CN1307788C - 传输线调谐开关功率放大器 - Google Patents

传输线调谐开关功率放大器 Download PDF

Info

Publication number
CN1307788C
CN1307788C CNB031206662A CN03120666A CN1307788C CN 1307788 C CN1307788 C CN 1307788C CN B031206662 A CNB031206662 A CN B031206662A CN 03120666 A CN03120666 A CN 03120666A CN 1307788 C CN1307788 C CN 1307788C
Authority
CN
China
Prior art keywords
switch
transmission line
fundamental frequency
voltage
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031206662A
Other languages
English (en)
Other versions
CN1437318A (zh
Inventor
安德烈·V·格雷本尼科夫
赫伯特·耶格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Com Eurotec BV
Original Assignee
MA Com Eurotec BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MA Com Eurotec BV filed Critical MA Com Eurotec BV
Publication of CN1437318A publication Critical patent/CN1437318A/zh
Application granted granted Critical
Publication of CN1307788C publication Critical patent/CN1307788C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2176Class E amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/423Amplifier output adaptation especially for transmission line coupling purposes, e.g. impedance adaptation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Abstract

一种调谐开关功率放大器,具有用于接收AC输入信号的开关。该开关通过负载网络控制施加给负载的DC功率。负载网络在开关两端产生并联电感和并联电容,这使与该开关相关的功率损失最小,它通过在开关两端产生瞬态响应实现,该瞬态响应保证当开关从开转换到关时在所述开关两端的电压保持为低,直到流过开关的电流达到零,并且在该开关从关转换到开之前,保证在所述开关两端的电压和电压时间导数基本为零。并联电感由具有确定电长度的传输线产生。

