CN1190494A - 非水电解质二次电池 - Google Patents

非水电解质二次电池 Download PDF

Info

Publication number
CN1190494A
CN1190494A CN97190481A CN97190481A CN1190494A CN 1190494 A CN1190494 A CN 1190494A CN 97190481 A CN97190481 A CN 97190481A CN 97190481 A CN97190481 A CN 97190481A CN 1190494 A CN1190494 A CN 1190494A
Authority
CN
China
Prior art keywords
battery
slider
nonaqueous electrolytic
electrolytic battery
rechargeable nonaqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97190481A
Other languages
English (en)
Other versions
CN1127774C (zh
Inventor
尾浦孝文
北川雅规
西雅肇
越名秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1190494A publication Critical patent/CN1190494A/zh
Application granted granted Critical
Publication of CN1127774C publication Critical patent/CN1127774C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及非水电解质二次电池,更具体地是指其隔离体。本发明的目的是即使在暴露于高温下也能防止由于电池内部压力上升造成的电解质漏泄事故,同时不牺牲电池容量。为了实现这一目的,通过利用在70—150℃温度范围内,熔化热单位面积吸热卡路里量大的聚烯烃类隔离体,选择合适的供负电极用的石墨粉末和非水电解质中的有机溶剂,通过抑制电池活性物质与有机溶剂之间的反应,从而抑制电池内部压力上升,能够成功地消除电解质漏泄事故。

