的全部结构的液晶装置。
在以上说明的液晶装置的制造方法中,如图19所示,在形成遮光层215的区域,在基底层212全部除去之后,形成开口部223,但是,也可以如图20所示的那样,将基底层212分为第1绝缘层212a和第2绝缘层212b,通过2次形成,并设置深度与第2绝缘层212b的厚度对应的凹部223。
这时,在第1次的处理中,包含成为遮光层215的显示用点D间的边界区域在内,在基材203的整个面上形成第1绝缘层212a,和图19的基底层212的下层212a一样,形成凹凸。并且,通过第1次的处理形成第2绝缘层212b时,除了成为遮光层215的显示用点D间的边界区域,在各显示用点D的区域,以光敏抗蚀剂作为材料,通过对其进行蚀刻处理,可以形成凹部223。
如图19所示,在开口部223的地方将基底层212完全除去时,有时反而损害相互相邻的显示用点D间的边界区域的表面与显示用延D的表面之间的平坦性。这时,如图20所示,通过在凹部223的地方将基底层212形成所希望的厚度,在显示用点D间的边界区域与显示用点D的区域之间可以确保平坦性,这样,除了可以减少单元间隙的偏差外,摩擦处理也容易。
此外,也可以使用中间色调形成凹部223。
实施例5.
下面,说明将本发明应用于作为反射半透过型的开关元件而使用三端型开关元件即TFT(Tin Film Transistor)的液晶装置的实施例。
图22是构成本发明的直径装置的其他实施例的液晶屏的剖面图。图23是构成图22的液晶屏的彩色滤光器基板侧的剖面图。图24是该液晶屏的部分放大图。图2 4中的D-D’线和E-E’线的剖面图与图22相当。图25是将作为基底层的树脂散射层完全除去时的遮光层的部分剖面放大图。图26是将作为基底层的树脂散射层除去一部分时的遮光层的部分剖面放大图。并且,图27是本实施例的液晶装置的制造方法的一例的工序图。
图22所示的液晶屏302是具有所谓的反射半透过型的结构的液晶屏,使用该液晶屏302构成的液晶装置的结构与图9所示的液晶装置101大致相同。即,根据需要,通过将照明装置131和壳体132安装到液晶屏302上,即构成液晶装置。
在图22中,液晶屏302具有利用密封材料133(参见图9)相互粘贴的第1基材303和第2基材305。将液晶封入到这些基材之间,就形成液晶层307。另外,在第1基材303的外表面配置相位差片308和偏振片309,在第2基材305的外表面配置相位差片310和偏振片311。
在第1基材303的液晶层307侧的表面形成基底层312,在该基底层312的表面设置反射层313。另外,在基底层312的表面设置反射层313的部分构成反射部325,由在反射层313上形成的开口部322构成透过部。
如图23所示,在反射层313上,按指定的排列图形形成绿色的着色314G、蓝色的着色层314B和红色的着色层314R。对于这些着色层,在以后的说明中,有时总称用符号“314”表示。在相互相邻的着色层314间的边界区域设置遮光层315。
另外,在着色层314和遮光层315上,设置保护这些层的覆盖层316。另外,在覆盖层316上,形成由ITO等这样的透明导电体构成的共同电极334,此外,再在其上形成由聚酰亚铵树脂等构成的取向膜318。
其次,在图22中,在第2基材305的液晶层307侧的表面,从箭头A方向看排列成矩阵状的多个点电极327配置成在各点电极327的边界区域栅极配线335与源极配线336正交(栅极配线335在图24的Y方向、源极配线336在X方向),在这些配线的交叉部分附近设置TFT 337,然后再在其上形成取向膜320。
这里,共同电极334是在覆盖层316的整个表面上形成的面状电极,由栅极配线335和源极配线336包围的区域成为显示用点D。
彩色滤光器基板304的基底层312由树脂材料构成,由下层312a和上层312b的2层形成。该基底层312是将下层312a的表面加工成细的凹凸状、进而用相同材料的薄的上层312b被覆到该下层312a的整个表面上而形成的,所以,在基底层312的表面形成光滑的凹凸状。该凹凸形状使透过基底层312的光发生散射,这样,就可以消除难于观看在液晶装置的显示画面上显示的图像的问题。
反射层313是例如铝或银等的单体金属膜,在基底层312的上面形成,反射层313的表面也随基底层312的表面的凹凸而形成细的凹凸。这样,也可以使由反射层313反射的光发生散射,于是,也可以消除难于观看在液晶装置的显示画面上显示的图像的问题。
另外,在反射层313上,例如图24所示的那样,在显示用点D的大致中央形成略呈长方形的开口部322,该开口部322成为透过部。从照明装置131射出的光通过开口部322供给液晶层307。开口部322不限于本例的形状,也可以是其他的形状例如圆孔形状。另外,开口部322在显示用点D内的个数不限于1个,可以采用多个。
着色层314是涂布由包含颜料或染料等的着色剂的感光性树脂构成的着色抗蚀剂并流光刻法等对其进行图形化处理而形成的。通过该图形化处理,形成用于使通过第1基材303的照明装置131的光透过的开口部322和覆盖该开口部322周围的反射层313的部分。如本实施例那样,设置R、G、B的三色的着色层314时,上述图形化处理对各色顺序进行。
遮光层315在各显示用点D间的边界区域形成,将该边界区域遮光。该遮光层315形成分别在第2基材305上的栅极配线335的长度方向(即图24的Y方向)和与其正交的方向(即图24的X方向)延伸的带状。
另外,如图25所示,遮光层在与相互相邻的显示用点D间的边界区域对应的基底层312上设置的开口部323中形成。开口部323的底部324在第1基材303上通过反射层313形成。遮光层315设置在开口部323的反射层313上,高度与相邻的着色层314大致相同。
例如,在图25中,设相互相邻的着色层314的厚度为h31、反射层313的厚度为h32、基底层312的厚度为h33时,如果形成为使遮光层315的厚度h34与反射层313的厚度h32之和与h31、h32和h33的总和大致相等,则可确保各显示用点D的表面与遮光层315的表面间的平坦性,这样,就可以减少单元间隙的偏差,另外,摩擦处理也容易。结果,液晶装置的画面显示的对比度良好。
收容遮光层315的角度层312的凹陷不限于图25那样的开口部323,也可以采用图26所示的凹部323。这时,与凹部323的底部324对应的基底层312不完全除去。这时,遮光层315就降低了与凹部323的深度相当的高度。
例如,在图26中,设与凹部323的底部324对应的基底层312的厚度为h35时,通过形成使遮光层315的厚度h34与反射层的厚度h32之和与着色层314的厚度h31、反射层的厚度h32、基底层312的厚度h33的总和大致相等的遮光层315,可以确保各显示用点D的表面与遮光层315的表面间的平坦性,这样,就可以降低单元间隙的偏差,摩擦处理也容易。结果,液晶装置的画面显示的对比度良好。
显示用点D是由遮光层315将其周围包围的区域,在该显示用点D的内部包含R、G、B中的任意1色的着色层314,此外,还包含反射层313还开口部322。1个像素由包含R、G、B的各色的着色层314的3个显示用点D构成。
其次,在图22中,TFT337具有在第2基材305上形成的栅极338、在该栅极338上遍及第2基材305的全部区域形成的栅极绝缘膜339、将该栅极绝缘膜339夹在中间而在栅极338的上方位置形成的半导体层340、在该半导体层340的一侧通过触点电极341形成的源极342和进而在半导体层340的另一侧通过触点电极341形成的漏极343。
栅极338与栅极配线335连接,源极342与源极配线336连接。栅极配线335在第2基材305的平面方向延伸,向纵向(即图24的Y方向)以等间隔平行地形成多条。另外,源极配线336将栅极绝缘膜339夹在中间与栅极配线335交叉地在第2基材305的平面方向延伸,向横向(即图24的X方向)以等间隔平行地形成多条。
点电极327构成为在由相互交叉的栅极配线335和源极配线336分割的方形区域中将除了与TFT337对应的部分的区域覆盖,由例如ITO等这样的透明导电体形成。
此外,栅极配线335和栅极338由例如铬、钽等形成。另外,栅极绝缘膜339由例如氮化硅(SiNx)、氧化硅(SiOx)等形成。另外,源极342和与其一体的源极配线336以及漏极343由例如钛、钼、铝等形成。
在上述结构的本实施例中,向在第1基材303上形成的共同电极334提供信号、同时向在第2基材305上形成的栅极配线335和源极配线336提供信号时,对各显示用点D选择点电极327,并将选择电压加到在该选择的点电极327与共同电极334间保持的液晶上,以此来控制液晶的取向,调制反射光和透过光。
考虑反射型的显示时,通过第1基材305和点电极327入射到液晶层307上的外部光由该液晶层307按各显示用点D进行调制,由反射层313进行反射,再次通过点电极327和第2基材305向外部出射,显示图像。这时,在本实施例中,由于覆盖层316是平坦的,所以,在显示画面上显示对比度锐利的图像。
另一方面,考虑透过型的显示时,从照明装置131(参见图9)射出的光通过第1基材303和透过部即开口部322入射到液晶层307上后,由该液晶层307按各显示用点D进行调制,通过点电极327和第2基材305向外部射出,显示图像。这时,在本实施例中,由于覆盖层316是平坦的,所以,可以看到对比度锐利的图像。出射光由覆盖反射层313和透过部322的着色层314着色为对应的色。
在本实施例中,如图25所示,在相互相邻的显示用点D间的边界区域形成具有开口部323的基底层312,所以,可以将遮光层315的高度降低与开口部323的深度相当的高度,从而可以确保各显示用点D的表面与相互相邻的显示用点D间的边界区域的表面之间的平坦性。
另外,如图26所示,在凹部323的地方不完全除去基底层312时,基底层312可以由第1绝缘层312a和设置在该第1绝缘层312a上的第2绝缘层312b构成。这时,形成与第2绝缘层312b的厚度相当的凹部323。这时,可以降低覆盖层316的上面的凹凸,这样,就可以降低单元间隙的偏差,另外,摩擦处理也容易。结果,可以改善液晶装置的显示画面的对比度。
此外,在本实施例中,是TFT型的有源矩阵方式,所以,画面明亮、容易观看,而且可以降低耗电和制造成本。
(液晶装置的制造方法)
下面,根据图27的工序图说明本实施例的液晶装置的制造方法。首先,在工序P61,在图22的第1基材303上形成作为基底层的树脂散射层312。这里,在形成遮光层315的各显示用点D间的边界区域,例如,像图25所示的那样,使用光敏抗蚀剂对基底层312进行蚀刻,在基底层312上形成开口部323。
若稍详细地说明该工序,就是在第1基材303上利用旋转涂敷法均匀地涂布树脂材料,进而再在其上涂布抗蚀剂,从形成了指定的图形的光掩模上进行曝光并对抗蚀剂进行显影处理,然后通过蚀刻在基底层312上形成多个孔。
其次,通过对该基底层312进行加热,使这些孔平滑地变形,形成凹凸状的基底层312的下层312a。进而,为了使该基底层312的凹凸状成为光滑面,再薄薄地涂布相同的数材料,形成基底层312的上层312b。
此外,在该基底层312上涂布抗蚀剂,从形成了指定的图形的光掩模上进行曝光并对抗蚀剂进行显影处理,然后,对该抗蚀剂进行蚀刻,在基底层312上形成开口部323,这样,就在成为遮光层315的部分除去了基底层312。
其次,在工序P62,在基底层312上利用蒸发法或溅射法等将铝等成膜为薄膜状,通过使用光刻法对其进行图形化处理,例如,如图24所示的那样,在各显示用点D的大致中央树脂略呈长方形的开口部322,同时,在除此以外的区域形成反射层313。
然后,在工序P63,在形成了开口部323的基底层312上,从反射层313上涂布遮光材料之后,利用摄影蚀刻技术进行图形化加工,在基底层312的开口部323形成遮光层315。上述遮光材料可以通过将碳黑等分散到树脂中而形成。
其次,在工序P64,在图23的反射层313和开口部322上利用旋转涂敷法涂布1色的着色层材料,进而再在其上涂布抗蚀剂,从形成了指定的图形的光掩模上进行曝光并对抗蚀剂进行显影处理,然后进行蚀刻形成该1色的着色层314。另外,对于其他的2色,重复进行相同的处理,将R、G、B三色的着色层形成为所希望的排列图形。
然后,在工序P65,在着色层314上形成覆盖层316。在本实施例中,在基底层312的开口部323的地方形成遮光层315,所以,可以将遮光层315的高度降低与该开口部323的深度相当的高度。因此,在本工序中,形成覆盖层316时可以将该覆盖层316的表面形成为平坦的面。于是,可以降低单元间隙的偏差,进而可以很容易地进行摩擦处理。结果,在液晶装置的显示中,可以实现对比度的锐化。
其次,在工序P66,在覆盖层316上利用溅射法被覆作为共同电极334的材料的ITO等,利用光刻法进行图形化处理,形成共同电极334。此外,再在其上形成取向膜318,通过对该取向膜318进行摩擦处理,就形成了彩色滤光器基板304。
另一方面,对于图22的对向基板306,在图27的工序P71中,在第2基材305上形成TFT337、栅极配线335、源极配线336和点电极327等。
这里,关于TFT337,在第2基材305上,利用例如溅射法将铬、钽等形成均匀厚度的薄膜,并利用光刻法进行图形化处理,形成栅极配线335和与其一体的栅极338,进而利用例如等离子体CVD(Chemical Vapour Deposition)法形成由氮化硅构成的栅极绝缘膜339。
其次,按该顺序连续地形成例如成为半导体层340的a-Si层和成为触点电极341的n+型a-Si层,进而对形成的n+型a-Si层和a-Si层进行图形化处理,形成半导体层340和触点电极341,同时利用溅射法将ITO等被覆到栅极绝缘膜339上成为点电极327的部分,利用光刻法进行图形化处理,形成点电极327。
另外,在第2基材305的整个表面上利用溅射法将例如钛、钼、铝等形成厚度均匀的薄膜,然后进行图形化处理,形成源极342、漏极343和源极配线336。其次,在工序P72,再在其上形成取向膜320并进行摩擦处理,就形成对向基板306。
然后,在工序P81,在第2基材305侧的取向膜320上通过干散等散布间隙部件129(参见图9)并利用密封材料133将彩色滤光器基板304和对向基板306相互粘贴。其次,在工序P82,通过密封材料133的开口部将液晶注入到基板间隙即所谓的单元间隙内,然后利用紫外线硬化性树脂等将密封材料133的开口部密封。然后,在工序P83,利用粘贴等方法将相位差片308及310和偏振片309及311分别安装到第1基材303和第2基材305的外表面上。
其次,在工序P84,进行必要的布线,安装照明装置131和壳体132等,就完成了使用图22所示的液晶屏302的图9中用符号101表示的液晶装置。
在图27的制造方法中,在图25的开口部323的地方,在成为遮光层315的区域,将基底层312全部除去了,但是,也可以如图26所示的那样,将基底层312分为第1绝缘层312a和第2绝缘层312b通过2次形成,并树脂凹部323。
这时,在第1次的处理中,包含成为遮光层315的显示用点D间的边界区域在内,在基材的整个面上形成第1绝缘层312a,进而和图25的基底层312的下层312a一样,形成凹凸。并且,在第2次的第2绝缘层312b形成时,除了成为遮光层315的显示用点D间的边界区域,在各显示用点D的区域,可以使用光敏抗蚀剂通过蚀刻处理形成第2绝缘膜312b。
如图25所示,在开口部323的地方将基底层312完全除去时,有时反而损害相互相邻的显示用点D间的边界区域的表面与显示用延D的表面之间的平坦性。这时,如图26所示,通过在凹部323的地方将基底层312形成所希望的厚度,可以确保平坦性,这样,除了可以减少单元间隙的偏差外,摩擦处理也容易。
此外,也可以使用中间色调形成凹部323。
实施例6.
下面,说明将本发明应用于反射半透过型的无源矩阵方式的液晶装置的其他实施例。图28是构成本发明的液晶装置的其他实施例的液晶屏的剖面图。图29是构成图28的液晶屏的彩色滤光器基板的剖面图。图30是该液晶屏的部分放大图。图30中的A-A’线的剖面图与图28相当。图31是将作为基底层的树脂散射层完全除去时的遮光层的部分剖面放大图。图32是将作为基底层的树脂散射层除去一般时的遮光层的部分剖面放大图。图33是本实施例的液晶装置的制造方法的一例的工序图。
图28所示的液晶屏402是具有所谓的反射半透过型的结构的液晶屏,使用该液晶屏402构成的液晶装置的结构与图9所示的液晶装置101大致相同。即,根据需要,通过将照明装置131和壳体132安装到液晶屏402上,就构成了液晶装置。
在液晶屏402中,如图28所示,以由玻璃板或合成树脂板等形成的透明的第1基材403为基体的彩色滤光器基板404和以与其相对的第2基材405为基体的对向基板406利用密封材料133(参见图9)相互粘贴,将液晶封入到这些彩色滤光器基板404与对向基板406之间,形成液晶层407。另外,相位差片408和偏振片409配置在第1基材403的外表面,相位差片410和偏振片411配置在第2基材405的外表面。
关于彩色滤光器基板404,在第1基材403的液晶层407侧的表面形成基底层412,在该基底层412的表面设置反射层413。另外,在基底层412的表面设置了反射层413的部分构成反射部425,以在反射层413上形成的开口部422构成透过部。
如图29所示,在反射层413上按指定的排列图形形成绿色的着色层414G、蓝色的着色层414B和红色的着色层414R。对于这些着色层,在以后的说明中,有时按总称用符号“414”表示。在相互相邻的着色层414间的边界区域设置遮光层415。
另外,在着色层414和遮光层415上,设置保护这些层的覆盖层416。另外,在覆盖层416上形成由ITO等这样的透明导电体构成的透明电极417,进而再在其上形成由聚酰亚铵树脂等构成的取向膜418。
另一方面,在图28中,对于对向基板406,在第2基材405的液晶层407侧的表面形成透明电极419,并在其上形成取向膜420。电极419形成向与第1基材403侧的电极417正交的方向(即图30的X方向)延伸的带状。
透明电极417相互并列地构成带状,透明电极419在与其正交的方向相互并列地构成带状。另外,第1基材403侧的透明电极417与第2基材405侧的透明电极419平面重叠的区域成为显示用点D。
彩色滤光器基板404的基底层412由树脂材料构成,如图29所示,由下层412a和上层412b的2层形成。该基底层412是通过将下层412a的表面加工成细的凹凸状并进而用相同材料的薄的上层412b被覆到该下层412a的整个表面上而形成的,所以,基底层412的表面形成光滑的凹凸状。该凹凸形状使透过基底层412的光发生散射,这样,就可以消除难于观看显示的画面的图像的问题。
另外,反射层413是例如铝或银等的单体金属膜,在基底层412上形成,反射层413的表面也按照基底层412的表面的凹凸形成细的凹凸。这样,也可以使由反射层413反射的反射光发生散射,从而可以消除难于观看显示的画面的图像的问题。