Description

传输线调谐开关功率放大器
技术领域
本发明涉及一种放大器,尤其涉及一种调谐开关功率放大器。
背景技术
普遍使用放大器来增加电信号的强度。为增加电信号的强度,通常,使用电信号控制来自诸如电池的DC电源的能量流以产生输出信号,其中输出信号以与电信号相同的方式变化,但是具有较大的振幅。通常,希望使用最少量的功率有效放大电信号,例如为减少能量成本和增加电池寿命。
指定给Sokal等人的美国专利No.3,919,656中公开了一种有效放大电信号的方法,其名称为“高效调谐开关功率放大器”,结合在这里作为参考。另外,美国专利No.3,919,656包含对功率放大器的详细讨论。
图1是在美国专利No.3,919,656中公开的调谐开关功率放大器100的电路图。放大器100包括响应来自信号源104的输入信号的开关102、直流电源106、和负载网络108,用以在开关102上建立瞬态响应并把输入信号的放大版本传送给负载110。运行时,开关102根据输入信号控制来自DC电源106的电流,在负载110上产生输出信号,其中输出信号具有比相同频率的输入信号更大的振幅。放大器100的工作频率是它的基本频率。
在放大器100中,当电流流过开关102同时在开关102上有电压降落时功率可以被开关102以热的形式耗费。因此,为增加效率,将设计放大器100设计为:a)当显著的电流流过开关102时使开关102上的电压最小;b)当在开关102上存在显著的电压时,使流过开关102的电流最小;和c)使在开关102上有显著的电压同时有显著的电流流过它时的时间最短。
负载网络108的作用是在开关102上产生瞬态响应来满足上面的设计条件。负载网络108包括电流供给扼流圈112、旁路电容器114、并联电容器116、频率滤波器118、和串联电感器120。电流供给扼流圈112可以是方波传输线(TL),亦即参考基本频率具有电长度90E的TL,其具有可忽略的用于在放大器100运行期间提供恒定的电流的小感应电纳,如果电流供给扼流圈112的感应电纳不是可忽略的小,则并联电容器116的电容量增加,从而增加包括并联电容器116的路径的电纳并且在基本频率下从放大器100有效去除电流供给扼流圈112。频率滤波器118包括电容器122和电感器124,并设计为使得只允许基本频率信号通过频率滤波器118,亦即频率滤波器118调谐到基本频率。
图2表示由开关102在基本频率下看去的阻抗。在基本频率下,电流供给扼流圈112用作无穷阻抗,而频率滤波器118用作短路。因此,由开关102看去的结果阻抗可以用并联电容器116、串联电感器120、和负载110的阻抗表示。因此,并联电容器116和串联电感器120是用于在开关102上产生希望的瞬态响应的主要元件。
根据放大器100所要用于的应用,放大器100的大小经常是重要的要求。如果希望具有小波形因数的放大器100,则使用具有电长度90E的TL实现的电流供给扼流圈112可以缩减放大器大小。另外,串联电感器120对放大器100的大小起负面影响,而结合并联电容器116可能在放大器100的输出上产生不希望的阻抗变换。因此,需要高效调谐开关功率放大器,它具有较小的串联电感和具有电长度小于90E的并联的TL。其中本发明满足这一需要。
发明内容
本发明提供一种开关调谐功率放大器装置和方法,通过在放大器内给开关放置并联电容器和具有电长度小于90E的并联TL,其克服了上述问题。并联电容器和并联TL建立开关两端的瞬态响应,它使开关两端存在的电流和电压同时最小。通过使用与开关并联的电容器和具有小于90E的电长度的TL,可以实现具有较小波形因数和希望的阻抗变换的有效调谐开关功率放大器。
本发明的一个方面是开关放大器装置,用于放大具有基本频率的输入信号而在负载上产生具有同样频率的输出信号。该放大器包括开关,它有用于接收输入信号的控制端口,该开关响应输入信号打开和关断开关,该开关还有第一和第二端子,当开关打开时该第一和第二端子之间具有低阻抗,而当开关关断时具有高阻抗;连接到该开关的负载网络给负载提供输出信号,负载网络包括具有确定长度的TL,它连接在第一和第二端子之间,在开关两端产生并联电感,和在第一和第二端子之间的并联电容器,在开关两端产生并联电容;用于给TL、并联电容器和开关供应DC功率的DC电源。TL和并联电容器在开关两端产生瞬态响应,这保证当开关从开转换到关时在第一和第二端子上的电压保持为低,直到流过第一和第二端子的电流基本为零,并且在开关从关转换到开之前,保证在第一和第二端子上的电压和电压时间导数基本为零。