Description

非水电解质二次电池
技术领域
本发明涉及非水电解质二次电池,更具体地是指其隔离体。
背景技术
最近,为了减小笔记本型个人计算机、PAD、移动电话、摄像放像机和其它电子产品的尺寸、重量,延长工作时间,作为装置内部的电源,迫切需要研制和改进高能量密度的二次电池。作为满足这种需要的一种电池系,利用LiCoO2、LiNiO2、LiMn2O4这类含锂的过渡金属氧化物作为正电极,用石墨这类碳材料作为负电极,用锂盐溶于有机溶剂中的溶液构成的有机电解质作为非水电解质,预期的高目标是4V等级的非水电解质二次电池。这种电池系通常称为锂离子二次电池,在锂离子二次电池中,充电引起锂离子从正电极脱嵌,通过电解质嵌入负电极。相反,放电引起锂离子从负电极脱嵌并通过电解质嵌入正电极。这种充放电的锂离子嵌入和脱嵌的反应能够逆向重复,预计循环寿命很长。作为高压和高能量密度的二次电池迄今所研究的负电极中采用金属锂的锂二次电池中,金属锂沉积在负电极上,充电时电解质的锂浓度降低,但是,从充电结束阶段到过充电区,枝蔓状金属锂晶体沉积并穿透隔离体,引起内部短路,结果不仅电池不稳定而且由于电池温度突然增高存在起火或击穿事故的风险。在锂离子二次电池中,只要不过充电,枝蔓状金属锂晶体不会沉积,极大地提高了安全性和可靠性。然而,在这种锂离子二次电池中,当在低温下充电时,锂离子的扩散是不充分的,枝蔓状金属锂晶体可能沉积在负电极上,引起内部短路。
锂二次电池和锂离子二次电池的隔离体是由聚乙烯(PE)和聚丙烯(PP)中至少一种构成的微孔膜制成的,聚乙烯和聚丙烯不溶于非水有机电解质中的醚和酯这类有机溶剂中,膜足能使电解质渗透,锂离子易于扩散。更具体地说,已经采用厚度为20至50μm、气孔率为40-70%的PE和PP的多层混合膜或者双层或多层的PE和PP膜。
另一方面,为了满足电池高容量。高能量密度的要求,用尽可能多的正、负活性物质填满规定总尺寸的电池是重要的。因此希望形成尽可能薄的***正、负电极之间的隔离体。从上述的防止内部短路的角度考虑,这个企图是与需要采用较厚隔离体相矛盾的。
因此,本发明的目的是,非水电解质二次电池采用由熔化热较大的PE或PE和PP的多层微孔聚烯烃类膜制成的厚度比现有技术中的膜相对较薄的隔离体,尽管隔离体厚度较薄,通过有效地吸收在高温时出现的电池活性物质与电解质中有机溶剂间反应产生的热,从而抑制电池温度上升,进而抑制电池内部压力升高,防止电解质漏泄和增强高温下抗电解质漏泄的能力,可提高可靠性又不牺牲电池容量。
发明概要
本发明涉及非水电解质二次电池,尤其是锂离子二次电池,利用厚度为15至30μm、熔化热单元面积吸热卡路里量至少为0.07cal/cm2的聚烯烃类,较佳地是由PE或PE和PP多层制成,作为混合隔离体。在不牺牲电池容量的条件下,利用这种隔离体能够抑制在高温时由于电解质中电池活性物质与有机溶剂间反应产生的热而造成的内部短路和温度上升,抑制气体的产生,消除由于电池内部压力升高造成的电解质漏泄,因此可以保证高可靠性。
附图简述
图1是表明本发明的一个实施例螺旋电极结构的圆柱形非水电解质二次电池的纵向截面图。
实施本发明的最佳方式
以下参考附图和表具体描述本发明的一个实施例。
(实施例)
图1是本发明一个实施例螺旋电极结构的圆柱形非水电解质二次电池(直径17mm,总高度50mm)的纵向截面图。
在图1中,将带状正电极2和负电极通过一个隔离体1螺旋地缠绕多圈构成一个电极组。由铝制成的正电极引片4和由镍制成的负电极引片5分别焊接到正电极2和负电极3上。使伸出于电极组上下表面的隔离体1受热和收缩,安装由PE制成的底部隔离板6,放入镀镍钢板结构的电池容器7中,将负电极引片5的另一端点焊到电池容器7的内侧底部。将由PE制成的隔离板8安装在电极组的上表面,在电池容器7开口处规定的位置上形成一个槽,灌入规定量的非水有机电解质。在将正电极引片4的另一端点焊到由不锈钢制成的密封板10的下表面后,将PP制成的密封垫9固定在周缘,通过密封垫9将密封板10固定到电池容器7的开口中,电池容器7的上部边缘向内卷曲以紧紧地密封,从而制成一个电池。
(例1)
正电极是按以下过程制备的。首先,将碳酸锂Li2CO3和四氧化三钴Co3O4混合,然后在900℃,空气中烘烤和合成10个小时,获得含锂的氧化钴LiCoO2。将100重量份LiCoO2、3重量份乙炔黑和导电试剂、以及7重量份作为粘合剂的聚四氟乙烯混合,在混合物中添加100重量份1wt.%的羧甲基纤维素(CMC)水溶液,搅拌并混合,获得正电极用的膏体。
在作为集电器的30μm厚的铝(Al)箔的两侧涂覆正电极膏体,经干燥和用辊滚压,将其切割成规定的尺寸,获得正电极。
负电极是按以下过程制备的。首先,在2800℃温度下对介晶碳微珠(MCMB)石墨化,磨成平均颗粒尺寸约为3μm的颗粒,获得经过筛分的石墨粉末。用X射线衍射测得的石墨粉末(002)平面的平面间隔(d002)为3.360,用BET方法得到的比表面面积为4.0m2/g。
将100重量份石墨粉末与5重量份的苯乙烯-丁二烯橡胶混合,在混合物中添加100重量份1wt.%CMC水溶液,搅拌并混合,获得供负电极用的膏体。
在作为集电器的20μm厚的铜(Cu)箔的两侧涂覆负电极用的膏体,经干燥和用辊滚压,将其切割成规定的尺寸,获得正电极。