此外,在反射层413上,例如,如图30所示的那样,在显示用点D的大致中央形成略呈长方形的开口部422,该开口部422成为透过部。从照明装置131(参见图9)射出的光通过该开口部422供给液晶层407。开口部422不限于本例的形状,也可以采用圆孔形状等。另外,显示用点D内的开口部422的个数不限于1个,可以采用多个。
着色层414是涂布例如由包含颜料或染料等的着色剂的感光性树脂构成的着色抗蚀剂并通过利用光刻法等对其进行图形化处理而形成的。通过图形化处理,形成使通过第1基材403的照明装置131的光的开口部422和覆盖该开口部422的周围的反射层413的部分。如本实施例那样,树脂R、G、B的三色的着色层414时,上述图形化处理对各色顺序进行。
作为着色层414的排列图形,在图30中采用了倾斜的镶嵌排列,但是,除了该倾斜的镶嵌排列外,也可以采用带状排列或数字排列等各种图形形状。
遮光层415在各显示用点D间的边界区域形成,将该边界区域遮光。该遮光层415形成为分别在第1基材403上的透明电极417的长度方向(即图30的Y方向)和与其正交的方向(即图30的X方向)延伸的带状。
另外,遮光层415由将例如金属铬、碳、钛等分散到光敏抗蚀剂中形成的树脂黑或镍等中央的金属材料等形成。此外,如图31所示,遮光层415在反射层413上形成,在相互相邻的显示用点D间的边界区域的基底层412上形成的开口部423的地方,到第1基材403的液晶层407侧的面的高度使相互相邻的着色层414的表面与该遮光层415的表面大致一致。另外,遮光层415的上部设置为在与其相邻的着色层414的区域突出。
例如,设相互相邻的着色层414的厚度为h41、反射层413的厚度为h42、基底层412的厚度为h43时,如果将遮光层415形成为使遮光层415的厚度h44与反射层413的厚度h42之和与h41、h42和h43的总和大致相等,即可确保各显示用点D的表面与遮光层415的表面间的平坦性和降低单元间隙的偏差,摩擦处理也容易,从而液晶装置的豪迈显示的对比度良好。
在本实施例中,由于遮光层415形成为在与开口部423相互相邻的着色层414的区域突出,所以,可以更可靠地将着色层414的漏光遮挡。
收容遮光层415的基底层412的凹陷不限于图31那样的开口部423,也可以采用图32所示的凹部423。这时,与凹部423的底部424对应的基底层412不完全除去。这时,遮光层415的高度也降低了与凹部423的深度相当的部分。
例如,在图32中,设与凹部423的底部424对应的基底层412的厚度为h45时,通过形成使遮光层415的厚度h44与反射层的厚度h42之和与着色层414的厚度h41、反射层的厚度h42、基底层412的厚度h43的总和大致相等的遮光层415,可以确保各显示用点D的表面与遮光层415的表面间的平坦性,从而可以降低单元间隙的偏差,摩擦处理也容易。结果,液晶装置的画面显示的对比度良好。
显示用点D是由遮光层415将其周围包围的区域,在该显示用点D的内部包含R、G、B的任意1色的着色层414,此外,也包含反射层413和开口部422。1个像素由包含R、G、B的各色的着色层414的3个显示用点D构成。
在上述结构的本实施例中,在图28中,将信号供给在第2基材405上形成的透明电极419同时将信号供给在第1基材403侧形成的透明电极417时,就可以驱动在作为透明电极419与透明电极417交叉的区域的显示用点D保持的液晶。
考虑反射型的显示时,从对向基板406侧入射到液晶层407上的外部光按各显示用点D进行调制,并在透过着色层414之后由反射层413反射,再次透过对向基板406向外部射出。这时,在本实施例中,由于覆盖层416是平坦的,所以,可以看到对比度锐利的图像。
另外,考虑透过型的显示时,从照明装置131(参见图9)射出的光通过第1基材403和开口部即透过部422入射到液晶层407上后,由该液晶层407按各显示用点D进行调制,通过透明电极419和第2基材405向外部射出。这时,在本实施例中,由于覆盖层416是平坦的,所以,可以看到对比度锐利的图像。出射光由覆盖反射层413和透过部422的着色层414着色为对应的色。
在本实施例中,在相互相邻的显示用点D间的边界区域形成具有开口部423的基底层412,在该开口部423中设置遮光层415,所以,可以将遮光层415的高度降低与开口部423的深度相当的部分,从而可以确保各显示用点D的表面与和其相互相邻的显示用点D间的边界区域的表面之间的平坦性。这样,就可以确保覆盖层416的平坦性各改善单元间隙的偏差,并且摩擦处理也容易。另外,可以实现液晶装置的显示画面的对比度的锐化。
此外,在本实施例中,将遮光层415的上部形成为在相互相邻的着色层414上突出,所以,可以进一步将着色层的漏光遮挡。
另外,如图32所示,在凹部423的地方不将基底层412完全除去时,基底层412可以由第1绝缘层412a和设置在该第1绝缘层412a上的第2绝缘层412b构成。这时,就形成与第2绝缘层412b的厚度相当的凹部423。这时,可以降低覆盖层416的上面的凹凸,这样,就可以降低单元间隙的偏差,另外,摩擦处理也容易。结果,可以改善液晶装置的显示画面的对比度。
(液晶装置的制造方法)
下面,根据图33的工序图说明本实施例的液晶装置的制造方法的一例。首先,在图33的工序P91,在第1基材403上形成作为基底层的树脂散射层412。这里,在形成遮光层415的显示用点D间的边界区域,使用光敏抗蚀剂通过对基底层412进行蚀刻处理,在基底层412上形成图31的开口部423。
若稍详细地说明该工序,就是在第1基材403上利用旋转涂敷法均匀地涂布树脂材料,并在其上涂布抗蚀剂,从形成了指定的图形的光掩模上进行曝光并对抗蚀剂进行显影处理,并且,通过对该抗蚀剂进行蚀刻处理,在基底层412上形成多个孔。
其次,通过对该基底层412进行加热,使这些孔光滑地变形,形成凹凸状的基底层412的下层412a。进而,再在其上薄薄地涂布相同的树脂材料形成基底层412的上层412b,使该基底层412的凹凸状成为光滑面。
此外,在该基底层412上涂布抗蚀剂,从形成了指定的图形的光敏抗蚀剂上进行曝光并对抗蚀剂进行显影处理,通过对该抗蚀剂进行蚀刻处理,在基底层412上形成开口部423,在成为遮光层415的部分,将基底层412除去。
其次,在工序P92,在基底层412上利用蒸发法或溅射法等将铝等成膜为薄膜状,通过使用光刻法对其进行图形化处理,例如,如图30所示的那样,在各显示用点D的大致中央树脂略呈长方形的开口部422,同时,在除此以外的区域形成反射层413。
然后,在工序P93,在形成了开口部423的基底层412上,从反射层413上涂布遮光材料之后,利用摄影蚀刻技术进行图形化加工,在基底层412的开口部423形成遮光层415。上述遮光材料可以通过将碳黑等分散到树脂中而形成。
其次,在工序P94,在反射层413和开口部422上利用旋转涂敷法涂布1色的着色层材料,进而再在其上涂布抗蚀剂,从形成了指定的图形的光掩模上进行曝光并对抗蚀剂进行显影处理,然后进行蚀刻形成该1色的着色层414。另外,对于其他的2色,重复进行相同的处理,将R、G、B三色的着色层414形成为所希望的排列图形。
然后,在工序P95,在着色层414上形成覆盖层416。这时,在本实施例中,可以降低在基底层412上形成开口部423的部分的遮光层415的高度,从而可以确保覆盖层416的表面的平坦性,这样,就可以降低单元间隙的偏差,从而可以简单地进行摩擦处理,结果,可以实现显示图像的对比度的锐化。
其次,在工序P96,在覆盖层416上,利用溅射法被覆作为透明电极材料的ITO等,并利用光刻法进行图形化处理,如图30所示的那样,在Y方向形成具有指定的宽度的带状的电极417。
此外,在该电极417上形成取向膜418,对该取向膜418进行摩擦处理后,就形成了彩色滤光器基板404。这样形成的取向膜418的液晶层407侧的面也可以确保平坦性和降低单元间隙的偏差,从而可以实现画面的高画质化。
其次,对于图28的对向基板406,在图33的工序P101,在第2基材405上利用溅射法被覆作为透明电极419的材料的ITO等,并利用光刻法进行图形化处理,如图30所示的那样,在X方向形成带状的透明电极419。然后,在该电极419上形成取向膜420,进而对该取向膜420进行摩擦处理后,就形成了对向基板406。
然后,在工序P111,在对向基板406上通过干散等散布间隙部件129(参见图9)并利用密封材料133将彩色滤光器基板404和对向基板406相互粘贴。其次,在工序P112,从密封材料133的开口部将液晶注入到基板间的间隙即所谓的单元间隙内,在完成该注入之后,利用紫外线硬化性树脂等将密封材料133的开口部密封。
其次,在工序P113,将相位差判词408及410和偏振片409及411分别利用粘贴等方法安装到第1基材403和第2基材405的外表面上。然后,在工序P114,进行必要的布线,安装上图9的照明装置131和壳体132,就完成了液晶装置。
在图33的制造方法中,如图31所示,可以将遮光层415的高度降低在基底层412上形成开口部423的部分,所以,可以确保覆盖层416的表面的平坦性,这样,就可以降低单元间隙的偏差,此外,也可以简单地进行摩擦处理。结果,在液晶装置的显示中,可以实现对比度的锐化。
另外,在图33的制造方法中,如图31所示,在成为遮光层415的区域,将基底层412全部除去了,但是,也可以如图32所示的那样,将基底层412分为第1绝缘层412a和第2绝缘层412b通过2次形成,并设置与第2绝缘层412b的厚度相当的凹部423。
这时,在第1次的处理中,包含成为遮光层415的显示用点D间的边界区域在内,在基材的整个面上形成第1绝缘层412a,进而和图31的基底层412的下层412a一样,形成凹凸。并且,在第2次的第2绝缘层412b形成时,除了成为遮光层415的显示用点D间的边界区域,在各显示用点D的区域,可以使用光敏抗蚀剂通过蚀刻处理形成第2绝缘层412b。
如图31所示,在开口部423的地方将基底层412完全除去时,有时反而损害相互相邻的显示用点D间的边界区域的表面与显示用延D的表面之间的平坦性。这时,如图32所示,通过在凹部423的地方将基底层412形成所希望的厚度,可以确保平坦性,这样,除了可以减少单元间隙的偏差外,摩擦处理也容易。
此外,也可以使用中间色调形成凹部423。
实施例7.
下面,说明将本发明应用于反射半透过型的无源矩阵方式的液晶装置时的其他实施例。图34是构成本发明的液晶装置的其他实施例的液晶屏的剖面图。图35是构成图34的液晶屏的彩色滤光器基板的剖面图。图36是该液晶屏的部分放大图。图36中的A-A’线的剖面图与图34相当。图37是将树脂散射层完全除去时的遮光层的部分剖面放大图。图38是将树脂散射层除去一般时的遮光层的部分剖面放大图。并且,图39是本实施例的液晶装置的制造方法的一例的工序图。
图34所示的液晶屏502是具有所谓的反射半透过型的结构的液晶屏,使用该液晶屏502构成的液晶装置的结构与图9所示的液晶装置101大致相同。即,根据需要,通过将照明装置131和壳体132安装到液晶屏502上,就构成了液晶装置。
在液晶屏502中,如图34所示,以由玻璃板或合成树脂板等形成的透明的第1基材503为基体的彩色滤光器基板504和以与其相对的第2基材505为基体的对向基板506利用密封材料133(参见图9)相互粘贴,将液晶封入到这些彩色滤光器基板504与对向基板506之间,形成液晶层507。另外,相位差片508和偏振片509配置在第1基材503的外表面,相位差片510和偏振片511配置在第2基材505的外表面。
关于彩色滤光器基板504,在第1基材503的液晶层507侧的表面形成基底层512,在该基底层512的表面设置反射层513。另外,在基底层512的表面设置了反射层513的部分构成反射部525,以在反射层513上形成的开口部522构成透过部。
如图35所示,在反射层513上按指定的排列图形形成绿色的着色层514G、蓝色的着色层514B和红色的着色层514R。对于这些着色层,在以后的说明中,有时按总称用符号“514”表示。在相互相邻的着色层514间的边界区域设置遮光层515。
另外,在着色层514和遮光层515上,设置保护这些层的覆盖层516。另外,在覆盖层516上形成由ITO等这样的透明导电体构成的透明电极517,进而再在其上形成由聚酰亚铵树脂等构成的取向膜518。
另一方面,在图34中,对于对向基板506,在第2基材505的液晶层507侧的表面形成透明电极519,并在其上形成取向膜520。电极519形成向与第1基材503侧的电极517正交的方向(即图36的X方向)延伸的带状。透明电极517相互并列地构成带状,透明电极519在与其正交的方向相互并列地构成带状。透明电极517与透明电极519平面重叠的区域成为显示用点D。
彩色滤光器504的基底层512由下层512a和上层512b的2层形成,这些层都由树脂材料形成。该基底层512是通过将下层512a的表面加工成细的凹凸状并进而用相同材料的薄的上层512b被覆到该下层512a的整个表面上而形成的,所以,形成光滑的凹凸状。该凹凸形状使透过基底层512的光发生散射,这样,就可以消除难于观看显示的画面的图像的问题。
反射层513是例如铝或银等的单体金属膜,在基底层512上形成,反射层513的表面也按照基底层512的表面的凹凸形成细的凹凸。这样,也可以使由反射层513反射的反射光发生散射,从而可以消除难于观看显示的画面的图像的问题。
在反射层513上,例如,如图36所示的那样,在显示用点D的大致中央形成略呈长方形的开口部522,该开口部522成为透过部。从照明装置131(参见图9)射出的光通过该开口部522供给液晶层507。开口部522不限于本例的形状,也可以采用圆孔形状等。另外,显示用点D内的开口部522的个数不限于1个,可以采用多个。
着色层514是涂布例如由包含颜料或染料等的着色剂的感光性树脂构成的着色抗蚀剂并通过利用光刻法等对其进行图形化处理而形成的。通过图形化处理,形成使通过第1基材503的照明装置131的光的开口部522和覆盖该开口部522的周围的反射层513的部分。如本实施例那样,树脂R、G、B的三色的着色层514时,上述图形化处理对各色顺序进行。
遮光层515在各显示用点D间的边界区域形成,将该边界区域遮光。该遮光层515形成为分别在第1基材503上的透明电极517的长度方向(即图36的Y方向)和与其正交的方向(即图36的X方向)延伸的带状。
另外,遮光层515由将例如金属铬、碳、钛等分散到光敏抗蚀剂中形成的树脂黑或镍等中央的金属材料等形成。
在图37中,在基底层512上形成开口部523,该开口部523的底部524通过反射层513设置在第1基材503上。遮光层515设置在开口部523处的反射层513上,比相邻的着色层514略高。
例如,在图37中,设相互相邻的着色层514的厚度为h51、反射层513的厚度为h52、基底层512的厚度为h53时,则形成为使遮光层515的厚度h54与反射层513的厚度h52之和比h51、h52和h53的总和略高。
这样,此后通过在由基底层512和设置在该基底层512上的着色层514构成的集层结构的相互相邻的边界形成的区域即开口部523设置遮光层515,该遮光层515就比着色层514略高。这样,就可以可靠地将开口部523遮光。
另外,由于遮光层515的表面与着色层514的表面的高度差别极微,仍然可以确保两者间的平坦性,因此,可以降低单元间隙的偏差,并且摩擦处理也容易。结果,液晶装置的画面显示的对比度良好。
为了收容遮光层515而在基底层512上形成的凹陷,不限于上述那样的开口部523,也可以采用例如图38所示的凹部523。这时,在凹部523的底部524的地方,基底层512不完全除去。这时,可以将遮光层515的高度降低与凹部523的底部524的深度相当的部分。
例如,将遮光层515形成为使底部524的基底层512的厚度h55与反射层513的厚度h52及遮光层515的厚度h54之和比着色层514的厚度h51、反射层513的厚度h52、基底层512的厚度h53的总和略高。
这样,设置在凹部523的遮光层515就可以可靠地遮光。另外,由于遮光层515的表面与着色层514的表面间的高度差极微,仍然可以确保它们之间的平坦性,因此,可以降低单元间隙的偏差,另外,摩擦处理也容易。结果,液晶装置的画面显示的对比度良好。
显示用点D是由遮光层515将其周围包围的区域,在该显示用点D的内部包含R、G、B的任意1色的着色层514,此外,也包含反射层513和开口部522。1个像素由包含R、G、B的各色的着色层514的3个显示用点D构成。
在上述结构的本实施例中,将信号供给在第2基材505上形成的透明电极519同时将信号供给在第1基材503侧形成的透明电极517时,就可以驱动在透明电极419与透明电极417交叉的显示用点D保持的液晶。
考虑反射型的显示时,从对向基板506侧入射到液晶层507上的外部光按各显示用点D进行调制,并在透过着色层514之后由反射层513反射,再次透过对向基板506向外部射出,利用关系出射光进行显示。
另一方面,考虑透过型的显示时,从照明装置131(参见图9)射出的光通过第1基材503和开口部即透过部522入射到液晶层507上后,由该液晶层507按各显示用点D进行调制,该调制光通过透明电极519和第2基材505向外部射出,利用该出射光进行显示。
由于本实施例的覆盖层516是平坦的,所以,在进行上述反射型显示和透过型显示时,可以看到对比度锐利的图像。向外部射出的出射光由覆盖反射层513和透过部522的着色层514着色为对应的色。
在本实施例中,在相互相邻的显示用点D间的边界区域形成具有开口部523的基底层512,在该开口部523这设置遮光层515,所以,可以就遮光层515的高度降低该开口部523的深度,从而可以确保各显示用点D的表面和与其相邻的显示用点D间的边界其他的表面之间的平坦性。这样,就可以确保覆盖层516的平坦性,改善单元间隙的偏差,摩擦处理也容易。另外,可以实现液晶装置的显示画面的对比度的锐化。
另外,如图38所示,在凹部523的地方,不完全除去降低层512时,降低层512可以由第1绝缘层512a和设置在该第1绝缘层512a上的第2绝缘层512b构成。这时,就形成了与第2绝缘层512b的厚度相当的凹部523。这时,可以降低覆盖层516的上面的凹凸,这样,就可以降低单元间隙的偏差,另外,摩擦处理也容易。结果,可以改善液晶装置的显示画面的对比度。
(液晶装置的制造方法)
下面,根据图39的工序图说明本实施例的液晶装置的制造方法。首先,在工序P121,在第1基材503上形成作为基底层的树脂散射层512。这里,在用于形成遮光层515的显示用点D间的边界区域,如图34所示的那样,通过对光敏抗蚀剂进行蚀刻处理形成基底层512,用以在基底层512上形成开口部523。
若稍详细地说明该工序,就是利用旋转涂敷法将树脂材料均匀地涂布到第1基材503上,并再在其上涂布抗蚀剂,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理,进而对上述树脂材料进行蚀刻处理,在基底层512上形成多个孔。
其次,通过对该基底层512进行加热,使这些孔光滑地变形,形成凹凸状的基底层512的下层512a。此外,再在其上薄薄地涂布相同的树脂材料形成基底层512的上层512b,使该基底层512的凹凸状成为光滑面。