本发明的另一方面是一种方法,用于放大具有基本频率的输入信号而在负载上产生具有同样频率的输出信号。该方法包括施加输入信号到响应该信号的开关,在具有确定长度的TL的开关两端产生并联电感,在开关两端产生并联电容,给开关、并联电感和并联电容供应DC电压,其中,并联电感和电容在开关两端产生瞬态响应以保证当开关从开转换到关时开关两端的电压保持为低,直到流过开关的电流基本为零,并且在开关从关转换到开之前,保证在开关两端的电压和电压时间导数基本为零。
附图说明
图1是现有技术调谐开关功率放大器的电路图;
图2是表示用于图1的放大器的在基本频率下的负载网络的现有技术等效电路电路图;
图3是根据本发明的调谐开关功率放大器的电路图;
图4是表示用于图3的放大器的在基本频率下的负载网络的等效电路电路图;
图5A是表示在图3的开关两端的电压波形的图;
图5B是表示在图3的开关两端的电流波形的图;
图5C是表示用于图3的放大器的输出的电流波形的图;
图6是根据本发明的另外可选的调谐开关功率放大器的电路图;及
图7是根据本发明的另外可选的用于高频应用的调谐开关功率放大器的电路图。
具体实施方式
图3表示根据本发明的调谐开关功率放大器126的实施例。放大器126包括用于从信号源130接收输入信号的开关128,连接在开关128和负载134之间在开关128两端来产生瞬态响应并给负载134提供输出信号的负载网络132,用于给开关128、负载网络132、和负载134供应DC功率的DC电源136。概括说,在放大器126运行期间,负载网络132在开关128两端产生并联电感和并联电容来在开关128两端产生瞬态响应,它保证当开关128从开转换到关时在开关128两端的电压保持为低,直到通过开关128的电流基本为零,并且在开关从关转换到开之前,保证开关128两端的电压和电压时间导数基本为零。因此,开关128两端的实际电压和流过开关128的实际电流不会同时存在,从而防止开关128消耗功率而使放大器的效率最大化。
信号源130为放大器126的放大产生输入信号。放大器126产生输出信号,它的变化方式与输入信号相同,但是振幅较大。在图示实施例中,信号源130是公知的正弦波发生器,它连接在地和开关128的控制端子138之间,用于给开关128供应输入信号。放大器126运行的频率是它的基本频率,它在图示实施例中是由信号源130产生的输入信号的频率。放大器126在无线通信设备中和其它高频应用中特别有用,但是不排除用在别的设备中。例如,放大器126可以用在蜂窝电话中用以放大在900MHz频带(亦即880-915MHz)或1800MHz频带(亦即1710-1785MHz,1850-1910MHz)中的某个信道频率的输入相位调制的信号,用于由天线发送信号,其可以由负载110代表。在本例中,这样设计放大器126,使得它的基本频率匹配信道频率。另外,放大器126可以用在用于窄带或宽带应用的任何基本工作频率上,包括2.4-2.5GHz和5GHz频带。
开关128根据输入信号有选择地完成包括DC电源136和负载网络132的电路。开关128包括根据控制端子138上的信号用于打开和关断开关128的控制端子138,亦即开关128响应该信号。另外,开关136包括第一电流流动端子140和第二电流流动端子142,它们在开关128打开时电连接,而当开关128关断时断开。当开关128打开时,第一和第二电流流动端子140和142之间有基本为无穷的阻抗。当开关128关断时,第一和第二电流流动端子140和142之间有基本为零的阻抗。
在图示实施例中,开关128的控制端子138连接到信号源130,第一电流流动端子140连接到负载网络132,第二电流流动端子142连接到地和DC电源136的负极端子146。如图3所示,开关128可以是晶体管144,例如以共发射极方式连接的NPN晶体管。
DC电源136给开关128、负载网络132、和负载134供应DC功率。在图示实施例中,直流电源136具有负极端子146,它连接到开关128的第二电流流动端子142和地,和正极端子148,它连接到负载网络132。对于熟悉本技术领域的人来说,适合的DC电源136是十分明显的。