如表1所示,由于在70至150℃的温度范围内熔化热是变化的,可用尽管单位面积的吸热卡路里量不同的25μm均匀厚度的各种隔离体,组成电极组,制备出电池A至G。隔离体的吸热卡路里量用差热分析设备测量。
非水电解质是在体积比为1∶3的碳酸乙二醇酯(EC)和碳酸甲乙酯(EMC)混合溶剂中,通过使六氟磷酸锂LiPF6溶解至1.5摩尔/升的浓度而制备出有机电解质。
每个种类制备5个电池,在20℃下设定恒定电压为4.2V,在630mA恒定电流下,以恒定电流和恒定电压对电池充电2小时,在720mA恒定电流下,使电池放电至3.0V电压。在充放电重复循环20次后,所有的电池都充足了电,将其进行加热试验,研究电池温度和电解质漏泄的事故率。
在加热试验中,以每分钟5℃的速率使每个电池从室温加热到150℃,在150℃下维持10分钟。在这一状态中,研究电池温度和电解质漏泄率。表1综合了试验结果。
                                表1
   电池     吸热量(cal/cm2)    电池内部温度(℃)     漏泄率
    A     0.03     198     5/5
    B     0.04     185     5/5
    C     0.05     172     3/5
    D     0.06     160     1/5
    E     0.07     148     0/5
F 0.08 138 0/5
    G     0.09     130     0/5
从表1的结果可见,利用吸热卡路里量较大(至少0.07cal/cm2)的隔离体,能够抑制温度的上升和电解质的漏泄。
已知在传统的锂离子二次电池中,通过升高电池温度,在非水电解质中电池活性物质与有机溶剂间的反应会产生热量。结果,由于有机溶剂蒸发或分解,电池内部的压力升高,或者触发电池的防爆安全机构,引起电解质漏泄事故。
然而,利用吸热量大的隔离体,能够有效地吸收由于反应热造成的这种温度上升,抑制这种反应所产生的气体,所以难以提高电池的内部压力。因此可以防止电解质漏泄的事故。
在这个实施例中,隔离体的厚度固定为25μm。在相同熔化热的PE膜中,随着厚度增大,单位面积的吸热量变得更大。然而,电池内部电阻升高,牺牲了正、负电极的活性物质填充量,降低了电池容量。因此,太多地增加隔离体的厚度是不利的。
另一方面,如果隔离体的厚度减小到约10μm,很容易破裂,且这涉及到隔离体的强度问题。即增大了内部短路的风险。即使在熔化热大的材料中,如果厚度太小,很难预期有通过本发明的吸热现象抑制电池中热产生的效果。
尽管这里省略叙说,作为采用不同熔化热的PE以及改变厚度的研究结果,发现PE隔离体的合适厚度在15至30μm范围以内。
在本实施例中,隔离体是单由PE膜构成的,但是在由厚度约为15μm、在70至150℃温度范围熔化热的单位面积吸热量至少为0.07cal/cm2的微孔PP膜和PE膜组成的叠层混合膜隔离体中,获得类似的效果。
(例2)
在这个实施例中的正活性物质是含锂的氧化镍LiNiO2,而不是实施例1中的LiCoO2。就是说,将氢氧化锂LiOH·H2O和氢氧化镍Ni(OH)2混合,在750℃,空气中烘烤10小时,获得LiNiO2。在100重量份上述LiNiO2、作为导电剂的3重量份乙炔黑、作为粘合剂的4重量份聚偏氟乙烯的混合物中、倾入100重量份N-甲基吡咯烷酮并搅拌,获得正电极膏体。
此后,用与例1相同的涂覆、干燥、压平和切割工艺过程,获得正电极。
负电极的制备与例1相同。然而,对供负电极用的石墨粉末作了改进。即总共采用10种类型的石墨粉末,即由3000、2800、2500、2300和2100℃不同MCMB石墨化温度下所得的石墨粉末(通过粉化和筛分,平均颗粒尺寸调节为约3μm)和片状石墨所组成,片状石墨是结晶度高的天然石墨,平均颗粒尺寸约为50、30、20、10和5μm。制备出的所有电池,其正电极的容量大,因此放电容量可以由负电极容量限定,且评价了供负电极用的石墨粉末。
所有电池的隔离体是在70至150℃温度范围内熔化热单位面积吸热量至少为0.07cal/cm2的PE膜,非水电解质是与例1相同的有机电解质,制备出电池H至Q。在与例1相同的条件下,充放电循环20次后,提供每个种类的5个电池进行加热试验,研究电池的内部温度和电解质的漏泄。表2综合了实验结果。
                    表2
 电池                       负电极用的石墨粉末    初始比容量(mAh/g)        加热试验
种类   石墨化温度(℃)   平均颗粒尺寸(μm)   d002()  BET比表面面积(m2/g)  电池内部温度(℃)    漏泄率
 HIJKLMNOPQ 人造人造人造人造人造片状片状片状片状片状     30002800250023002100----     约3约3约3约3约3约50约30约20约10约5   3.3553.3603.3703.3803.3903.3603.3603.3603.3603.360     4.04.04.04.04.00 52.06.08.010.0     830800770690590830900930935938     156151147142138140146157169187     0/50/50/50/50/50/50/50/52/55/5