进而,在该基底层512上涂布抗蚀剂,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理。然后,将抗蚀剂作为掩模对基底层512进行蚀刻处理,在其表面形成开口部523,在成为遮光层515的部分将基底层512除去。
其次,在工序P122,在基底层512上利用蒸发法或溅射法等将铝等成膜为薄膜状,通过使用光刻法对其进行图形化处理,例如,如图36所示的那样,在各显示用点D的大致中央设置略呈长方形的开口部522,同时,在除此以外的区域形成反射层513。
然后,在工序P123,在反射层513和开口部522上利用旋转涂敷法涂布1色的着色层材料,进而再在其上涂布抗蚀剂,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理,并将该抗蚀刻剂作为掩模对上述着色层材料进行蚀刻处理,形成1色的着色层514。另外,对于其他2色,重复进行相同的处理,将R、G、B的三色的着色层514形成所希望的排列图形。
其次,在工序P124,从反射层513上将遮光材料涂布到形成了开口部523的基底层512上,利用摄影蚀刻技术进行图形化加工处理,在基底层512的开口部523将遮光层515形成为比着色层514略高。上述遮光材料可以通过将碳黑等分散到树脂这而形成。
如上所述,在本实施例中,利用基底层512和其上的着色层514形成开口部523,并树脂遮光层将该开口部523埋没。这样,就可以确保遮光层515的厚度而提高遮光性,同时也可以确保遮光层515与着色层514之间的平坦性。
其次,在工序P125,在着色层514上形成覆盖层516。然后,在工序P126,在覆盖层516上利用溅射法被覆作为透明电极517的材料的ITO等,利用光刻法进行图形化处理,如图36所示的那样,在Y方向形成具有指定的宽度的带状的电极517。
此外,在工序P126,在电极517上形成取向膜518,并对该取向膜518进行摩擦处理,这样,就形成了彩色滤光器基板504。
另一方面,对于对向基板506,在工序P131,在第2基材505上利用溅射法被覆作为透明电极519的材料的ITO等,利用光刻法进行图形化处理,如图36所示的那样,在X方向形成带状的透明电极519。此外,在工序P132,在电极519上形成取向膜520,并对该取向膜520进行摩擦处理,就形成了对向基板506。
其次,在工序P141,在对向基板506上通过干散等散布间隙部件129(参见图9)并利用密封材料133将彩色滤光器基板504和对向基板506相互粘贴。然后,在工序P142,从密封材料133的开口部注入液晶,在完成注入之后,利用紫外线硬化性树脂等将密封材料133的开口部密封。此外,在工序P143,利用粘贴等方法将相位差片508及510和偏振片509及511分别安装到第1基材503和第2基材505的外表面上。
然后,在工序P144,进行必要的布线,安装图9的照明装置131和壳体132等这样的附带机器后,就完成了使用图34所示的液晶屏502的在图9中用符号101表示的液晶装置。
在图39所示的制造方法中,在基底层512上形成开口部523,并设置遮光层515将该开口部523埋没,所以,可以降低该遮光层515的高度,并确保覆盖层516表面的平坦性,通过降低单元间隙的偏差和进行摩擦处理,可以实现对比度的锐化。
另外,在以上的说明中,如图37所示,在形成遮光层515的区域,在基底层512全部除去,形成开口部523,但是,也可以如图38所示的那样,将基底层512分为第1绝缘层512a和第2绝缘层512b通过2次形成,在形成第2绝缘层512b时形成凹部523。
这时,在第1次的处理中,包含成为遮光层515的显示用点D间的边界区域在内,在基材的整个面上形成第1绝缘层512a,并和图37的基底层512的下层512a一样形成凹凸。并且,在形成第2绝缘层512b的第2次的处理中,除了成为遮光层515的显示用点D间的边界区域,在各显示用点D的区域使用光敏抗蚀剂通过蚀刻形成第2绝缘层512b。
如图37所示,在开口部523的地方将基底层512完全除去时,有时有时反而损害相互相邻的显示用点D间的边界区域的表面与显示用延D的表面之间的平坦性。这时,如图38所示,通过在凹部523的地方将基底层512形成所希望的厚度,可以确保平坦性,这样,除了可以减少单元间隙的偏差外,摩擦处理也容易。
此外,也可以使用中间色调形成凹部523。
实施例8.
下面,说明将本发明应用于反射半透过型的无源矩阵方式的液晶装置时的其他实施例。图40是构成本发明的液晶装置的其他实施例的液晶屏的剖面图。图41是构成图40的液晶屏的彩色滤光器基板的剖面图。图42是该液晶屏的部分放大图。图42中的A-A’线的剖面图与图40相当。图43是将树脂散射层完全除去时的遮光层的部分剖面放大图。图44是将树脂散射层除去一部分时的遮光层的部分剖面放大图。并且,图45是本实施例的液晶装置的制造方法的一例的工序图。
图40所示的液晶屏602是具有所谓的反射半透过型的结构的液晶屏,使用该液晶屏602构成的液晶装置的结构与图9所示的液晶装置101大致相同。即,根据需要,通过将照明装置131和壳体132安装到液晶屏602上,就构成了液晶装置。
液晶屏602如图40所示的那样,以由玻璃板或合成树脂板等形成的透明的第1基材603为基体的彩色滤光器基板604和以与其相对的第2基材605为基体的对向基板606利用密封材料133(参见图9)相互粘贴,将液晶封入到这些彩色滤光器基板604与对向基板606之间,形成液晶层607。另外,相位差片608和偏振片609配置在第1基材603的外表面,相位差片610和偏振片611配置在第2基材605的外表面。
关于彩色滤光器基板604,在第1基材603的液晶层607侧的表面形成基底层612,在该基底层612的表面设置反射层613。另外,在基底层612的表面设置了反射层613的部分构成反射部625,以在反射层613上形成的开口部622构成透过部。
在反射层613上按指定的排列图形形成绿色的着色层614G、蓝色的着色层614B和红色的着色层614R。对于这些着色层,在以后的说明中,有时按总称用符号“614”表示。在相互相邻的着色层614间的边界区域设置遮光层615。
另外,在着色层614和遮光层615上,设置保护这些层的覆盖层616。另外,在覆盖层616上,形成由ITO等这样的透明导电体构成的透明电极617,进而再在其上形成由聚酰亚铵树脂等构成的取向膜618。
另一方面,在图40中,对于对向基板606,在第2基材605的液晶层607侧的表面形成在与第1基材603侧的透明电极617正交的方向(即图42的X方向)延伸的带状的透明电极619,进而再在其上形成取向膜620。
透明电极617相互并列地构成带状,透明电极619在与其正交的方向相互并列地构成带状。另外,第1基材603侧的透明电极617与第2基材605侧的透明电极619平面重叠的区域成为显示用点D。
彩色滤光器基板604的基底层612,如图41所示,由下层612a和上层612b的2层形成,这些层由树脂材料形成。该基底层612是通过将下层612a的表面加工成细的凹凸状并进而用相同材料的薄的上层612b被覆到该下层612a的整个表面上而形成的,所以,基底层612的表面形成光滑的凹凸状。利用该凹凸形状可以使透过基底层612的光发生散射,这样,就可以消除难于观看显示的画面的图像的问题。
反射层613是例如铝或银等的单体金属膜,在基底层612上形成,反射层613的表面也按照基底层612的表面的凹凸形成细的凹凸。这样,也可以使由反射层613反射的反射光发生散射,从而可以消除难于观看显示的画面的图像的问题。
在反射层613上,例如,如图42所示的那样,在显示用点D的大致中央形成略呈长方形的开口部622,该开口部622成为透过部。从照明装置131(参见图9)射出的光通过该开口部622供给液晶层607。开口部622不限于本例的形状,也可以采用圆孔形状等。另外,显示用点D内的开口部622的个数不限于1个,可以采用多个。
着色层614是涂布例如由包含颜料或染料等的着色剂的感光性树脂构成的着色抗蚀剂并通过利用光刻法等对其进行图形化处理而形成的。通过图形化处理,形成使通过第1基材603的照明装置131的光的开口部622和覆盖该开口部622的周围的反射层613的部分。如本实施例那样,设置R、G、B的三色的着色层614时,上述图形化处理对各色顺序进行。这样,就可以使各着色层614在遮光层615的地方与其他着色层614重叠。
作为着色层614的排列图形,在图42中采用了倾斜的镶嵌排列,但是,除了该倾斜的镶嵌排列外,也可以采用带状排列或数字排列等各种图形形状。
遮光层615在各显示用点D间的边界区域形成,将该边界区域遮光。该遮光层615形成为分别在第1基材603上的透明电极617的长度方向(即图42的Y方向)和与其正交的方向(即图42的X方向)延伸的带状。
如图41所示,遮光层615设置在1个着色层614和与其相邻的其他着色层614之间。在该遮光层615的地方,在基底层612上形成开口部623,该开口部623的底部624通过反射层613设置在第1基材603上。
在图43中,在开口部623上,与遮光层615相邻的着色层614B从底部624开始形成h11的厚度,然后,再在其上着色层614G重叠地形成h12的厚度,最后,再在其上着色层614R的突出部分重叠地形成h13的厚度。
这里,如果使图43的最下方的着色层614B的厚度h11大于0.7μm小于2.0μm,则蓝色系的例如蓝色的着色层614B的遮光性良好。另外,通过与其他的着色层的组合,在各显示用点D的表面和与其相邻的点D间区域的表面(即遮光层615的表面)之间,可以确保平坦性。
此外,如果将图43的h11形成约1.7μm、将h12形成约1.0μm、将h13形成约0.9μm、进而将重叠的着色层的最上面的着色层614R上面的覆盖层616的厚度h14形成为约1.8μm时,则基底层612的厚度h15约为2.4μm,显示用点D上的着色层614B的厚度h16约为1.0μm,该部分的覆盖层616的厚度h17约为2.0μm,所以,遮光层615上的覆盖层616的上面与着色层614B的显示用点D上的覆盖层616的上面一致,成为平坦的面。
这里,如上所述,通过在开口部623的最下面形成着色层614B,可以将所能形成的最厚的厚度形成为约1.7μm。
此外,在着色层614G与着色层614B之间,如图41所示,在开口部623的底部624,首先填入相邻的着色层614B,然后再在其上重叠着色层614G的突出部分,进而再在其上重叠着色层614R,这样,就形成了遮光层615。
另外,在着色层614R与着色层614G之间,如图41所示,在开口部623的底部624,首先形成着色层614B,然后再在其上重叠着色层614G的突出部分,进而再在其上重叠销的着色层614R,这样,就形成了遮光层615。
为了收容遮光层615,在基底层612上形成的凹陷不限于上述那样的开口部623,也可以采用例如图44所示的凹部623。这时,在凹部623的底部624的地方,基底层612不完全除去。这时,也可以将遮光层615的高度降低与凹部623的底部624的深度相当的高度。这样,就可以降低覆盖层616上面的凹凸,所以,可以降低单元间隙的偏差,并且摩擦处理也容易。结果,液晶装置的画面显示的对比度良好。
这里,如果使图44的最下方的着色层614B的厚度m11大于0.7μ小于2.0μm,则蓝色系的例如蓝色的着色层614B的遮光性良好。另外,通过与其他着色层的组合,在各显示用点D的表面和与其相邻的显示用点D间的边界区域的表面之间降低凹凸。
此外,如果将图44的着色层614B的厚度m11形成约1.1μm、将着色层614G的厚度m12形成约1.0μm、进而将着色层614R的厚度m13形成约0.9μm,则在凹部623的底部624的深度m15约为1.3μm时,可以进一步降低覆盖层616上面的凹凸。这样,就可以降低单元间隙的偏差,另外,摩擦处理也容易。结果,液晶装置的画面显示的对比度良好。
显示用点D是由遮光层615将其周围包围的区域,在该显示用点D的内部包含R、G、B中的任意1色的着色层614,此外,还包含反射层613和开口部622。1个像素由包含R、G、B的各色的着色层614的3个显示用点D构成。
在上述结构的本实施例中,将信号供给在第2基材605上形成的透明电极619同时将信号供给在第1基材603侧形成的透明电极617时,可以驱动由作为透明电极619与透明电极617交叉的区域的显示用点D保持的液晶。
考虑反射型显示时,从对向基板606侧入射到液晶层607上的外部光按各显示用点D进行调制,在透过着色层614之后由反射层613反射,再次透过对向基板606向外部射出,利用该出射光进行显示。
另外,考虑透过型显示时,从照明装置131(参见图9)射出的光通过第1基材603和透过部622供给液晶层607由该液晶层607按各显示用点D进行调制,通过透明电极619和第2基材605向外部射出,利用该出射光进行显示。
不论是反射型显示还是透过型显示,在本实施例中,由于覆盖层616已形成为平坦的面,所以,在液晶装置的显示画面上可以看到对比度锐利的图像。向外部射出的出射光由覆盖反射层613和透过部622的着色层614着色为对应的色。
在本实施例中,在相互相邻的显示用点D间的边界区域形成了具有凹部(图44)或开口部623(图43)的基底层612,所以,可以基底2由着色层614形成的遮光层615的高度,从而可以确保各显示用点D的表面与
和与其相邻的点D间区域的表面之间的平坦性。
另外,在本实施例中,在凹部623(图44)的底部624或开口部623(图43)的底部624,开始已形成了蓝色系的例如蓝色的着色层614B,所以,可见光波长区的平均透过率低的蓝色就比其他绿色系的例如绿色和红色系的例如红色的着色层614形成得厚。因此,不仅进一步提高了遮光性,而且可以降低全体的遮光层615的高度。这样,就可以使液晶装置的显示画面的对比度良好。
此外,如果在开口部623上从底部624开始将蓝色的着色层614B形成约1.7μm的厚度、进而再在其上将绿色的着色层614G形成约1.0μm或者将红色的着色层614R形成约0.9μm,可以进一步可靠地确保各显示用点D和与其相邻的点D间区域的上面的层例如覆盖层616的平坦性。这样,就可以改善单元间隙的偏差,另外,摩擦处理也容易,结果,可以实现液晶装置的显示画面的对比度的锐化。
另外,在上述说明中,如图43所示,在形成遮光层615的区域,将基底层612全部除去形成了开口部623,但是,也可以如图44所示的那样,将基底层612分为第1绝缘层612a和第2绝缘层612b通过2次形成,而在形成第2绝缘层612b时形成凹部623。
这时,在第1次的处理中,包含成为遮光层615的显示用点D间的边界区域在内,在基材的整个面上形成第1绝缘层612a,此外,和图43的基底层612的下层612a一样,形成凹凸。并且,在用于形成第2绝缘层612b的第2次的处理中,除了成为遮光层615的显示用点D间的边界区域,在各显示用点D的区域使用光敏抗蚀剂通过蚀刻形成第2绝缘层612b。
这时,可以降低覆盖层616的上面的凹凸,所以,可以改善单元间隙的偏差,另外,摩擦处理也容易。结果,可以改善液晶装置的显示画面的对比度。
(液晶装置的制造方法)
下面,根据图45的工序图说明本实施例的液晶装置的制造方法。首先,在工序P151,在第1基材603上形成基底层612。这里,在作为形成遮光层615的区域的显示用点D间的边界区域,例如,如图40所示的那样,对光敏抗蚀剂进行蚀刻形成基底层612,用以在基底层612上形成开口部623。
若稍详细地说明工序工序,就是利用旋转涂敷法将树脂材料均匀地涂布到第1基材603上,并再在其上涂布抗蚀剂,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理,进而对上述树脂材料进行蚀刻处理,在基底层612上形成多个孔。
其次,通过对该基底层612进行加热,使这些孔光滑地变形,形成凹凸状的基底层612的下层612a。此外,再在其上薄薄地涂布相同的树脂材料形成基底层612的上层612b,使该基底层612的凹凸状成为光滑面。
进而,在该基底层612上涂布抗蚀剂,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理。然后,将抗蚀剂作为掩模对基底层612进行蚀刻处理,在该基底层612上形成开口部623。这样,在成为遮光层615的部分基底层612被除去的基底层612在第1基材603上形成。。
其次,在工序P152,在基底层612上利用蒸发法或溅射法等将铝等成膜为薄膜状,通过使用光刻法对其进行图形化处理,例如,如图42所示的那样,在各显示用点D的大致中央设置略呈长方形的开口部622,同时,在除此以外的区域形成反射层613。
然后,在工序P153,在反射层613和开口部622上利用旋转涂敷法涂布1色例如蓝色系的蓝色的着色层材料,进而再在其上涂布抗蚀剂,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理,并将该抗蚀刻剂作为掩模对上述着色层材料进行蚀刻处理,形成蓝色的着色层614B。另外,对于其他2色,重复进行相同的处理,顺序形成绿色系例如绿色的着色层614G和红色系例如红色的着色层614R。
这样,在各显示用点D上就分别单独形成了蓝色的着色层614B、绿色的着色614G和红色的着色层614R。另一方面,如图41所示,对于遮光层615,则是在最下层形成最厚的蓝色的着色层614B,然后,再在其上重叠地形成绿色的着色层614G和红色的着色层614R。这样,由于在最下层形成最厚的蓝色的着色层614B,所以,不仅可以提高遮光性,而且可以将例如遮光层615总体的厚度减薄。
其次,在工序P154,在着色层614上形成覆盖层616。这时,在本实施例中,可以将遮光层615的高度降低与在基底层612上形成开口部623的部分,所以,可以确保覆盖层616的表面的平坦性,因此,可以降低单元间隙的偏差,另外,摩擦处理也容易。结果,可以实现液晶装置的画面上显示的图像的对比度的锐化。
然后,在工序P155,在覆盖层616上利用溅射法被覆作为透明电极617的材料的ITO等,利用光刻法进行图形化处理,如图42所示,在Y方向形成具有指定的宽度的带状的透明电极617。此外,再在其上形成取向膜618,并对该取向膜618进行摩擦处理,这样,就形成了彩色滤光器基板604。
另一方面,对于对向基板606,在工序P161,在第2基材605上利用溅射法被覆作为透明电极619的材料的ITO等,利用光刻法进行图形化处理,如图42所示的那样,在X方向形成带状的透明电极619。此外,在工序P162,在该电极619上形成取向膜620,并对该取向膜620进行摩擦处理,就形成了对向基板606。
其次,在工序P171,在对向基板606上通过干散等散布间隙部件129(参见图9)并利用密封材料133将彩色滤光器基板604和对向基板606相互粘贴。然后,在工序P172,从密封材料133的开口部注入液晶,在完成注入之后,利用紫外线硬化性树脂等将密封材料133的开口部密封。