负载网络132根据输入信号给负载134提供输出信号,并在开关128的第一和第二电流流动端子140和142上产生瞬态响应。负载网络132包括并联TL150、并联电容器152、旁路电容器154、和频率滤波器156。负载网络132可以包括附加的无源和有源部件,然而,应该避免诸如电阻器的消耗能量的元件以得到最大功率效率。
频率滤波器156阻止由放大器120产生的基本频率的谐波到达负载134。频率滤波器156以公知方式调谐,使得只有基本频率的信号才被允许通过频率滤波器156。在图示实施例中,频率滤波器156包括串联的电感器158和电容器160而形成带通滤波器。
旁路电容器154连接DC电源136的正极端子148和TL150到地。对于AC信号,旁路电容器154保证DC电源136的正极端子148和开关128的第二电流流动端子142电等效。另外,对于AC信号,旁路电容器154为TL150提供接地路径。旁路电容器154可以是低阻抗电容器,可以认为它是DC电源136的一部分,或负载网络132的一部分。
并联电容器152在开关128两端产生在基本频率的并联电容。在图示实施例中,并联电容器152连接在开关128的第一电流流动端子140和地之间。在基本频率下,并联电容器152具有显著的电容性电纳。在某些实施例中,并联电容器可以具有在大约1pF和大约100pF之间的电容。放大器126和开关128的电路引线固有的电容减小从并联电容器152需要的电容量。例如,在高频时,所有电容可以由电路引线电容提供,使得不需要作为单独部件的并联电容器152。
并联TL150在开关128两端产生在基本频率下的并联电感。并联TL150是非四分之一波长TL,亦即关于基本频率,具有小于90E的电长度。四分之一波长TL在基本频率下具有基本为无穷的电抗,而非四分之一波长TL如TL150具有较小的电抗。例如,TL150的电抗可以小于大约10千欧姆,典型小于大约100欧姆。在某些实施例中,并联TL150具有小于大约45E的电长度,典型的,具有在大约5E和大约15E之间的电长度,例如7E。在图示实施例中,并联TL150连接在第一电流流动端子140和DC电源136的正极端子148之间。在某些实施例中,TL150足够大,以便用作基本恒定的电流源。在另外可选的实施例中,使用另一个TL作为电流源,从而解除并联TL150的这一功能。
在本发明中,并联电容器152和并联TL150一起作用以在开关128两端产生的瞬态响应,这种响应在开关128从开转换到关时保证在第一和第二电流流动端子140和142上的电压保持为低,直到通过第一和第二端子140和142的电流基本为零,并且在开关从关转换到开之前保证在第一和第二端子140和142上的电压和电压时间导数基本为零。
图4表示由开关128看上去在基本频率下的反映阻抗的电路。在基本频率下,频率滤波器156用作短路而TL150通过电流,亦即是非四分之一波长的TL。因此,从开关128看上去的阻抗可以用并联TL150、并联电容器152、和负载134制造(modeled),如图4所示。这与在指定给Sokal等人的美国专利No.3,919,656中公开的放大器100(图1)不同,在那里,从开关102看上去的阻抗用并联电容器116、串联电感器120、和负载110制造,如图2所示。
在放大器126(图3)的运行期间,开关128控制频率,在该频率下来自DC电源136的DC能量被变换为用于输送到负载134的AC能量。在实施例中,为得到最大基本频率输出,使开关128的占空比基本为50%,使得开关打开时间基本为AC周期的一半,并且在该周期的剩余时间关断(可选择的,使占空率不是50%)。
并联TL150和并联电容器152在开关128两端产生瞬态响应,它形成开关128两端的电压和电流波形。表示图3的开关128两端的电压和电流波形的波形分别于图5A和5B中表示。并联电容器152保证在开关128被关断期间的时间间隔内在开关128两端的电压保持为相对低,直到流过开关128的电流减到零。这将避免能量损失,如果在电流降落到零之前允许开关128两端的电压迅速升高的话会发生这种损失。