从表2中清楚可见,在电池H至O中,电池P和Q除外,在加热试验中电池的内部温度小于160℃,漏泄为0/5,与例1的相同。因此,厚度为25μm、吸热量为0.07cal/cm2的PE隔离体是有效的。
在通过使MCMB石墨化所获得的粉末中,石墨化的温度较低,当d002大于3.38时,大大降低初始比容量(mAh/g)。这似乎是因为石墨的中间层距离太宽以及减少锂的嵌入量的缘故。除此之外,当d002变小时,电池的内部温度在加热试验中趋于变大。这被认为是因为当石墨化温度变得更高时,与非水电解质中的有机溶剂的反应率变得更高,热的产生增加。因此,当通过加热MCMB进行石墨化时,d002最好是3.350或更高但小于3.380。
在结晶度极高的片状石墨粉末中,由于粉化增加了比表面面积,因此增大了初始的比容量。然而,电池的内部温度在加热试验中趋于更高,在电池P和Q中,电池的内部温度超过160℃,并可见到电解质的漏泄。这表明,即使采用本发明的吸热量大的隔离体,当电池活性物质与有机溶剂间反应的热产生较大时,电解质可能会漏泄。因此,在片状石墨粉末中,根据初始的比容量判断比表面面积,2.0m2/g或更大是合适的,根据电解质的漏泄率判断则应小于8.0m2/g。换句话说,在片状石墨粉末中,平均颗粒尺寸在30μm或更小但大于10μm的范围内是较佳的。
在负电极中利用这种平均颗粒尺寸和比表面面积的片状石墨粉末,其容量高,即使电池被加热到高温,能够抑制电池活性物质与有机溶剂间的反应,因此,估计可以阻止气体的产生。
(例3)
在这个例子中正电极活性物质是含锂氧化物锰LiMn2O4,而不是例1中的LiCoO2或例2中的LiNiO2。即将Li2CO3和二氧化锰MnO2混合,在800℃,空气中烘烤30小时,获得Li2Mn2O4。在与例1相同的条件下,利用LiMn2O4,而不是例1中的LiCoO2,获得正电极。
负电极的制备与例1相同,隔离体是与例1相同的PE膜,通过改变非水电解质中的有机溶剂制备电池。在8种类型的混剂中,即1体积份EC与3体积份EMC(与例1中的相同)、3体积份碳酸二乙酯(DEC)、3体积份碳酸二甲酯(DMC)、2体积份DEC和1体积份碳酸丙二醇酯(PC)、2体积份DEC和1体积份丙酸甲酯(MP)、2体积份数DEC和1体积份丙酸乙酯(EP)、3体积份1,2二甲氧基乙烷(DME)、以及3体积份四氢呋喃(THF)的8种类型混合溶剂中,在以每种为1.5摩尔/升的浓度下将LiPF6溶解,使用所获得的有机电解质。
每一类有5个电池,在与例1和例2相同的条件下,通过加热研究电池的内部温度和电解质的漏泄率。表3综合了实验结果。
                            表3
   电池   溶剂分解 电池内部温度(℃)     漏泄率
    R   EC∶EMC=1∶3     144     0/5
    S   EC∶DEC=1∶3     150     0/5
    T   EC∶DMC=1∶3     139     0/5
    U   EC∶DEC∶PC=1∶2∶1     140     0/5
    V   EC∶DEC∶MP=1∶2∶1     146     0/5
   W   EC∶DEC∶EP=1∶2∶1    144     0/5
   X   EC∶DME=1∶3    150     3/5
   Y   EC∶THF=1∶3    164     5/5
作为非水电解质所使用的有机电解质的溶剂,EC的热稳定性是优良的,但是熔点高(34℃)、粘度高,因此当EC的混合比率升高时,降低锂离子的导电率。在这个例子中,在有机电解质的混合溶剂中EC含量固定为25体积%。
从表3的结果可知,当混合THF这类环状醚时,电池内部温度的上升是显著的。相比而言,通过混合DME这类链状醚时,能够少许抑制电池内部温度的上升,但是由于产生分解气体,电池内部压力升高,不能消除电解质的漏泄。另一方面,将环状和链状的碳酸酯混合对于抑制电池内部温度的上升是有效的。偶尔,象THF这样的环状醚和象DME这样的链状醚的氧化电势低于环状和链状碳酸酯这类酯的氧化电势,因此,在充电时会出现溶剂的分解反应,电池容量降低。
因此,作为非水电解质的溶剂,利用从EC、PC、DMC、DEC、EMC、MP和EP组成的组中选择的至少一种有机溶剂,即使在电池置于高温下,也能够抑制与电池活性物质反应而产生气体,并能有效地阻止由于电池内部压力升高而造成的电解质漏泄。
在例1、例2和例3中,分别独立地采用LiCoO2、LiNiO2和LiMn2O4作为正的活性物质,但是本发明仅仅不限于这些活性物质。通常可以应用以分子式LixMyO2表示的含锂的过渡金属氧化物(式中,M是从Mn、Fe、Co和Ni组成的组中选择的至少一种过渡金属,0.5≤x≤1.0,1.0≤y≤2.0)。
本发明的负电极不限于通过充放电锂离子能够重复嵌入和脱嵌的碳材料。本发明还能应用与碳材料相同的能够重复嵌入和脱嵌锂离子的过渡金属氧化物制成的负电极,或者由金属锂或锂合金制成的负电极。
另外,只要不背离本发明的范围,电池的形状不限于圆柱形。