此外,在工序P173,利用粘贴等方法将相位差片608及610和偏振片609及611分别安装到第1基材603和第2基材605的外表面上。然后,在工序P174,进行必要的布线,安装图9的照明装置131和壳体132后,就完成了液晶装置。
在图45的制造方法中,在各色的着色层614重叠地形成的遮光层615中,由于在最下层形成最厚的蓝色系的例如蓝色的着色层614B,所以,可以提高遮光性,而且可以将遮光层615的全体厚度减薄。
此外,可以将遮光层615的高度降低在基底层612上形成开口部623的部分,所以,可以确保覆盖层616的表面的平坦性,因此,可以降低单元间隙的偏差,另外,摩擦处理也容易。结果,可以实现液晶装置的画面上显示的图像的对比度的锐化。
另外,在图45的制造方法中,如图43所示,开口部623在成为遮光层615的区域通过将基底层612全部除去而形成,但是,也可以如图44所示的那样,将基底层612分为第1绝缘层612a和第2绝缘层612b通过2次形成,而通过第2绝缘层612b的形成而设置凹部623。
这时,在第1次的处理中,包含成为遮光层615的显示用点D间的边界区域在内,在基材的整个面上形成第1绝缘层612a,并和图43的基底层612的下层612a一样设置凹凸,在第2次的第2绝缘层612b形成时,除了成为遮光层615的显示用点D间的边界区域,在各显示用点D的区域使用光敏抗蚀剂通过蚀刻可以形成第2绝缘层612b。
这样,在第1次的基底层612的形成中,就可以省略使用光敏抗蚀剂对基底层612进行蚀刻的工序,从而可以降低成本,制造速度也快。另外,如开口部623那样,将基底层612完全除去时,有时反而损害相互相邻的显示用点D间的边界区域的表面与显示用点D的表面之间的平坦性,但是,通过以所希望的厚度形成基底层612,可以确保平坦性,这样,就可以减少单元间隙的偏差,另外,摩擦处理也容易。在遮光层615的部分的地方,在基底层612上形成凹部623的工序与上述说明相反,可以作为第1次的处理。
此外,也可以使用中间色调形成凹部623。
实施例9.
下面,说明将本发明应用于作为开关元件使用二端型开关元件即TFD(Thin Film Diode)的反射半透过型的液晶装置的其他实施例。
图46是构成本发明的液晶装置的其他实施例的液晶屏的剖面图。图47是构成图46的液晶屏的第1基板侧的剖面图。图48是该液晶屏的部分放大图。图48中的B-B’线和C-C’线的剖面图与图46相当。图49是将基底层完全除去时的遮光层的部分剖面放大图。图50是将基底层除去一部分时的遮光层的部分剖面放大图。并且,图51是本实施例的液晶装置的制造方法的一例的工序图。
图46所示的液晶屏702是具有所谓的反射半透过型的结构的液晶屏,使用该液晶屏702构成的液晶装置的结构与图9所示的液晶装置101大致相同。即,根据需要,通过将照明装置131和壳体132安装到液晶屏702上,就构成了液晶装置。
液晶屏702以由玻璃板或合成树脂板等形成的透明的第1基材703为基体的彩色滤光器基板704和以与其相对的第2基材705为基体的对向基板706利用密封材料133(参见图9)相互粘贴,将液晶封入到这些彩色滤光器基板704与对向基板706之间,形成液晶层707。另外,相位差片708和偏振片709配置在第1基材703的外表面,相位差片710和偏振片711配置在第2基材705的外表面。
关于彩色滤光器基板704,在第1基材703的液晶层707侧的表面形成基底层712,在该基底层712的表面设置反射层713。另外,在基底层712的表面设置了反射层713的部分构成反射部725,以在反射层713上形成的开口部722构成透过部。
在反射层713上按指定的排列图形形成绿色的着色层714G、蓝色的着色层714B和红色的着色层714R。对于这些着色层,在以后的说明中,有时按总称用符号“714”表示。在相互相邻的着色层714间的边界区域设置遮光层715。
另外,在着色层714和遮光层715上,设置保护这些层的覆盖层716。另外,在覆盖层716上,形成由ITO等这样的透明导电体构成的数据线726,进而再在其上形成由聚酰亚铵树脂等构成的取向膜718。
另一方面,在图46中,在对向基板706上,在第2基材705的液晶层707侧的表面配置排列成矩阵状的多个像素电极727、在各像素电极727的边界区域在与上述数据线726交叉的方向(即图48的Y方向)以带状延伸的多个扫描线728和与该像素电极727及扫描线728连接的TFD729,并在其上形成取向膜720。
这里,数据线726形成在指定的方向(例如图48的X方向)延伸的带状,多个数据线726相互并列地构成带状,该数据线726与像素电极727平面重叠的区域就成为显示用延D。
另外,基底层712由下层712a和上层712b的2层形成,这些各层由树脂材料形成。该基底层712是通过将下层712a的表面加工成细的凹凸状并进而用相同材料的薄的上层712b被覆到该下层712a的整个表面上而形成的,所以,形成光滑的凹凸状。该凹凸形状使透过基底层712的光发生散射,这样,就可以消除难于观看显示的画面的图像的问题。
反射层713是例如铝或银等的单体金属膜,在基底层712上形成,反射层713的表面也按照基底层712的表面的凹凸形成细的凹凸。这样,也可以使由反射层713反射的反射光发生散射,从而可以消除难于观看显示的画面的图像的问题。
在反射层713上,例如,如图48所示的那样,在显示用点D的大致中央形成略呈长方形的开口部722,该开口部722成为透过部。从照明装置131(参见图9)射出的光通过该开口部722供给液晶层707。开口部722不限于本例的形状,也可以采用圆孔形状等。另外,显示用点D内的开口部722的个数不限于1个,可以采用多个。
着色层714是涂布例如由包含颜料或染料等的着色剂的感光性树脂构成的着色抗蚀剂并通过利用光刻法等对其进行图形化处理而形成的。通过图形化处理,形成使通过第1基材703的照明装置131的光的开口部722和覆盖该开口部722的周围的反射层713的部分。如本实施例那样,树脂R、G、B的三色的着色层714时,上述图形化处理对各色顺序进行。这样,在遮光层715的地方,就可以将各着色层714与其他着色层714重叠。
遮光层715在各显示用点D间的边界区域形成,将该边界区域遮光。该遮光层715形成为分别在第2基材705的扫描线728的长度方向(即图48的Y方向)和与其正交的方向(即图48的X方向)延伸的带状。
如图47所示,遮光层715设置在1个着色层714和与其相邻的其他着色层714之间。在该遮光层715的地方,在基底层712上形成开口部723,该开口部723的底部724通过反射层713设置在第1基材703上。
在图49中,在开口部723上,与遮光层715相邻的着色层714B从底部724开始重叠地形成h21的厚度,然后,再在其上着色层714G重叠地形成h22的厚度,最后,再在其上着色层714R的突出部分重叠地形成h23的厚度。
这里,如果最下方的着色层714B的厚度h21大于0.7μm小于2.0μm,则蓝色系的例如蓝色的着色层714B的遮光性良好。另外,通过与其他的着色层的组合,在各显示用点D的表面和与其相邻的点D间区域的表面之间,可以确保平坦性。
此外,如果将图49的h21形成约1.7μm、将h22形成约1.0μm、将h23形成约0.9μm、进而将重叠的着色层的最上面的着色层714R上面的覆盖层716的厚度h24形成为约1.8μm时,则基底层712的厚度h25约为2.4μm,显示用点D上的着色层714B的厚度h26约为1.0μm,该部分的覆盖层716的厚度h27约为2.0μm,所以,遮光层715上的覆盖层716的上面与着色层714B的显示用点D上的覆盖层716的上面一致,成为平坦的面。这里,通过在开口部723的最下面形成着色层714B,可以将所能形成的最厚的厚度形成为约1.7μm。
此外,在图47中,在着色层614G与着色层614B之间,在开口部723的底部724,首先填入相邻的着色层714B,然后再在其上重叠着色层714G的突出部分,进而再在其上重叠着色层714R,这样,就形成了遮光层715。
另外,在着色层714R与着色层714G之间,在开口部723的底部,首先形成着色层714B,然后再在其上重叠着色层714G的突出部分,进而再在其上重叠销的着色层714R,这样,就形成了遮光层715。
为了收容遮光层715,在基底层712上形成的凹陷不限于上述那样的开口部723,也可以采用例如图50所示的凹部723。这时,在凹部723的底部724的地方,基底层712不完全除去。这时,也可以将遮光层715的高度降低与凹部723的底部724的深度相当的高度。这样,就可以降低覆盖层716上面的凹凸,所以,可以降低单元间隙的偏差,并且摩擦处理也容易。结果,液晶装置的画面显示的对比度良好。
这里,如果使图50的最下方的着色层714B的厚度m21大于0.7μ小于2.0μm,则蓝色系的例如蓝色的着色层714B的遮光性良好。另外,通过与其他着色层的组合,在各显示用点D的表面和与其相邻的显示用点D间的边界区域的表面之间降低凹凸。
此外,如果将图50的着色层714B的厚度m21形成约1.1μm、将着色层714G的厚度m22形成约1.0μm、进而将着色层714R的厚度m23形成约0.9μm,则在凹部723的底部724的深度m25约为1.3μm时,可以进一步降低覆盖层716上面的凹凸。
作为这时的着色层714的排列图形,在图48中,采用了倾斜的镶嵌排列,但是,作为排列图形,除了倾斜的镶嵌排列外,也可以采用带状排列或数字排列等各种图形形状。
显示用点D是由遮光层715将其周围包围的区域,在该显示用点D的内部包含R、G、B中的任意1色的着色层714,此外,还包含反射层713和开口部722。1个像素由包含R、G、B的各色的着色层714的3个显示用点D构成。
其次,图46的像素电极727由例如ITO等这样的透明导电体形成,通过TFD729与和该像素电极727相邻的扫描线728连接。TFD729在第2基材705的表面成膜的基底层730上形成。另外,TFD729由第1金属层731、在该第1金属层731的表面形成的绝缘膜732和在该绝缘膜732上形成的第2金属层733构成。
这里,第1金属层731由例如厚度约100~500nm的Ta单体膜、Ta合金膜等形成,与扫描线728连接。另外,绝缘膜732由例如厚度约10~35nm的氧化钽等形成。此外,第2金属层733由例如铬(Cr)等这样的金属膜形成约50~300nm的厚度,与像素电极727连接。
在上述结构的本实施例中,将扫描信号供给在第2基材705上形成的扫描线728体将数据信号供给在第1基材703侧形成的数据线726时,可以驱动由像素电极727与数据线726相对的部分保持的液晶。
考虑反射型显示时,通过第2基材705和像素电极727入射到液晶层707上的外部光由该液晶层707按各显示用点D进行调制,由反射层713反射后再次通过像素电极727和第2基材705向外部射出。
另一方面,考虑透过型显示时,从照明装置131(参见图9)射出的光通过第1基材703和透过部722入射到液晶层707上,由该液晶层707按各显示用点D进行调制,通过像素电极727和第2基材705向外部射出,利用该出射光进行显示。
不论是反射型显示还是透过型显示,在本实施例中,由于覆盖层716形成平坦的,所以,在液晶装置的画面上可以看到对比度锐利的图像。向外部出射的出射光着色为与覆盖反射层713还透过部722的着色层714对应的色。
在本实施例中,在相互相邻的显示用点D间的边界区域形成具有凹部723(图50)或开口部723(图49)的基底层712,所以,可以降低由着色层714形成的遮光层715的高度,这样,就可以确保各显示用点D的表面和与其相邻的点D间区域的表面之间的平坦性。
另外,在凹部723的底部724或开口部723的底部724开始已形成了蓝色系的例如蓝色的着色层714B,所以,在可见光波长区域平均透过率低的蓝色与其他绿色系的绿色和红色系的红色的着色层714相比,形成得最厚,既可以进一步提高遮光性,又可以总体上降低遮光层715的高度,从而可以使对比度良好。
此外,如果在开口部723从底部724开始将蓝色的着色层714B形成约1.7μm的厚度、再在其上将绿色的着色层714G形成约1.0μm的厚度,进而再在其上将红色的着色层714R形成约0.9μm的厚度,则可确保各显示用点D的上面和与其相邻的点间区域的上面之间的平坦性,从而可以进一步确保覆盖层716的平坦性,因此,可以改善单元间隙的偏差,此外,摩擦处理也容易。结果,可以实现液晶装置的显示画面的对比度的锐化。
另外,在以上的说明中,如图49所示,在形成遮光层715的区域,将基底层712全部除去,形成开口部723,但是,也可以如图50所示的那样,将基底层712分为第1绝缘层712a和第2绝缘层712b通过2次形成,而在形成第2绝缘层712b时形成凹部723。
这时,在第1次的处理中,包含成为遮光层715的显示用点D间的边界区域在内,在基材料的整个面上形成第1绝缘层712a,进而与图49的基底层712的下层712a一样形成凹凸。并且,在形成第2绝缘层712b的第2次的处理中,除了成为遮光层715的显示用点D间的边界区域,在各显示用点D的区域使用光敏抗蚀剂利用蚀刻形成第2绝缘层712b。
这时,可以降低覆盖层716的上面的凹凸,所以,可以改善单元间隙的偏差,另外,摩擦处理也容易。结果,可以改善液晶装置的显示画面的对比度。此外,在本实施例中,是TFD型的有源矩阵方式,所以,画面明亮而容易看,并且可以降低耗电和制造成本。
(液晶装置的制造方法)
下面,根据图51的工序图说明本实施例的液晶装置的制造方法。首先,在工序P181,在第1基材703上形成基底层712。这里,在形成遮光层715的各显示用点D间的边界区域,使用光敏抗蚀剂对基底层712进行蚀刻处理,用以在基底层712上形成开口部723。
若稍详细地说明该工序,就是在第1基材703上利用旋转涂敷法均匀地涂布树脂材料,并再在其上涂布抗蚀剂,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理,进而对上述树脂材料进行蚀刻处理,在基底层712上形成多个孔。其次,通过对该基底层712进行加热,使这些孔光滑地变形,形成凹凸状的基底层712的下层712a。此外,再在其上薄薄地涂布相同的树脂材料形成基底层712的上层712b,使该基底层712的凹凸状成为光滑面。
其次,在该基底层712上涂布抗蚀剂,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理。然后,将抗蚀剂作为掩模对基底层712进行蚀刻处理,在该基底层712上形成开口部723。这样,在成为遮光层715的部分,就在第1基材703上形成了基底层712被除去的基底层712。
其次,在工序P182,在基底层712上利用蒸发法或溅射法等将铝等成膜为薄膜状,通过使用光刻法对其进行图形化处理,例如,如图48所示的那样,在各显示用点D的大致中央设置略呈长方形的开口部722,同时,在除此以外的区域形成反射层713。
然后,在工序P183,在反射层713和开口部722上利用旋转涂敷法涂布1色例如蓝色系的蓝色的着色层材料,进而再在其上涂布抗蚀剂,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理,并将该抗蚀刻剂作为掩模对上述着色层材料进行蚀刻处理,形成蓝色的着色层714B。另外,对于其他2色,重复进行相同的处理,顺序形成绿色系例如绿色的着色层714G和红色系例如红色的着色层714R。
这样,在各显示用点D上就分别单独形成了蓝色的着色层714B、绿色的着色714G和红色的着色层714R,对于遮光层715,如图46所示,在最下层将蓝色的着色层714B形成得最厚,然后,再在其上重叠地形成绿色的着色层714G和红色的着色层714R。如上所述,由于在最下层蓝色的着色层714B形成得最厚,所以,不仅可以提高遮光性,而且可以将例如遮光层715总体的厚度减薄。
其次,在工序P184,在着色层714上形成覆盖层716。这时,在本实施例中,可以将遮光层715的高度降低在基底层712上形成开口部723的部分,可以确保覆盖层716的表面的平坦性,因此,可以降低单元间隙的偏差,另外,摩擦处理也容易。结果,可以实现液晶装置的画面上显示的图像的对比度的锐化。
然后,在工序P185,在覆盖层716上利用溅射法被覆作为数据线726的材料的ITO等,利用光刻法进行图形化处理,如图48所示,在X方向形成具有指定的宽度的带状的数据线726。此外,再在其上形成取向膜718,并对该取向膜718进行摩擦处理,这样,就形成了彩色滤光器基板704。
另一方面,关于对向基板706,在工序P191,在第2基材705上形成TFD729、扫描线728和像素电极727。这里,TFD729按以下方式形成。即,首先在第2基材705上将Ta氧化物等以均匀的厚度成膜,形成基底层730。然后,再在其上利用溅射方将Ta等以均匀的厚度成膜,并利用光刻法同时形成扫描线728和第1金属层731。这时,扫描线728和第1金属层731按桥式连接。
其次,在上述第1金属层731上将作为绝缘膜的氧化钽等以均匀的厚度成膜,进而利用光刻法形成第2金属层733。
然后,将像素电极727的预定形成区域的基底层712除去之后,利用溅射法等将ITO以均匀的厚度成膜,此外,利用光刻法等形成与1个显示用点D的大小相当的指定形状的像素电极727,其一部分与第2金属层733重叠。通过这一连串的处理,就形成了TFD729和像素电极727。
其次,在工序P192,在TFD729和像素电极727上形成取向膜720,并对该取向膜720进行摩擦处理,这样,就形成了对向基板706。
然后,在工序P201,在第2基材705侧的取向膜720上通过干散等散布间隙部件129(参照图9),利用密封材料133将上述彩色滤光器基板704和上述对向基板706相互粘贴。其次,在工序P202,从密封材料133的开口部注入液晶,在注入之后利用紫外线硬化性树脂等将密封材料的开口部密封。
然后,在工序P203,利用粘贴等方法将相位差片708及710和偏振片709及711安装到第1基材703和第2基材705的各外表面上。其次,在工序P204,进行必要的布线,并安装上图9的照明装置131和壳体132,就完成了液晶装置。
在图51的制造方法中,在重叠了着色层714的遮光层715中,将蓝色系的例如蓝色的着色层714B配置在最下层,可以将蓝色的着色层714形成为最厚的着色层,所以,可以提高遮光性。另外,可以将遮光层715的全体的厚度减薄。
此外,可以将遮光层715的高度降低在基底层712上形成开口部723的部分,所以,可以确保覆盖层716的表面的平坦性。这样,可以降低单元间隙的偏差,另外,可以很容易地进行摩擦处理。结果,可以实现液晶装置的画面显示的对比度的锐化。
另外,在图51的制造方法中,如图49所示,在开口部723的地方即成为遮光层715的区域将基底层712全部除去,但是,也可以如图50所示的那样,将基底层712分为第1绝缘层712a和第2绝缘层712b通过2次形成,而在形成第2绝缘层712b时形成凹部723。