当开关128关断时的瞬态响应引起开关128两端的电压在开关128被打开时降落到接近于零,从而避免与将并联电容器152从高的正电压放电到零相关的能量损失。另外,当其电压到达零时,该瞬态响应为表示在开关128上的电压的电压波形产生零斜率。这两个条件一起保证在开关128打开时没有电流流过开关128。这避免能量损失,如果当电流开始流过开关128时允许开关128两端的电压缓慢降落的话会发生这种损失。
根据本发明的实施例,对于图3的放大器126的各部件的部件值可以根据下面的等式1-5选择。
并联TL150的电长度θ可以使用下面的等式确定:
θ = inv tan ( 0.732 R Z ) ; - - - ( 1 )
其中,R是TL150的电阻,Z是TL150的特性阻抗。特性阻抗Z可以是TL的典型的特性阻抗,诸如在大约25欧姆和大约75欧姆之间,例如50欧姆。电阻R可以使用下面的等式确定:
R = 1.365 V 2 P , - - - ( 2 )
其中,V是DC电源136的电压电平,P是放大器126的输出功率。电长度θ然后可以通过选择具有特性阻抗的TL、通过解等式(2)确定电阻、把该特性阻抗和确定的电阻代入等式(1)并解电长度θ来确定。例如,如果选择具有特性阻抗50欧姆的Z,V等于3.5V,并且P=2瓦特的TL,则R等于大约8.4欧姆而且电长度θ近似7E。
可以使用下面的等式确定并联电容器152的电容:
C = 0.685 ωR , - - - ( 3 )
其中,T是基本频率。
对于频率滤波器156,可以使用下面的等式确定串联电容器160的电容:
C = 1 ωR Q L ; - - - ( 4 )
并可以使用下面的等式确定串联电感器的电感:
L = 1 ω 2 C , - - - ( 5 )
其中,QL是频率滤波器156的品质(quality)因子,其可以以公知方式确定。
对于使用上述等式选择的部件值,对于在开关两端在基本频率下的电流和电压的最优相位角N可以从如下等式(1)和(2)推导出:
φ = inv tan ( R Z tan θ - ωRC ) . - - - ( 6 )
然后把等式(1)和(2)的实际值代入等式(6)而产生34.244E的相位角。
在有具有高特性阻抗Z和短电长度θ(例如tanθ=2)的并联TL150的理想的无损失开关条件下,具有根据等式(1)到(5)选择的部件的负载网络132通过在开关的关和开状态期间产生分别如图5A和5B所示电压和电流波形Vs(Tt)和is(Tt)而提供接近100%的效率。同时,如图5C所示正弦基本频率电流流过频率滤波器156到负载134。基本频率电流的等式是:
ir(ωt)=IR sin(ωt+),(7)
其中,相移v是15.155度。
图6表示根据本发明的另外可选的实施例的放大器164。放大器164基本是图3的放大器126,其用阻抗匹配电路166代替放大器126的频率滤波器156(图3)。阻抗匹配电路166以公知方式执行在负载134和开关128之间的阻抗变换。另外,匹配电路166用作频率滤波器来抑制基本频率的谐波。匹配电路166可以以公知方式设计成多个堆叠在一起的电容器和电感器的多种不同的组合。在某些实施例中,匹配电路的第一部件是串联电感器168,如图6所示,以便在匹配电路166的输入提供高阻抗条件。
对于微波频率或更高频率,如图7所示,放大器172的匹配电路170的所有电感部件都可以使用TL实现,诸如串联TL174和TL176。匹配电路170可以包括具有开路和短路短截线的TL以提供需要的匹配和谐波抑制特性。在某些实施例中,如图7所示,串联TL174是匹配电路170提供希望的开关条件的第一元件。
根据本发明的开关功率放大器可以转变为并联反馈振荡器,这通过从放大器内的一点或在放大器的输出上得到开关的输入信号来实现。另外,通过在开关两端通过以公知方式在该电路内***反应性反馈来提供负阻抗条件可以产生负阻振荡器。在这些振荡器中,不需要单独的信号源130。
已经描述了本发明的几个特别的实施例,对于熟悉本技术领域的人很容易实现各种变动、修改和改进。根据本公开十分显然的是这些变动、修改和改进为本说明书的一部分,虽然未在这里明显说明,并且同时在本发明的宗旨和范围之中。因此,前面的说明仅仅是举例,而不是限制。本发明只由下面的权利要求和等效的条款定义的内容限制。