Claims (5)

1.一种非水电解质二次电池,其特征在于:采用15至30μm厚的聚烯烃类微孔膜构成的隔离体,在70-150℃温度范围内,熔化热的单位面积吸热卡路里量至少为0.07cal/cm2
2.一种非水电解质二次电池,其特征在于:采用15至30μm厚的聚乙烯独立微孔膜构成的隔离体,在70-150℃温度范围内,熔化热的单位面积吸热卡路里量至少为0.07cal/cm2,或者由所述的微孔聚乙烯膜和一种微孔聚丙烯膜组成的多层混合膜作为隔离体。
3.如权利要求1或2所述的非水电解质二次电池,其特征在于:正活性物质为以分子式LixMyO2表示的含锂的过渡金属氧化物(式中,M是从Mn、Fe、Co和Ni组成的组中选择的至少一种过渡金属,0.5≤x≤1.0,1.0≤y≤2.0)。
4.如权利要求1或2所述的非水电解质二次电池,其特征在于:供负电极用的碳材料为人造石墨或天然石墨中的至少一种,其X-射线衍射(002)平面的的平面间隔(d002)小于3.380,BET法测定的比表面面积为2.0m2/g或更大,但小于8.0m2/g。
5.如权利要求1至4中任何一项所述的非水电解质二次电池,其特征在于:作为非水电解质的有机电解质是通过使主要由六氟磷酸锂构成的溶质溶解在由碳酸乙二醇酯、碳酸丙二醇酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、丙酸甲酯和丙酸乙酯组成的材料组中选择的一种有机溶剂中而制备的。
CN97190481A 1996-05-09 1997-05-07 非水电解质二次电池 Expired - Lifetime CN1127774C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP114538/96 1996-05-09
JP11453896 1996-05-09
JP114538/1996 1996-05-09

Publications (2)

Publication Number Publication Date
CN1190494A true CN1190494A (zh) 1998-08-12
CN1127774C CN1127774C (zh) 2003-11-12

Family

ID=14640273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97190481A Expired - Lifetime CN1127774C (zh) 1996-05-09 1997-05-07 非水电解质二次电池

Country Status (8)

Country Link
US (1) US6713217B2 (zh)
EP (1) EP0838098B1 (zh)
KR (1) KR100331209B1 (zh)
CN (1) CN1127774C (zh)
DE (1) DE69706797T2 (zh)
HK (1) HK1009211A1 (zh)
ID (1) ID18173A (zh)
WO (1) WO1997042676A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159255A (zh) * 2011-04-14 2016-11-23 户田工业株式会社 Li‑Ni复合氧化物颗粒粉末以及非水电解质二次电池
CN106785035A (zh) * 2016-12-05 2017-05-31 钦州市钦南区生产力促进中心 一种锂离子电池电解液及其制备方法
CN111244428A (zh) * 2020-01-22 2020-06-05 浙江工业大学 一种高循环性能和高安全性能的锂离子电池