例如,在第1次的处理中,包含成为遮光层715的显示用点D间的边界区域在内,在基材的整个面上形成第1绝缘层712a,和图49的基底层712的下层712a一样设置凹凸,在进行第2次的第2绝缘层712b的形成处理时,除了成为遮光层715的各显示用点D间的边界区域,在各显示用点D的区域可以使用光敏抗蚀剂通过蚀刻形成基底层712。
这样,在第1次的基底层712的形成中,可以省略使用光敏抗蚀剂对基底层712进行蚀刻处理的工序,从而可以降低成本,制造也可以快速进行。另外,即使如开口部723那样将基底层712完全除去而可能会影响相互相邻的显示用点D间的边界区域和显示用点D的表面的平坦性,也可以按所希望的厚度形成基底层712而确保平坦性,从而可以基底单元间隙的偏差,此外,摩擦处理也容易。在遮光层715的部分,可以与上述相反,而在第1次的处理中在基底层712形成凹部723。
此外,也可以使用中间色调形成凹部。
实施例10.
下面,说明将本发明应用于作为开关元件使用三端型开关元件即TFT(Tin Film Transistor)的反射半透过型的液晶装置时的其他实施例。
图52是构成本发明的液晶装置的1个实施例的液晶屏的剖面图。图53是构成图52的液晶屏的彩色滤光器基板的剖面图。图54是该液晶屏的部分放大图。图54中的D-D’线和E-E’线的剖面图与图52相当。图55是将基底层完全除去时的遮光层的部分剖面放大图。图56是将基底层除去一部分时的遮光层的部分剖面放大图。并且,图57是本实施例的液晶装置的制造方法的工序图。
图52所示的液晶屏802是具有所谓的反射半透过型的结构的液晶屏,使用该液晶屏802构成的液晶装置的结构与图9所示的液晶装置101大致相同。即,根据需要,通过将照明装置131和壳体132安装到液晶屏802上,就构成了液晶装置。
液晶屏802以由玻璃板或合成树脂板等形成的透明的第1基材803为基体的彩色滤光器基板804和以与其相对的第2基材805为基体的对向基板806利用密封材料133(参见图9)相互粘贴,将液晶封入到这些彩色滤光器基板804与对向基板806之间,形成液晶层807。另外,相位差片808和偏振片809配置在第1基材803的外表面,相位差片810和偏振片811配置在第2基材805的外表面。
关于彩色滤光器基板804,在第1基材803的液晶层807侧的表面形成基底层812,在该基底层812的表面设置反射层813。另外,在基底层812的表面设置了反射层813的部分构成反射部825,以在反射层813上形成的开口部822构成透过部。
在反射层813上按指定的排列图形形成绿色的着色层814G、蓝色的着色层814B和红色的着色层814R。对于这些着色层,在以后的说明中,有时按总称用符号“814”表示。在相互相邻的着色层814间的边界区域设置遮光层815。
另外,在着色层814和遮光层815上,设置保护这些层的覆盖层816。另外,在覆盖层816上,形成由ITO等这样的透明导电体构成的共同电极834,进而再在其上形成由聚酰亚铵树脂等构成的取向膜818。
其次,关于对向基板806,在第2基材805的液晶层807侧的表面,配置排列成矩阵状的多个像素电极827,在各像素电极827的边界区域,栅极配线835与源极配线836正交,在这些配线的交叉部分附近设置TFT837,进而再在其上形成取向膜820。栅极配线835在图54的Y方向延伸,源极配线836在X方向延伸。
这里,共同电极834是在覆盖层816的整个表面上形成的面电极,由栅极配线835和源极配线836包围的区域成为显示用点D。
另外,基底层812由下层812a和上层812b的2层形成,这些层由树脂材料形成。该基底层812是通过将下层812a的表面加工成细的凹凸状并进而用相同材料的薄的上层812b被覆到该下层812a的整个表面上而形成的,所以,形成光滑的凹凸状。该凹凸形状使透过基底层812的光发生散射,这样,就可以消除难于观看显示的画面的图像的问题。
反射层813是例如铝或银等的单体金属膜,在基底层812上形成,反射层813的表面也按照基底层812的表面的凹凸形成细的凹凸。这样,也可以使由反射层813反射的反射光发生散射,从而可以消除难于观看显示的画面的图像的问题。
在反射层813上,如图54所示,在显示用点D的大致中央形成略呈长方形的开口部822,该开口部822成为透过部。从照明装置131(参见图9)射出的光通过该开口部822供给液晶层807。开口部822不限于本例的形状,也可以采用圆孔形状等。另外,显示用点D内的开口部822的个数不限于1个,可以采用多个。
着色层814是涂布例如由包含颜料或染料等的着色剂的感光性树脂构成的着色抗蚀剂并通过利用光刻法等对其进行图形化处理而形成的。通过图形化处理,形成使通过第1基材803的照明装置131的光的开口部822和覆盖该开口部822的周围的反射层813的部分。如本实施例那样,树脂R、G、B的三色的着色层814时,上述图形化处理对各色顺序进行。这样,在遮光层815的地方,就可以将各着色层814与其他着色层814重叠。
遮光层815在各显示用点D间的边界区域形成,将该边界区域遮光。该遮光层815形成为分别在第2基材805的栅极配线835的长度方向(即图54的Y方向)和与其正交的方向(即图54的X方向)延伸的带状。
另外,遮光层815在例如着色层814B与着色层814R之间,如图55所示的那样,在基底层812上形成开口部823,该开口部823的底部824通过反射层813在第1基材803上形成。
在开口部823,与遮光层815相邻的着色层814B从底部824开始形成h31的厚度,并在其上着色层814G重叠地形成h32的厚度,进而,再在其上着色层814R的涂布部分重叠地形成h33的厚度。
这里,如果最下方的着色层714B的厚度h31大于0.7μm小于2.0μm,则蓝色系的例如蓝色的着色层814B的遮光性良好。另外,通过与其他的着色层的组合,在各显示用点D的表面和与其相邻的点D间区域的表面之间,可以确保平坦性。
此外,如果将图55的h31形成约1.7μm、将h32形成约1.0μm、将h33形成约0.9μm、进而将重叠的着色层的最上面的着色层814R上面的覆盖层816的厚度h34形成为约1.8μm时,则基底层812的厚度h35约为2.4μm,显示用点D上的着色层814B的厚度h36约为1.0μm,该部分的覆盖层816的厚度h37约为2.0μm,所以,遮光层815上的覆盖层816的上面与着色层814B的显示用点D上的覆盖层816的上面一致,成为平坦的面。
这里,如上所述,通过在开口部823的最下面形成着色层814B,可以将厚度形成为约1.7μm。
此外,在着色层814G与着色层814B之间,如图53所示的那样,在开口部823的底部824,首先填入相邻的着色层814B,然后在其上重叠相邻的着色层814G的突出部分,最后再在其上重叠着色层814R,这样,就形成了着色层814。
另外,在着色层814R与着色层814G之间,在开口部823的底部824,首先形成着色层814B,然后在其上重叠相邻的着色层814G的突出部分,最后再在其上重叠相邻的着色层814R,这样,就形成了遮光层815。
此外,遮光层815不限于上述结构,例如,可以如图56所示的那样,即使在凹部823的底部824不完全将基底层812除去,遮光层815的高度也降低了凹部823的底部824的深度,从而可以降低覆盖层816的上面的凹凸。这样,就可以降低单元间隙的偏差,摩擦处理也容易,从而液晶装置的画面显示的对比度良好。
这里,如果使图56的最下方的着色层814B的厚度m31大于0.7μ小于2.0μm,则蓝色系的例如蓝色的着色层814B的遮光性良好。另外,通过与其他着色层的组合,在各显示用点D的表面和与其相邻的显示用点D间的边界区域的表面之间降低凹凸。
此外,如果将图56的着色层814B的厚度m31形成约1.1μm、将着色层814G的厚度m32形成约1.0μm、进而将着色层814R的厚度m33形成约0.9μm,则在凹部823的底部824的深度m35约为1.3μm时,可以进一步降低覆盖层816上面的凹凸。
作为这时的着色层814的排列图形,在图54中,采用了倾斜的镶嵌排列,但是,作为排列图形,除了倾斜的镶嵌排列外,也可以采用带状排列或数字排列等各种图形形状。
显示用点D是由遮光层815将其周围包围的区域,在该显示用点D的内部包含R、G、B中的任意1色的着色层814,此外,还包含反射层813和开口部822。1个像素由包含R、G、B的各色的着色层814的3个显示用点D构成。
其次,TFT837具有在第2基材805上形成的栅极838、在该栅极838上在第2基材805的整个面上形成的栅极绝缘膜839、将该栅极绝缘膜839夹在中间而在栅极838的上方位置形成的半导体层840、在该半导体层840的一侧通过触点电极841形成的源极842和进而在半导体层840的另一侧通过触点电极841形成的漏极843。
这里,栅极838与栅极配线835连接,源极842与源极配线836连接。栅极配线835在第2基材805的平面方向延伸,向纵向(即图54的Y方向)以等间隔平行地形成多条。另外,源极配线836在第2基材805的平面方向延伸,向横向(即图54的X方向)以等间隔平行地形成多条,将栅极绝缘膜839夹在中间与栅极配线835交叉。
像素电极827在由相互交叉的栅极配线835和源极配线836分割的方形区域中由例如ITO等这样的透明导电体形成,将除了与TFT837对应的部分的区域覆盖。
栅极配线835和栅极838由例如铬1钽等形成。另外,栅极绝缘膜839由例如氮化硅(SiNx)、氧化硅(SiOx)等形成。另外,源极842和与其一体的源极配线836以及漏极843由例如钛、钼、铝等形成。
在上述结构的本实施例中,将信号供给在第1基材803上形成的共同电极834同时将信号供给在第2基材805上形成的栅极配线835和源极配线836时,对各显示用点D选择像素电极827,通过就电压加到保持在该选择的像素电极827与共同电极834之间的液晶上,控制液晶的取向,调制反射光和透过光。
考虑反射型显示时,通过第2基材805和像素电极827入射到液晶层807上的外光由该液晶层807按各显示用点D进行光调制,并由反射层813反射后,再次通过像素电极827和第2基材805向外部射出,利用该出射光进行显示。
另一方面,考虑透过型显示时,从照明装置131(参照图9)射出的光通过第1基材803和透过部822入射到液晶层807上后,由该液晶层807按各显示用点D进行光调制,然后通过像素电极827和第2基材805向外部射出,利用该出射光进行显示。
不论是反射型显示还是透过型显示,在本实施例中,由于覆盖层816形成平坦的,所以,在液晶装置的画面上可以看到对比度锐利的图像。此外,向外部射出的出射光由覆盖反射层813和透过部822的着色层814着色为对应的色。
在本实施例中,在相互相邻的显示用点D间的边界区域形成具有凹部823(图56)或开口部823(图55)的基底层812,所以,可以降低遮光层815的高度,从而可以确保各显示用点D和相互相邻的显示用点D间的边界区域的表面的平坦性。
另外,在凹部823的底部824或开口部823的底部824的最下方形成蓝色系的例如蓝色的着色层814B,所以,在可见光波长区域平均透过率低的蓝色与其他的绿色系的绿色和红色系的红色的着色层814相比,形成得最厚,既可以提高遮光性,总体上又可以降低遮光层815的高度,从而可以使对比度良好。
此外,如果在开口部823从底部824开始将蓝色的着色层814B形成约1.7μm的厚度、再在其上将绿色的着色层814G形成约1.0μm的厚度,进而再在其上将红色的着色层814R形成约0.9μm的厚度,则可确保各显示用点D的上面和与其相邻的点间区域的上面之间的平坦性,从而可以进一步确保覆盖层816的平坦性,因此,可以改善单元间隙的偏差,摩擦处理也容易。结果,可以实现液晶装置的显示画面的对比度的锐化。
另外,在凹部823,如图56所示,即使不将基底层812完全除去,也可以降低遮光层815的高度,所以,可以降低覆盖层816的上面的凹凸,从而可以消除单元间隙的偏差,并且摩擦处理也容易,结果,可以改善显示画面的对比度。
此外,在本实施例中,是TFT型的有源矩阵方式,所以,画面明亮而容易看,可以进一步提高对比度。
(液晶装置的制造方法)
下面,根据图57的工序图说明本实施例的液晶装置的制造方法。首先,在工序P211,在第1基材料803上形成基底层812。这里,在形成遮光层815的各显示用点D间的边界区域,如图52所示,使用光敏抗蚀剂对基底层812进行蚀刻处理,用以在基底层812上形成开口部823。
若稍详细地说明该工序,就是在第1基材803上利用旋转涂敷法均匀地涂布树脂材料,并再在其上涂布抗蚀剂,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理,进而对上述树脂材料进行蚀刻处理,在基底层812上形成多个孔。
其次,通过对该基底层812进行加热,使这些孔光滑地变形,形成凹凸状的基底层812的下层812a。此外,再在其上薄薄地涂布相同的树脂材料形成基底层812的上层812b,使该基底层812的凹凸状成为光滑面。
其次,在该基底层812上涂布抗蚀剂,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理。然后,将抗蚀剂作为掩模对基底层812进行蚀刻处理,在该基底层812上形成开口部823,从而在成为遮光层815的部分,在第1基材703上形成基底层812被除去的基底层812。
其次,在工序P212,在基底层812上利用蒸发法或溅射法等将铝等成膜为薄膜状,通过使用光刻法对其进行图形化处理,例如,如图54所示的那样,在各显示用点D的大致中央设置略呈长方形的开口部822,同时,在除此以外的区域形成反射层813。
然后,在工序P213,在反射层813和开口部822上利用旋转涂敷法涂布1色例如蓝色系的蓝色的着色层材料,进而再在其上涂布抗蚀剂,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理,并将该抗蚀刻剂作为掩模对上述着色层材料进行蚀刻处理,形成蓝色的着色层814B。另外,对于其他2色,重复进行相同的处理,顺序形成绿色系例如绿色的着色层814G和红色系例如红色的着色层814R。
这样,在各显示用点D上就分别单独形成了蓝色的着色层814B、绿色的着色814G和红色的着色层814R,对于遮光层815,如图53所示,在最下层将蓝色的着色层814B形成得最厚,然后,再在其上重叠地形成绿色的着色层814G和红色的着色层814R。
如上所述,由于在最下层蓝色的着色层814B形成得最厚,所以,不仅可以提高遮光性,而且可以将例如遮光层815总体的厚度减薄。
其次,在工序P214,在着色层814上形成覆盖层816。在本实施例中,可以将遮光层815的高度降低在基底层812上形成开口部823的部分,可以确保覆盖层816的表面的平坦性,因此,可以降低单元间隙的偏差,另外,摩擦处理也容易。结果,在液晶装置的显示画面上可以实现对比度的锐化。
然后,在工序P215,在覆盖层816上利用溅射法被覆作为共同电极834的材料的ITO等,利用光刻法进行图形化处理,在覆盖层816的上面形成共同电极834此外,再在其上形成取向膜818并进行摩擦处理,就形成了彩色滤光器基板804。
另一方面,关于对向基板806,在工序P221,在第2基材805上形成TFT837、栅极配线835、源极配线836和像素电极827等。
这里,关于TFT837,在第2基材805上,例如利用溅射法将铬、钽等以均匀的厚度成膜,然后利用光刻法进行图形化处理,形成栅极配线835和与其一体的栅极838,此外,利用例如等离子体CVD(Chemical Vapour Deposition)法形成由氮化硅构成的栅极绝缘膜839。
其次,按该顺序连续地形成例如成为半导体层840的a-Si层和成为触点电极841的n+型a-Si层,进而对形成的n+型a-Si层和a-Si层进行图形化处理,形成半导体层840和触点电极841,同时利用溅射法将ITO等被覆到栅极绝缘膜839上成为像素电极827的部分,利用光刻法进行图形化处理,形成像素电极827。
另外,在第2基材805的整个表面上利用溅射法将例如钛、钼、铝等形成厚度均匀的薄膜,然后进行图形化处理,形成源极842、漏极843和源极配线836。通过这一连串的处理,就形成了TFT837和像素电极827。
其次,在工序P222,再在像素电极827等上形成取向膜820并进行摩擦处理,就形成对向基板806。
然后,在工序P231,在对向基板804侧的取向膜820上通过干散等散布间隙部件129(参见图9)并利用密封材料133将彩色滤光器基板804和对向基板806相互粘贴。其次,在工序P232,通过密封材料133的开口部注入液晶,然后利用紫外线硬化性树脂等将密封材料133的开口部密封。
然后,在工序P233,利用粘贴等方法将相位差片808及810和偏振片809及811分别安装到第1基材803和第2基材805的外表面上。其次,在工序P234,进行必要的布线,安装图9的照明装置131和壳体132等,就完成了的液晶装置。
在图57的制造方法中,在3色的着色层814重叠而形成的遮光层815中,将蓝色系的例如蓝色的着色层814B配置在最下层,所以,形成得最厚,既可以提高遮光性,又可以将例如遮光层815的全体的厚度减薄。
此外,可以将遮光层815的高度降低在基底层812上形成开口部823的部分,所以,可以确保覆盖层816的表面的平坦性,从而可以降低单元间隙的偏差,另外,摩擦处理也容易,结果,可以实现液晶装置的显示画面的对比度的锐化。
另外,在图57的制造方法中,如图55所示,在形成遮光层815的区域即开口部823的地方,将基底层812全部除去了,但是,也可以如图56所示的那样,例如在工序P211,将基底层812分为第1绝缘层812a和第2绝缘层812b通过2次形成,而在第2绝缘层812b的形成时形成凹部823。
例如,在第1次的处理中,包含成为遮光层815的显示用点D间的边界区域在内,在基材的整个面上形成第1绝缘层812a,并和图55的基底层812的下层812a一样设置凹凸,在第2次的第2绝缘层812b形成时,除了成为遮光层815的显示用点D间的边界区域,在各显示用点D的区域使用光敏抗蚀剂通过蚀刻可以形成第2绝缘层812b。
这样,在第1次的基底层812的形成中,就可以省略使用光敏抗蚀剂对基底层812进行蚀刻的工序,从而可以降低成本,制造速度也快。另外,如开口部823那样,将基底层812完全除去时,有时反而损害相互相邻的显示用点D间的边界区域的表面与显示用点D的表面之间的平坦性,但是,通过以所希望的厚度形成基底层812,可以确保平坦性,所以,除了可以减少单元间隙的偏差外,摩擦处理也容易。在遮光层815的部分,可以和上述相反,将在基底层812上形成凹部823的工序作为第1次的处理。
此外,也可以使用中间色调形成凹部823。
实施例11.
下面,说明将本发明应用于反射型的无源矩阵方式的液晶装置时的其他实施例。
图58是构成本发明的液晶装置的1个实施例的液晶屏的剖面图。图59是构成图58的液晶屏的彩色滤光器基板的剖面图。图60是该液晶屏的部分放大图。图60中的F-F’线的剖面图与图58相当。图61是将基底层完全除去时的遮光层的部分剖面放大图。图62是将基底层除去一部分时的遮光层的部分剖面放大图。并且,图63是本实施例的液晶装置的制造方法的工序图。