Claims (20)

1、一种装置,用于放大具有基本频率的输入信号而在负载上产生具有同频率的输出信号,所述装置包括:
具有用于接收输入信号的控制端子的开关,所述开关响应输入信号打开和关断所述开关,所述开关另外具有第一和第二电流流动端子,所述第一和第二电流流动端子当所述开关打开时具有低阻抗,而当所述开关被关断时其间具有高阻抗;
连接到所述开关给负载产生输出信号的负载网络,所述负载网络包括一条传输线和并联电容器,在所述开关两端产生并联电感和并联电容,其中具有确定电长度的所述传输线连接在所述第一和第二电流流动端子之间,所述并联电容器连接在第一和第二电流流动端子之间;
DC电源,用于给所述负载网络和所述开关供应DC功率;
其中,所述传输线和所述并联电容器在所述开关两端产生瞬态响应,该瞬态响应保证当开关从开转换到关时在第一和第二端子上的电压保持为低,直到流过第一和第二端子的电流基本为零,并且在开关从关转换到开之前,保证在第一和第二端子上的电压和电压时间导数基本为零。
2、根据权利要求1所述的装置,其中,所述开关是晶体管。
3、根据权利要求1所述的装置,其中,所述传输线在基本频率下具有小于10千欧姆的电抗。
4、根据权利要求3所述的装置,其中,所述电抗在基本频率下小于100欧姆。
5、根据权利要求1所述的装置,其中,所述基本频率大于880MHz。
6、根据权利要求1所述的装置,其中,所述电容器具有在1pF和100pF之间的电容。
7、根据权利要求1所述的装置,其中,所述确定的电长度θ依据下面等式得出:
θ=invtan(0.732R/Z),
其中,
R=1.365(V)2/P,及
P是该装置的输出功率,V是所述DC电源的电压电平,并且Z是所述传输线的特性阻抗。
8、根据权利要求7所述的装置,其中,所述特性阻抗Z在25欧姆和75欧姆之间。
9、根据权利要求7所述的装置,其中,所述传输线具有小于90E的电长度。
10、根据权利要求9所述的装置,其中,所述传输线具有小于45E的电长度。
11、根据权利要求10所述的装置,其中,所述传输线具有在5E和15E之间的电长度。
12、一种方法,用于放大具有基本频率的输入信号而在负载上产生具有相同频率的输出信号,所述方法包括下述步骤:
施加输入信号给对其响应的开关;
使用具有确定电长度的传输线在所述开关两端产生在基本频率下的并联电感;
在所述开关两端产生在基本频率下的并联电容;及
给所述开关、所述并联电感和所述并联电容供应DC功率;
其中,所述并联电感和所述并联电容在所述开关两端产生瞬态响应,该瞬态响应保证当开关从开转换到关时在所述开关两端的电压保持为低,直到流过该开关的电流基本为零,并且在开关从关转换到开之前,保证在所述开关两端的电压和电压时间导数基本为零。
13、根据权利要求12所述的方法,所述确定的电长度θ依据下述等式得出:
θ=invtan(0.732R/Z),
其中,
R=1.365(V)2/P,及
其中,P是放大器输出功率,V是所述DC功率的电压电平,并且Z是所述传输线的特性阻抗。
14、根据权利要求13所述的方法,其中,所述特性阻抗Z在25欧姆和75欧姆之间。
15、根据权利要求13所述的方法,其中,所述传输线具有小于45E的电长度。
16、根据权利要求13所述的方法,其中,所述传输线在基本频率下具有小于10千欧姆的电抗。
17、根据权利要求16所述的方法,其中,所述电抗在基本频率下小于100欧姆。
18、根据权利要求12所述的方法,其中,在所述开关两端施加并联电感和电容的所述步骤包括:
将所述开关和所述传输线与电容器并联。
19、根据权利要求18的方法,其中,所述电容器具有在1pF和100pF之间的电容。
20、根据权利要求12的方法,其中,基本频率大于880MHz。
CNB031206662A 2002-01-15 2003-01-15 传输线调谐开关功率放大器 Expired - Fee Related CN1307788C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/047,544 2002-01-15
US10/047,544 US6552610B1 (en) 2002-01-15 2002-01-15 Transmission-line tuned switching power amplifier