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432586B1 (en) 2000-04-10 2002-08-13 Celgard Inc. Separator for a high energy rechargeable lithium battery
US8658125B2 (en) * 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US6894456B2 (en) * 2001-11-07 2005-05-17 Quallion Llc Implantable medical power module
US7592776B2 (en) * 2001-11-07 2009-09-22 Quallion Llc Energy storage device configured to discharge energy in response to unsafe conditions
US6891353B2 (en) * 2001-11-07 2005-05-10 Quallion Llc Safety method, device and system for an energy storage device
US6586912B1 (en) 2002-01-09 2003-07-01 Quallion Llc Method and apparatus for amplitude limiting battery temperature spikes
US7443136B2 (en) * 2002-01-09 2008-10-28 Quallion Llc Method and device employing heat absorber for limiting battery temperature spikes
US7003356B2 (en) 2002-03-08 2006-02-21 Quallion Llc Battery terminal sealing and supporting device and method
US20070063105A1 (en) * 2004-02-10 2007-03-22 Mann Alfred E Apparatus for controlling temperature in satellites
US20050193551A1 (en) * 2004-03-04 2005-09-08 Celgard Inc. Method of preventing short circuiting in a lithium ion battery
JP2005285385A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd セパレータ及びこのセパレータを用いた非水電解質電池
DE102004041065A1 (de) * 2004-08-19 2006-02-23 Varta Microbattery Gmbh Galvanisches Element
KR100670526B1 (ko) 2005-03-09 2007-01-16 삼성에스디아이 주식회사 원통형 이차 전지 및 그 형성 방법
KR100906253B1 (ko) * 2006-05-01 2009-07-07 주식회사 엘지화학 과전류의 인가시 파괴되는 파단부가 형성되어 있는전극단자를 포함하고 있는 이차전지
US7662510B2 (en) * 2007-09-20 2010-02-16 Celgard Llc X-ray sensitive battery separator and a method for detecting the position of a separator in a battery
DE102009034597A1 (de) * 2009-07-07 2011-01-20 Continental Automotive Gmbh Elektrolytmischung und dessen Verwendung
WO2011118660A1 (ja) * 2010-03-23 2011-09-29 帝人株式会社 ポリオレフィン微多孔膜、非水系二次電池用セパレータ、非水系二次電池及びポリオレフィン微多孔膜の製造方法
JP2014514726A (ja) 2011-05-23 2014-06-19 エルジー ケム. エルティーディ. エネルギー密度特性が向上した高エネルギー密度のリチウム二次電池
EP2688127B1 (en) * 2011-05-23 2016-06-15 LG Chem, Ltd. High output lithium secondary battery having enhanced output density characteristic
JP2014517453A (ja) 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. 出力密度特性が向上した高出力のリチウム二次電池
CN103548187B (zh) 2011-05-23 2016-03-02 株式会社Lg化学 具有增强的功率密度特性的高输出锂二次电池
WO2012161476A2 (ko) 2011-05-23 2012-11-29 주식회사 엘지화학 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
JP2014513408A (ja) 2011-05-23 2014-05-29 エルジー ケム. エルティーディ. 出力密度特性が向上した高出力のリチウム二次電池
KR101336070B1 (ko) 2011-07-13 2013-12-03 주식회사 엘지화학 에너지 밀도 특성이 향상된 고 에너지 리튬 이차전지
GB2534199A (en) 2015-01-16 2016-07-20 Henkel IP & Holding GmbH Sealant material
GB2534198A (en) 2015-01-16 2016-07-20 Henkel IP & Holding GmbH Sealant material
US20190157722A1 (en) * 2017-11-17 2019-05-23 Maxwell Technologies, Inc. Non-aqueous solvent electrolyte formulations for energy storage devices
CN110391459B (zh) * 2018-04-20 2021-01-15 宁德时代新能源科技股份有限公司 电解液及电化学装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256503A (en) * 1986-04-07 1993-10-26 Scimat Limited Process for making a composite membrane
US4751147A (en) * 1986-05-05 1988-06-14 The Dow Chemical Company Low viscosity, semicrystalline chlorinated polyethylene resins and articles formed therefrom
US5028500A (en) * 1989-05-11 1991-07-02 Moli Energy Limited Carbonaceous electrodes for lithium cells
US5316875A (en) * 1991-07-19 1994-05-31 Matsushita Electric Industrial Co., Ltd. Secondary battery with nonaqueous electrolyte and method of manufacturing same
DE69320927T2 (de) 1992-12-21 1999-02-18 Mitsubishi Chem Corp Poröse(r) Film oder Folie, Batterie-Separator und Lithium-Batterie
US5336573A (en) * 1993-07-20 1994-08-09 W. R. Grace & Co.-Conn. Battery separator
JP3048808B2 (ja) 1993-11-10 2000-06-05 松下電器産業株式会社 非水電解質二次電池
JPH07192753A (ja) 1993-12-27 1995-07-28 Sanyo Electric Co Ltd リチウム二次電池
JP3091944B2 (ja) 1994-05-09 2000-09-25 旭有機材工業株式会社 リチウムイオン二次電池負極用カーボン粒子の製造方法
JP3011309B2 (ja) 1994-05-12 2000-02-21 宇部興産株式会社 電池用セパレ−タ及びその製法
US5691047A (en) * 1994-05-12 1997-11-25 Ube Industries, Ltd. Porous multi-layer film
US5667660A (en) * 1995-09-12 1997-09-16 Alliant Techsystems Inc. Synthesis of charged Lix CoO2 (0<×<1) for primary and secondary batteries