图58所示的液晶屏902是具有所谓的反射半透过型的结构的液晶屏,使用该液晶屏902构成的液晶装置的结构与图9所示的液晶装置101大致相同。即,根据需要,通过将照明装置131和壳体132安装到液晶屏902上,就构成了液晶装置。
液晶屏902以由玻璃板或合成树脂板等形成的透明的第1基材903为基体的彩色滤光器基板904和以与其相对的第2基材905为基体的对向基板906利用密封材料133(参见图9)相互粘贴,将液晶封入到这些彩色滤光器基板904与对向基板906之间,形成液晶层907。另外,相位差片908和偏振片909配置在第1基材903的外表面,相位差片910和偏振片911配置在第2基材905的外表面。
关于彩色滤光器基板904,在第1基材903的液晶层907侧的表面形成基底层912,在该基底层912的表面设置反射层913。在反射层913上按指定的排列图形形成绿色的着色层914G、蓝色的着色层914B和红色的着色层914R。对于这些着色层,在以后的说明中,有时按总称用符号“914”表示。在相互相邻的着色层914间的边界区域,设置通过重叠各色的着色层914而形成的遮光层915。
另外,在着色层914和遮光层915上,设置用于保护这些层的覆盖层916。另外,在覆盖层916上形成由ITO等这样的透明导电体构成的透明电极917,进而再在其上形成由聚酰亚铵树脂等构成的取向膜918。
另一方面,关于对向基板906,如图58所示,在第2基材905的液晶层907侧的表面形成在与彩色滤光器基板904侧的透明电极917正交的方向(即图60的X方向)延伸的带状的透明电极919,进而再在其上形成取向膜920。透明电极917相互并列地构成带状,透明电极919在与其正交的方向(即图60的Y方向)相互并列地构成带状。另外,彩色滤光器基板904侧的透明电极917与对向基板906侧的透明电极919平面重叠的区域成为显示用点D。
彩色滤光器基板904的基底层912,由下层912a和上层912b的2层形成,这些层由树脂材料形成。该基底层912是通过将下层912a的表面加工成细的凹凸状并进而用相同材料的薄的上层912b被覆到该下层912a的整个表面上而形成的,所以,基底层912的表面形成光滑的凹凸状。该凹凸形状使透过基底层912的光发生散射,这样,就可以消除难于观看显示的画面的图像的问题。
另外,反射层913是例如铝或银等的单体金属膜,在基底层912上形成,反射层913的表面也按照基底层912的表面的凹凸形成细的凹凸。利用该凹凸形状,也可以使由反射层913反射的反射光发生散射,从而可以消除难于观看显示的画面的图像的问题。
着色层914是涂布例如由包含颜料或染料等的着色剂的感光性树脂构成的着色抗蚀剂并通过利用光刻法等对其进行图形化处理而形成的。该着色层914是原色系滤光器,1个显示用点D内的着色层914由R、G、B的3色中的某一个构成。另一方面,在遮光层915内,各色的着色层914相互重叠。
作为着色层914的排列图形,在图60中采用了倾斜的镶嵌排列,但是,除了该倾斜的镶嵌排列外,也可以采用带状排列或数字排列等各种图形形状。遮光层915在各显示用点D间的边界区域形成,将该边界区域遮光。该遮光层915形成为分别在彩色滤光器基板904的透明电极917的长度方向(即图60的Y方向)和与其正交的方向(即图60的X方向)延伸的带状。
另外,对于遮光层915,在例如着色层914B与着色层914R之间,如图61所示的那样,在基底层912上形成开口部923,开口部923的底部924,通过反射层913设置在第1基材903上。
在开口部923,与遮光层915相邻的着色层914B从底部924开始形成h41的厚度,并在其上着色层914G重叠地形成h42的厚度,进而再在其上着色层914R的突出部分重叠地形成h43的厚度。
这里,如果使图61的最下方的着色层914B的厚度h41大于0.7μm小于2.0μm,则蓝色系的例如蓝色的着色层914B的遮光性良好,通过与其他的着色层的组合,可以确保各显示用点D和与其相邻的点D间的边界区域的表面的平坦性。
此外,如果将图61的h41形成约1.7μm、将h12形成约1.0μm、将h43形成约0.9μm、进而将重叠的着色层的最上面的着色层914R上面的覆盖层916的厚度h44形成为约1.8μm时,则基底层912的厚度h45约为2.4μm,显示用点D上的着色层914B的厚度h46约为1.0μm,该部分的覆盖层916的厚度h47约为2.0μm,所以,遮光层915上的覆盖层916的上面与着色层914B的显示用点D上的覆盖层916的上面到第1基材903的高度一致,成为平坦的面。
这里,如上所述,通过在开口部923的最下面形成着色层914B,可以将所能形成的最厚的厚度形成为约1.7μm。
此外,在着色层914G与着色层914B之间,如图59所示,在开口部923的底部924,首先填入相邻的着色层914B,然后再在其上重叠着色层914G的突出部分,进而再在其上重叠着色层914R,这样,就形成了遮光层915。
另外,在着色层914R与着色层914G之间,如图59所示,在开口部923的底部924,首先形成着色层914B,然后再在其上重叠着色层914G的突出部分,进而再在其上重叠销的着色层914R,这样,就形成了遮光层915。
此外,遮光层915不限于上述结构,例如,可以如图62所示的那样,即使在凹部923的底部924不完全将基底层912除去,遮光层915的高度也降低了凹部923的底部924的深度,从而可以降低覆盖层916的上面的凹凸。这样,就可以降低单元间隙的偏差,摩擦处理也容易,从而液晶装置的画面显示的对比度良好。
这里,如果使图62的最下方的着色层914B的厚度m41大于0.7μ小于2.0μm,则蓝色系的例如蓝色的着色层914B的遮光性良好。另外,通过与其他着色层的组合,可以降低各显示用点D和与其相邻的显示用点D间的边界区域的表面的凹凸。
此外,如果将图62的着色层914B的厚度m41形成约1.1μm、将着色层914G的厚度m42形成约1.0μm、进而将着色层914R的厚度m43形成约0.9μm,则在凹部923的底部924的深度m45约为1.3μm时,可以进一步降低覆盖层916上面的凹凸。这样,就可以降低单元间隙的偏差,另外,摩擦处理也容易。结果,液晶装置的画面显示的对比度良好。
显示用点D包含原色系滤光器R、G、B中的某一各着色层914,是由遮光层915将其周围包围的区域。该显示用点D具有反射层913,1个像素由具有着色层914R的显示用点D、具有着色层914G的显示用点D和具有着色层914B的显示用点D的3个显示用点D构成。
在上述结构的本实施例中,将信号供给在第2基材905上形成的透明电极919体将信号供给在第1基材903上形成的透明电极917时,可以驱动作为透明电极919与透明电极917交叉的区域的显示用点D保持的液晶。
从对向基板侧入射到液晶层907上的外光按各显示用点D进行光调制,透过着色层915后由反射层913反射,再次透过对向基板906而射出。这时,由于覆盖层916是平坦的,所以,可以看到对比度锐利的图像。出射光由覆盖反射层913的着色层914着色为对应的色。
在本实施例中,在相互相邻的显示用点D间的边界区域形成具有凹部923或开口部923的基底层912,所以,可以降低遮光层915的高度,从而可以确保彩色滤光器基板904侧的覆盖层916的平坦性。
另外,在凹部923的底部924或开口部923的底部924,开始时已形成了蓝色系的例如蓝色的着色层914B,所以,在可见光波长区域平均透过率低的蓝色与其他的绿色系的绿色和红色系的红色的着色层914相比,形成得最厚,既可以提高遮光性,总体上又可以降低遮光层915的高度,从而可以使对比度良好。
此外,如果在开口部923从底部924开始将蓝色的着色层914B形成约1.7μm的厚度、再在其上将绿色的着色层914G形成约1.0μm的厚度,进而再在其上将红色的着色层914R形成约0.9μm的厚度,则可进一步确保各显示用点D和与其相邻的点间的边界区域上面的覆盖层916的平坦性,从而可以进一步确保覆盖层816的平坦性,从而可以改善单元间隙的偏差,另外,摩擦处理也容易。结果,可以实现液晶装置的显示画面的对比度的锐化。
另外,如图62所示,在凹部923不将基底层912完全除去时,该基底层912由第1绝缘层912a和在该第1绝缘层912a上设置的具有凹部923的第2绝缘层912b形成时,也可以降低例如覆盖层916的上面的凹凸,改善单元间隙的偏差,摩擦处理也容易,从而可以改善显示画面的对比度。
(液晶装置的制造方法)
下面,根据图63的工序图说明本实施例的液晶装置的制造方法。首先,在工序P241,在第1基材903上形成基底层912。这里,在形成遮光层915的显示用点D间的边界区域,例如图59所示的那样,使用光敏抗蚀剂对基底层912进行蚀刻处理,用以在基底层912上形成开口部923。
若稍详细地说明该工序,就是在第1基材903上利用旋转涂敷法均匀地涂布树脂材料,并再在其上涂布抗蚀剂后,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理。然后,进行蚀刻处理,在基底层912上形成多个孔。其次,通过对该基底层912进行加热,使这些孔光滑地变形,形成凹凸状的基底层912的下层912a。此外,再在其上薄薄地涂布相同的树脂材料形成基底层912的上层912b,使该基底层912的凹凸状成为光滑面。
其次,在该基底层812上涂布抗蚀剂,从形成了指定的图形的光掩模上对该抗蚀剂进行曝光和显影处理。然后,将抗蚀剂作为掩模对基底层912进行蚀刻处理,在该基底层912上形成开口部923,从而在成为遮光层915的部分,在第1基材903上形成基底层912被除去的基底层912。
其次,在工序P242,在基底层912上利用蒸发法或溅射法等成膜为薄膜状,通过使用光刻法对其进行图形化处理,在各显示用点D和遮光层915的区域,例如,如图59所示的那样,形成反射层913。
其次,在工序P243,在反射层上利用旋转涂敷法涂布各色的着色层材料,进而再在其上涂布抗蚀剂后,从形成了指定的图形的光掩模上进行曝光并对抗蚀剂进行显影处理。然后,进行蚀刻处理,顺序形成蓝色系的例如蓝色的着色层914B、绿色系的例如绿色的着色层914G和红色系的红色的着色层914R。
这样,在各显示用点D上就分别单独形成了蓝色的着色层914B、绿色的着色914G和红色的着色层914R,对于遮光层915,如图59所示,在最下层将蓝色的着色层914B形成得最厚,然后,再在其上重叠地形成绿色的着色层914G和红色的着色层914R。
如上所述,由于在最下层蓝色的着色层914B形成得最厚,所以,不仅可以提高遮光性,而且可以将例如遮光层915总体的厚度减薄。
此外,可以将遮光层915的高度降低在基底层912上形成开口部923的部分,从而可以确保此后形成的覆盖层916的表面的平坦性,通过降低单元间隙的偏差和进行摩擦处理,可以实现对比度的锐化。
其次,在工序P244,在上述着色层914上形成覆盖层916。另外,在工序P245,利用溅射法在其上被覆作为透明电极917的材料的ITO等,然后利用光刻法进行图形化处理,如图60所示,在Y方向形成具有指定的宽度的带状。
此外,再在其上形成取向膜918,并进行摩擦处理,彩色滤光器基板904的制造即告结束。这样,既可以确保取向膜918的液晶层907侧的面的保平坦性,又可以消除单元间隙的偏差,从而可以实现画面的高画质化。
另外,在工序P251,在第2基材905上利用溅射法被覆作为透明电极919的材料的ITO等,并利用光刻法进行图形化处理,如图60所示,在X方向将透明电极919形成带状。此外,在工序P252,再在其上形成取向膜920,并进行摩擦处理,对向基板906的制造即告结束。
其次,在工序P261,在对向基板906上通过干散等散布间隙部件129(参照图9),利用密封材料133将上述彩色滤光器基板904和上述对向基板906相互粘贴。
然后,在工序P262,从密封材料133的开口部注入液晶,在注入之后利用紫外线硬化性树脂等将密封材料的开口部密封。此外,在工序P263,利用粘贴等方法将相位差片908及910和偏振片909及911安装到第1基材903和第2基材905的各外表面上。其次,在工序P264,进行必要的布线,并安装上图9的照明装置131和壳体132,就完成了液晶装置。
在本实施例的液晶装置的制造方法中,在重叠了着色层914的遮光层915中,将蓝色系的例如蓝色的着色层914B配置在最下层,所以,形成得最厚,既可以提高遮光性,又可以将例如遮光层915的全体的厚度减薄。
此外,可以将遮光层915的高度降低在基底层912上形成开口部923的部分,所以,可以确保覆盖层916的表面的平坦性,从而可以降低单元间隙的偏差,另外,摩擦处理也容易,结果,可以实现液晶装置的显示画面的对比度的锐化。
另外,在上述液晶装置的制造方法中,如图61所示,开口部923在成为遮光层915的区域将基底层912全部除去了,但是,也可以如图62所示的那样,例如在图63的工序P241中,将基底层912分为第1绝缘层912a和第2绝缘层912b通过2次形成,并设置凹部。
例如,在第1次的处理中,包含成为遮光层915的显示用点D间的边界区域在内,在基材的整个面上形成第1绝缘层912a,并和图61的基底层912的下层912a一样设置凹凸,在第2次的第2绝缘层912b形成中,除了成为遮光层915的显示用点D间的边界区域,在各显示用点D的区域使用光敏抗蚀剂通过蚀刻可以形成第2绝缘层912b。
这样,在第1次的基底层912的形成中,就可以省略使用光敏抗蚀剂对基底层912进行蚀刻的工序,从而可以降低成本,制造速度也快。另外,如开口部923那样,将基底层912完全除去时,有时反而损害相互相邻的显示用点D间的边界区域的表面与显示用点D的表面之间的平坦性,但是,通过以所希望的厚度形成基底层912,可以确保平坦性,所以,除了可以减少单元间隙的偏差外,摩擦处理也容易。在遮光层915的部分,可以和上述相反,将在基底层912上形成凹部923的工序作为第1次的处理。
此外,也可以使用中间色调形成凹部923。
(电子机器)
下面,根据实施例说明本发明的电子机器。
电子机器的实施例1.
图64表示将本发明应用于作为电子机器的一例的手机时的实施例。这里所示的手机1600具有多个操作按钮1601、受话器1602、送话器1603和显示部1604。显示部1604可以使用本发明的液晶装置例如图3、图7、图9等所示的液晶装置构成。
电子机器的实施例2.
图65表示将本发明应用于作为电子机器的一例的便携式电脑即所谓的掌上电脑或笔记本电脑时的实施例。这里所示的电脑1610具有带键盘1611的本体部1612和显示单元1613。在显示单元1613中,液晶装置1616组装在外框1614中。该液晶装置1616可以使用本发明的液晶装置例如图3、图7、图9等所示的液晶装置构成。
电子机器的实施例3.
图66表示将本发明应用于作为电子机器的一例的数码相机时的实施例。通常的相机是由被摄体的光像使胶片感光,与此相反,数码相机是由CCD(Charge Coupled Device)等这样的摄像元件将被摄体的光像进行光电变换而生成摄像信号。
在这里所示的数码相机1620的机身1621的背面设置了显示部1622,在该显示部1622,根据CC淡摄像信号进行显示。例如,在显示部1622上可以显示被摄体,这时,显示部1622就起取景器的功能。在机身1621的前面侧(图66所示的结构的反面侧),设置了包含光学镜头和CCD等的受光单元1623。显示部1622可以使用本发明的液晶装置例如图3、图7、图9等所示的液晶装置构成。摄影者确认在显示部1622显示的被摄体后,按下快门案板1624进行摄影。
电子机器的实施例4.
图67表示将本发明应用于作为电子机器的一例的手表时的实施例。这里所示的手表1630在其本体的前面中央具有使用液晶装置1631的显示部。并且,作为液晶装置1631,可以使用本发明的液晶装置例如图3、图7、图9等所示的液晶装置。
电子机器的实施例5.
图68表示将本发明应用于作为电子机器的一例的信息机器时的实施例。这里所示的信息机器1640是具有触摸屏的信息机器,装配了液晶装置1641。该信息机器1640具有由液晶装置1641的显示面构成的显示区域1642和位于该显示区域1642的下方的第1输入区域1643。在第1输入区域1643配置了输入用平板1644。
液晶装置1641具有矩形的液晶屏与矩形的触摸屏平面重叠的结构。触摸屏前输入用屏的功能。触摸屏大于液晶屏,成为从液晶屏的一端突出的形状。
触摸屏配置在显示区域1642和第1输入区域1643,与显示区域1642对应的区域和第1输入区域1643一样,起可以进行输入操作的第2输入区域1645的功能。触摸屏具有位于液晶屏侧的第2面和与其相对的第1面,输入用平板1644粘贴在与第1面的第1输入区域1643相当的位置。
在输入用平板1644上,印刷了用于识别图标1646和手写文字识别区域1647的框。在第1输入区域1643中,通过输入用平板1644用手指或笔等输入工具将压力加到触摸屏的第1面上,可以进行图标1646的选择或在文字识别区域1647进行文字输入等这样的数据输入。
另一方面,在第2输入区域1645,除了可以观察液晶屏的图像外,还可以在液晶屏上显示例如输入模式画面,通过用手指或笔等将压力加到触摸屏的第1面上,可以指定该输入模式画面内的适当的位置,这样,就可以进行数据输入等。
电子机器的实施例6.
图69表示将本发明应用于作为电子机器的一例的投影仪时的实施例。在这里所示的投影仪1660的内部,设置了由卤素灯等这样的白色光源构成的照明灯单元1661。从该照明灯单元1661发出的投射光由配置在光导向装置1662内的4块反射镜1663和2块分色镜1664分离为R、G、B的三原色,入射到作为与各原色对应的光阀的液晶装置1665R、1665B和1665G。
液晶装置1665R、1665B和1665G可以使用本发明的液晶装置例如图3、图7、图9等所示的液晶装置。这些液晶装置分别由通过液晶驱动用IC供给的R、G、B的原色信号进行驱动。由这些液晶装置调制的光从3个方向入射到二向色棱镜1666上。在该二向色棱镜1666中,R色和B色的光转折90°的角,G色的光直线前进。各色的图像合成,该合成光通过投射透镜1667向外部射出,向屏幕等上投射彩色图像。
其他实施例.
作为可以应用本发明的电子机器,除了以上所述的实施例外,还有液晶电视、取景器式的摄像机、监视器直视型的摄像机、汽车驾驶导向装置、呼机、电子记事簿、计算器、文字处理器、工作站、电视电话、POS终端机等。并且,作为这些各种电子机器的显示部,当然可以应用上述显示装置。
另外,早本发明的电光装置,不限于液晶装置,也可以是场致发光装置、特别是有机场致发光装置、无机场致发光装置、LED(发光二极管)显示装置、电泳显示装置、等离子体显示装置、FED(场致发射显示)装置、薄型的示波管、使用液晶快门等的小型电视、使用数字微镜元件(DMD)的装置等。
以上,以理想的实施例说明了本发明,但是,本发明不限定上述任何实施例,在本发明的技术思想的范围内,可以适当变更进行实施。