Publications (2)

Publication Number Publication Date
CN1437318A CN1437318A (zh) 2003-08-20
CN1307788C true CN1307788C (zh) 2007-03-28

Family

ID=21949584

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031206662A Expired - Fee Related CN1307788C (zh) 2002-01-15 2003-01-15 传输线调谐开关功率放大器

Country Status (5)

Country Link
US (1) US6552610B1 (zh)
EP (1) EP1331730A3 (zh)
JP (1) JP2003229732A (zh)
KR (1) KR20030061698A (zh)
CN (1) CN1307788C (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040224649A1 (en) * 2003-02-05 2004-11-11 Khosro Shamsaifar Electronically tunable power amplifier tuner
US20040242289A1 (en) * 2003-06-02 2004-12-02 Roger Jellicoe Configuration driven automatic antenna impedance matching
US7279391B2 (en) * 2004-04-26 2007-10-09 Intel Corporation Integrated inductors and compliant interconnects for semiconductor packaging
WO2006071197A1 (en) * 2004-12-30 2006-07-06 Agency For Science, Technology And Research Fully integrated ultra wideband transmitter circuits and systems
US7345539B2 (en) * 2005-02-10 2008-03-18 Raytheon Company Broadband microwave amplifier
US7288995B2 (en) * 2005-06-15 2007-10-30 Nokia Corporation Power amplifier of a transmitter
US7265619B2 (en) * 2005-07-06 2007-09-04 Raytheon Company Two stage microwave Class E power amplifier
KR100806298B1 (ko) * 2006-04-12 2008-02-22 한국과학기술원 전송선 변압기를 이용한 전력 증폭기
US8160518B2 (en) * 2006-08-10 2012-04-17 Freescale Semiconductor, Inc. Multi-mode transceiver having tunable harmonic termination circuit and method therefor
CN101867349B (zh) * 2010-07-01 2012-11-21 华为技术有限公司 射频功率放大器
US8373504B2 (en) * 2011-05-12 2013-02-12 Texas Instruments Incorporated Class D power amplifier
JP6206698B2 (ja) * 2012-12-19 2017-10-04 株式会社村田製作所 電力増幅器
US9929704B2 (en) * 2015-12-14 2018-03-27 Qualcomm Incorporated Class E2 amplifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919656A (en) * 1973-04-23 1975-11-11 Nathan O Sokal High-efficiency tuned switching power amplifier
US4743858A (en) * 1985-06-26 1988-05-10 U.S. Philips Corp. R. F. power amplifier
US5065114A (en) * 1989-02-22 1991-11-12 Siemens Aktiengesellschaft Circuit configuration for an amplifier stage

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277005A (ja) * 1990-03-27 1991-12-09 Nippon Telegr & Teleph Corp <Ntt> 高周波増幅器
JPH05243873A (ja) * 1992-02-26 1993-09-21 Nippon Telegr & Teleph Corp <Ntt> 高効率増幅器
JPH0666127U (ja) * 1993-02-26 1994-09-16 太陽誘電株式会社 高周波電力増幅回路
JP2503917B2 (ja) * 1993-09-22 1996-06-05 日本電気株式会社 高効率電力増幅器
US5535438A (en) * 1994-05-10 1996-07-09 Panasonic Technologies, Inc. Phase linear class E amplifier for a satellite communication terminal which communicates with a low earth orbiting satellite
JPH08130419A (ja) * 1994-11-01 1996-05-21 Fujitsu Ltd 増幅器並びにこれを有する受信機及び通信機
US6181208B1 (en) 1998-03-26 2001-01-30 Maxim Intergrated Products, Inc. Switchable path power amplifier with schotky diode combining network
US6236274B1 (en) * 2000-01-04 2001-05-22 Industrial Technology Research Institute Second harmonic terminations for high efficiency radio frequency dual-band power amplifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919656A (en) * 1973-04-23 1975-11-11 Nathan O Sokal High-efficiency tuned switching power amplifier
US4743858A (en) * 1985-06-26 1988-05-10 U.S. Philips Corp. R. F. power amplifier
US5065114A (en) * 1989-02-22 1991-11-12 Siemens Aktiengesellschaft Circuit configuration for an amplifier stage

Also Published As

Publication number Publication date
US6552610B1 (en) 2003-04-22
CN1437318A (zh) 2003-08-20
JP2003229732A (ja) 2003-08-15
EP1331730A3 (en) 2004-10-06
KR20030061698A (ko) 2003-07-22
EP1331730A2 (en) 2003-07-30

Similar Documents

Publication Publication Date Title
US11588513B2 (en) Integrated RF front end with stacked transistor switch
US7088971B2 (en) Integrated RF front end
US4717884A (en) High efficiency RF power amplifier
US20170149391A1 (en) Variable Impedance Match and Variable Harmonic Terminations for Different Modes and Frequency Bands
US6359513B1 (en) CMOS power amplifier with reduced harmonics and improved efficiency
CN1307788C (zh) 传输线调谐开关功率放大器
GB2411062A (en) Resonance suppression for power amplifier output network
US7135919B2 (en) Power amplifier with switchable load
US8174311B2 (en) Switching amplifier
Raab Electronically tunable class-E power amplifier
Makarov et al. Experimental Study of Class E Family Power Amplifiers with Shunt Filter for Reduced Duty Ratio
Cantrell Circuit to aid tuning of class-E amplifier
Crafford et al. Design and development of a high efficiency modulated Class E amplifier

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070328

Termination date: 20110115