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159255A (zh) * 2011-04-14 2016-11-23 户田工业株式会社 Li‑Ni复合氧化物颗粒粉末以及非水电解质二次电池
CN106785035A (zh) * 2016-12-05 2017-05-31 钦州市钦南区生产力促进中心 一种锂离子电池电解液及其制备方法
CN111244428A (zh) * 2020-01-22 2020-06-05 浙江工业大学 一种高循环性能和高安全性能的锂离子电池
CN111244428B (zh) * 2020-01-22 2021-06-22 浙江工业大学 一种高循环性能和高安全性能的锂离子电池

Also Published As

Publication number Publication date
ID18173A (id) 1998-03-12
EP0838098B1 (en) 2001-09-19
EP0838098A1 (en) 1998-04-29
CN1127774C (zh) 2003-11-12
US20010016289A1 (en) 2001-08-23
KR19990028804A (ko) 1999-04-15
DE69706797T2 (de) 2002-05-29
DE69706797D1 (de) 2001-10-25
HK1009211A1 (en) 1999-05-28
KR100331209B1 (ko) 2002-08-08
WO1997042676A1 (en) 1997-11-13
US6713217B2 (en) 2004-03-30

Similar Documents

Publication Publication Date Title
CN1127774C (zh) 非水电解质二次电池
JP5063948B2 (ja) 非水電解質二次電池及びその製造方法
EP2555287B1 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US11569492B2 (en) Positive-electrode active material and battery
US7682746B2 (en) Negative electrode for non-aqueous secondary battery
US10818910B2 (en) Positive-electrode active material and battery
CN1202985A (zh) 改进锂离子电池的方法
CN101673854A (zh) 锂离子二次电池
KR20160141676A (ko) 리튬 이온 이차전지
WO2013151209A1 (ko) 리튬 이온 커패시터용 양극 활물질 및 그의 제조 방법a
EP4220759A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
CN1316790A (zh) 非水电化学装置及其电解质
EP1710855A2 (en) Negative electrode for non-aqueous secondary battery
US7314683B2 (en) Carbon compound-adsorbed cathode active material and lithium battery using the same
CN111771301A (zh) 锂二次电池正极活性材料、其制备方法和包含它的锂二次电池
JP2008198524A (ja) 非水電解質二次電池
JP2002075369A (ja) 高容量リチウムイオン二次電池
JP4318270B2 (ja) リチウム二次電池の製造方法
CN1971980A (zh) 电池正极及使用该正极的锂离子电池及它们的制备方法
CN112103561B (zh) 一种电解液及电化学装置
CN110267917A (zh) 制备锂二次电池用正极活性材料的方法、由此制备的正极活性材料以及包含其的锂二次电池用正极和锂二次电池
CN1835262A (zh) 正极活性材料组合物、正极片及锂离子电池
JPH0982360A (ja) 非水電解液二次電池
US7947092B1 (en) Battery with cathode having inactive materials
CN1324735C (zh) 阴极材料及其制造方法和使用该阴极材料的电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20031112

CX01 Expiry of patent term