Claims (36)

1.一种电光装置用基板,其特征在于:具有形成多个显示用点的基材、设置在该基材上的基底层、设置在该基底层上的反射层和设置在该反射层上的着色层,上述基底层设置在与上述显示用点对应的区域,不设置在上述多个显示用点间的区域。
2.按权利要求1所述的电光装置用基板,其特征在于:上述基底层的平面形状与上述显示用点的平面形状基本上相同。
3.一种电光装置用基板的制造方法,其特征在于:包括在形成了多个显示用点的基材上形成基底层的工序、在上述基底层上形成反射层的工序和在上述反射层上形成着色层的工序,在形成上述着色层的工序中,在与上述显示用点对应的区域形成上述着色层,在上述多个显示用点间的区域不形成上述着色层。
4.一种电光装置用基板,其特征在于:具有形成多个显示用点的基材、设置在上述基材上的并且具有不规则地排列的突起部或凹谷部以使在相互相邻的上述显示用点间的区域具有凹部或开口部的基底层、设置在该基底层上的反射层和用以将上述凹部或上述开口部覆盖而设置的遮光层。
5.一种电光装置用基板,其特征在于:具有形成多个显示用点的基材、设置在上述基材上的并且具有不规则地排列的突起部或凹谷部以使在相互相邻的上述显示用点间的区域具有凹部或开口部的基底层、设置在该基底层上的反射层和设置在该反射层上的同时进入上述凹部或上述开口部的着色层。
6.按权利要求4或权利要求5所述的电光装置用基板,其特征在于:上述反射层在其一部分上具有开口部。
7.按权利要求4所述的电光装置用基板,其特征在于:上述遮光层的高度与上述基底层的高度基本上相同。
8.按权利要求5所述的电光装置用基板,其特征在于:进而具有设置在上述着色层上的保护层。
9.按权利要求4或权利要求5所述的电光装置用基板,其特征在于:上述开口部的底部具有除掉了上述基底层的区域。
10.按权利要求4或权利要求5所述的电光装置用基板,其特征在于:上述反射层在其一部分上具有开口部。
11.按权利要求5所述的电光装置用基板,其特征在于:上述着色层至少具有蓝色系的上述着色部、绿色系的上述着色部和红色系的上述着色部,蓝色系的上述着色部、绿色系的上述着色部和红色系的上述着色部在上述相互相邻的显示用点间的区域中按照上述蓝色系的着色部、上述绿色系的着色部和上述红色系的着色部的顺序在上述基材上集层。
12.按权利要求5所述的电光装置用基板,其特征在于:上述蓝色系的着色部的厚度形成为0.7~2.0μm、上述绿色系的着色部的厚度形成为0.8~1.2μm、上述红色系的着色部的厚度形成为0.7~1.1μm。
13.按权利要求4或权利要求5所述的电光装置用基板,其特征在于:与上述凹部的底部对应的上述基底层的厚度比与其他区域对应的上述基底层的厚度薄。
14.按权利要求4或权利要求5所述的电光装置用基板,其特征在于:与上述凹部的底部对应的上述基底层由设置在上述基材上的第1绝缘层形成,与上述其他区域对应的上述基底层由上述第1绝缘层和与该第1绝缘层上的上述其他区域重叠地设置的第2绝缘层形成。
15.按权利要求4或权利要求5所述的电光装置用基板,其特征在于:与上述凹部的底部对应的上述基底层由设置在上述基材上的第1树脂层形成,与上述其他区域对应的上述基底层由上述第1树脂层和与该第1树脂层上的上述其他区域重叠地设置的第2树脂层形成。
16.按权利要求5所述的电光装置用基板,其特征在于:上述着色层至少具有第1色的第1着色部和第2色的第2着色部,上述第1着色部和上述第2着色部形成为在上述相互相邻的显示用点间的区域重叠。
17.按权利要求5所述的电光装置用基板,其特征在于:上述第1着色部和上述第2着色部分别与上述相互相邻的显示用点对应地设置。
18.按权利要求5所述的电光装置用基板,其特征在于:上述第1着色部在可见光波长区域的平均透过率比上述第2着色部在可见光波长区域的平均透过率低,上述第1着色部和上述第2着色部在上述基材上按该第1着色部和该第2着色部的顺序集层。
19.按权利要求5所述的电光装置用基板,其特征在于:上述第1着色部在光的波长区域400nm~700nm的平均透过率比上述第2着色部在光的波长区域400nm~700nm的平均透过率低,上述第1着色部和上述第2着色部在上述基材上按该第1着色部和该第2着色部的顺序集层。
20.按权利要求5所述的电光装置用基板,其特征在于:上述第1着色部的厚度大于0.7μm、小于2.0μm。
21.按权利要求5所述的电光装置用基板,其特征在于:上述着色层具有蓝色系的上述着色部和绿色系或红色系的上述着色部,蓝色系的上述着色部和绿色系或红色系的上述着色部在上述相互相邻的显示用点间的区域中按照上述蓝色系的着色部和上述绿色系或红色系的着色部的顺序在上述基材上集层。
22.一种电光装置,其特征在于:具有权利要求4或权利要求5所述的电光装置用基板、与该电光装置用基板相对而设置的其他基板和设置在上述电光装置用基板与上述其他基板之间的电光物质层。
23.一种电光装置,其特征在于:具有相互相对配置的第1基材和第2基材、配置在上述第1基材与上述第2基材间的电光物质、设置在上述第1基材上的第1电极、设置在上述第2基材上的第2电极、在上述第1电极与上述第2电极重叠的区域形成的多个显示用点、设置在上述第1基材上的并且具有不规则地排列的突起部或凹谷部以使在相互相邻的上述显示用点间的区域具有凹部或开口部的基底层、设置在该基底层上的反射层和用以将上述凹部或上述开口部覆盖而设置的遮光层。
24.一种电光装置,其特征在于:具有相互相对配置的第1基材和第2基材、配置在上述第1基材与上述第2基材间的电光物质、设置在上述第1基材上的第1电极、设置在上述第2基材上的第2电极、在上述第1电极与上述第2电极重叠的区域形成的多个显示用点、设置在上述第1基材上的并且具有不规则地排列的突起部或凹谷部以使在相互相邻的上述显示用点间的区域具有凹部或开口部的基底层、设置在该基底层上的反射层和用以进入上述凹部或上述开口部而设置的着色层。
25.按权利要求22或权利要求24所述的电光装置,其特征在于:上述着色层至少具有蓝色系的上述着色部、绿色系的上述着色部和红色系的上述着色部,蓝色系的上述着色部、绿色系的上述着色部和红色系的上述着色部在上述相互相邻的显示用点间的区域中按照上述蓝色系的着色部、上述绿色系的着色部和上述红色系的着色部的顺序在上述基材上集层。
26.按权利要求22~权利要求24的任一权项所述的电光装置,其特征在于:上述凹部的底部的基底层由设置在上述基材上的第1绝缘层形成,上述其他区域的上述基底层由上述第1绝缘层和与上述第1绝缘层上的上述其他区域重叠地设置的第2绝缘层形成。
27.按权利要求22或权利要求24所述的电光装置,其特征在于:上述着色层至少具有第1色的第1着色部和第2色的第2着色部,上述第1着色部和上述第2着色部形成为在上述相互相邻的显示用点间的区域重叠。
28.按权利要求24所述的电光装置,其特征在于:上述第1着色部在可见光波长区域的平均透过率比上述第2着色部在可见光波长区域的平均透过率低,上述第1着色部和上述第2着色部在上述基材上按该第1着色部和该第2着色部的顺序集层。
29.按权利要求24所述的电光装置,其特征在于:上述着色层至少具有蓝色系的上述着色部和绿色系或红色系的上述着色部,蓝色系的上述着色部和绿色系或红色系的上述着色部在上述相互相邻的显示用点间的区域中按照上述蓝色系的着色部和上述绿色系或红色系的着色部的顺序在上述基材上集层。
30.一种电子机器,其特征在于:具有权利要求22~权利要求24的任一权项所述的电光装置。
31.一种电光装置用基板的制造方法,其特征在于:包括在形成了多个显示用点的基材上形成基底层的工序、在上述基底层上形成反射层的工序和在上述基材上形成遮光层的工序,在形成上述基底层的工序中,在相互相邻的上述显示用点间的区域形成具有凹部或开口部并且具有不规则地形成的突起部或凹谷部的上述基底层,在上述遮光层形成工序中,形成将上述凹部或开口部覆盖的上述遮光层。
32.一种电光装置用基板的制造方法,其特征在于:包括在形成了多个显示用点的基材上形成基底层的工序、在上述基底层上形成反射层的工序和在上述基材上形成着色层的工序,在形成上述基底层的工序中,在相互相邻的上述显示用点间的区域形成具有凹部或开口部并且具有不规则地形成的突起部或凹谷部的上述基底层,在上述着色层形成工序中,将上述着色层形成为进入上述凹部或上述开口部。
33.按权利要求32所述的电光装置用基板的制造方法,其特征在于:在形成上述着色层的工序中,上述着色层至少具有蓝色系的上述着色部、绿色系的上述着色部和红色系的上述着色部,蓝色系的上述着色部、绿色系的上述着色部和红色系的上述着色部在上述相互相邻的显示用点间的区域中按照上述蓝色系的着色部、上述绿色系的着色部和上述红色系的着色部的顺序在上述基材上集层。
34.按权利要求32所述的电光装置用基板的制造方法,其特征在于:在形成上述着色层的工序中,上述着色层至少具有第1色的第1着色部和第2色的第2着色部,上述第1着色部和上述第2着色部形成为在上述相互相邻的显示用点间的区域重叠。
35.按权利要求32所述的电光装置用基板的制造方法,其特征在于:在形成上述着色层的工序中,上述着色层具有蓝色系的上述着色部和绿色系或红色系的上述着色部,蓝色系的上述着色部和绿色系或红色系的上述着色部在上述相互相邻的显示用点间的区域中按照上述蓝色系的着色部和上述绿色系或红色系的着色部的顺序在上述基材上集层。
36.一种电光装置的制造方法,其特征在于:包括在形成了多个显示用点的第1基材上形成基底层的工序、在上述基底层上形成反射层的工序、在上述基材上形成遮光层的工序、在上述第1基材上形成第1电极的工序、在与上述第1基材相对的第2基材上形成第2电极的工序和在上述第1基材与上述第2基材之间形成电光物质层的工序,在形成上述基底层的工序中,在相互相邻的上述显示用点间的区域形成具有凹部或开口部并且具有不规则地形成的突起部或凹谷部的上述基底层,在上述遮光层形成工序中,形成将上述凹部或开口部覆盖的上述遮光层。
CNB02154087XA 2001-12-11 2002-12-10 电光装置、电光装置用基板及其制造方法和电子机器 Expired - Lifetime CN1191488C (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP377302/2001 2001-12-11
JP2001377302 2001-12-11
JP2002159926 2002-05-31
JP159926/2002 2002-05-31
JP2002180404 2002-06-20
JP180404/2002 2002-06-20
JP323982/2002 2002-11-07
JP2002323982A JP3928543B2 (ja) 2001-12-11 2002-11-07 電機光学装置用基板及びその製造方法、電気光学装置並びに電子機器

Publications (2)

Publication Number Publication Date
CN1427284A true CN1427284A (zh) 2003-07-02
CN1191488C CN1191488C (zh) 2005-03-02

Family

ID=27482725

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB02154087XA Expired - Lifetime CN1191488C (zh) 2001-12-11 2002-12-10 电光装置、电光装置用基板及其制造方法和电子机器

Country Status (5)

Country Link
US (1) US6867831B2 (zh)
JP (1) JP3928543B2 (zh)
KR (1) KR100511579B1 (zh)
CN (1) CN1191488C (zh)
TW (1) TW589485B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582440A (zh) * 2008-05-14 2009-11-18 精工爱普生株式会社 发光装置及电子设备
CN102650757A (zh) * 2011-09-06 2012-08-29 北京京东方光电科技有限公司 彩膜基板、其制备方法及液晶显示面板
CN107092125A (zh) * 2017-06-13 2017-08-25 深圳市华星光电技术有限公司 液晶显示装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451773B1 (ko) * 2002-11-20 2004-10-08 엘지.필립스 엘시디 주식회사 디지털 저항막 방식의 터치 패널
JP2005043718A (ja) * 2003-07-23 2005-02-17 Seiko Epson Corp カラーフィルタ、カラーフィルタの製造方法、表示装置、電気光学装置および電子機器
JP4175299B2 (ja) 2003-07-23 2008-11-05 セイコーエプソン株式会社 カラーフィルタおよび表示装置
JP2005062480A (ja) * 2003-08-12 2005-03-10 Seiko Epson Corp カラーフィルタ、カラーフィルタの製造方法、表示装置、電気光学装置および電子機器
JP4511248B2 (ja) * 2004-05-28 2010-07-28 京セラ株式会社 液晶表示装置
JP4099672B2 (ja) * 2004-12-21 2008-06-11 セイコーエプソン株式会社 半導体装置
US7639321B2 (en) * 2005-06-01 2009-12-29 Lg. Display Co., Ltd. Method of manufacturing a color filter substrate with trenches for a black matrix
KR100710178B1 (ko) * 2005-06-01 2007-04-20 엘지.필립스 엘시디 주식회사 액정표시장치용 컬러 필터 기판 및 그 제조방법
WO2011065362A1 (ja) * 2009-11-27 2011-06-03 シャープ株式会社 半導体装置およびその製造方法
ES2571653B1 (es) * 2014-09-30 2017-03-16 Salvador PONCE ALCÁNTARA Lámina transparente fotovoltaica con bandas reflectantes y módulo solar que incluye tal lámina
JP2017054079A (ja) * 2015-09-11 2017-03-16 株式会社ジャパンディスプレイ 表示装置
KR20180074985A (ko) 2016-12-26 2018-07-04 엘지디스플레이 주식회사 터치 스크린 일체형 표시장치
US20190011765A1 (en) * 2017-07-06 2019-01-10 HKC Corporation Limited Display panel and a manufacture method of display panel
CN109255285A (zh) * 2017-07-13 2019-01-22 三星电子株式会社 基于光学的指纹传感器、包含其的电子装置及其操作方法
US20190067378A1 (en) * 2017-08-29 2019-02-28 Int Tech Co., Ltd. Light emitting device
KR102583813B1 (ko) * 2017-12-13 2023-09-26 엘지디스플레이 주식회사 디스플레이 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153353A (ja) * 1988-07-25 1990-06-13 Matsushita Electric Ind Co Ltd 着色光重合組成物およびカラーフィルタ
JPH10260308A (ja) * 1997-03-19 1998-09-29 Mitsumura Insatsu Kk カラーフィルター及びその製造法
US6181397B1 (en) * 1997-04-01 2001-01-30 Dai Nippon Printing Co., Ltd. Reflection-type liquid crystal display panel and method of fabricating the same
JPH11183921A (ja) * 1997-12-19 1999-07-09 Alps Electric Co Ltd 反射型カラー液晶表示装置
JPH11248916A (ja) * 1998-03-05 1999-09-17 Hitachi Chem Co Ltd カラーフィルタ基板及びその製造法
TW538279B (en) * 1998-10-23 2003-06-21 Hitachi Ltd A reflective color liquid crystal display apparatus
JP3714044B2 (ja) * 1999-07-15 2005-11-09 セイコーエプソン株式会社 液晶表示装置およびその製造方法ならびに電子機器
JP4058875B2 (ja) * 2000-02-14 2008-03-12 セイコーエプソン株式会社 カラーフィルタ基板、カラーフィルタ基板の製造方法、液晶装置、液晶装置の製造方法、及び電子機器
JP2002214595A (ja) * 2001-01-17 2002-07-31 Matsushita Electric Ind Co Ltd カラー液晶表示装置
JP2002341333A (ja) * 2001-05-15 2002-11-27 Sharp Corp 半透過型液晶表示装置およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582440A (zh) * 2008-05-14 2009-11-18 精工爱普生株式会社 发光装置及电子设备
CN102650757A (zh) * 2011-09-06 2012-08-29 北京京东方光电科技有限公司 彩膜基板、其制备方法及液晶显示面板
CN102650757B (zh) * 2011-09-06 2015-01-28 北京京东方光电科技有限公司 彩膜基板、其制备方法及液晶显示面板
CN107092125A (zh) * 2017-06-13 2017-08-25 深圳市华星光电技术有限公司 液晶显示装置
CN107092125B (zh) * 2017-06-13 2019-12-24 深圳市华星光电技术有限公司 液晶显示装置

Also Published As

Publication number Publication date
KR100511579B1 (ko) 2005-09-02
US20030147115A1 (en) 2003-08-07
US6867831B2 (en) 2005-03-15
TW589485B (en) 2004-06-01
KR20030047862A (ko) 2003-06-18
TW200300858A (en) 2003-06-16
JP3928543B2 (ja) 2007-06-13
JP2004078138A (ja) 2004-03-11
CN1191488C (zh) 2005-03-02

Similar Documents

Publication Publication Date Title
CN1191488C (zh) 电光装置、电光装置用基板及其制造方法和电子机器
CN1207611C (zh) 电光学面板及其制造方法以及电光学装置和电子机器
CN1165801C (zh) 液晶显示装置及电子装置
CN1213327C (zh) 液晶显示装置及其制造方法
CN1148603C (zh) 液晶显示器件及其制造方法
CN1194247C (zh) 液晶器件、液晶器件的制造方法和电子装置
CN1228670C (zh) 掩模、带光反射膜的基板、光反射膜的形成方法、电光装置及其制造方法、以及电子装置
CN1207617C (zh) 平面开关模式有源矩阵型液晶显示器件及其制造方法
CN1380575A (zh) 液晶装置及电子机器
CN101042445A (zh) 彩色滤光片及其制造方法以及液晶显示装置
CN1294698A (zh) 液晶显示装置
CN1291268C (zh) 掩模、附光反射膜基片、光反射膜制法、显示装置及其制法和电器
CN101075584A (zh) 使用半色调曝光法的液晶显示装置的制造法
CN1252523C (zh) 液晶显示器件及其制造方法
CN1228671C (zh) 掩模、带光反射膜的基板、光反射膜的制造方法、以及显示装置和电子装置
CN1573476A (zh) 高质量和超大屏幕液晶显示设备及其生产方法
CN1550832A (zh) 液晶显示装置
CN1627171A (zh) 液晶显示装置及其制造方法
CN1392443A (zh) 掩模、附有光反射膜的基板、光反射膜的形成方法
CN1908777A (zh) 液晶装置、电子光学装置、投影仪及微型器件
CN1652000A (zh) 液晶显示器及其制造方法
CN1189779C (zh) 滤色片基板和电光装置及其制造方法和电子设备
CN1869741A (zh) 光学元件、液晶显示装置用构件以及液晶显示装置
CN1648744A (zh) 液晶显示装置和电子设备
CN1869742A (zh) 光学元件、液晶显示装置用构件以及液晶显示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160612

Address after: 100015 Jiuxianqiao Road, Beijing, No. 10, No.

Patentee after: BOE TECHNOLOGY GROUP Co.,Ltd.

Address before: Hongkong, China

Patentee before: BOE Technology (Hongkong) Co.,Ltd.

Effective date of registration: 20160612

Address after: Hongkong, China

Patentee after: BOE Technology (Hongkong) Co.,Ltd.

Address before: Tokyo, Japan

Patentee before: Seiko Epson Corp.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20050302