CN1188441C - 形态截留和它适合使用的材料 - Google Patents

形态截留和它适合使用的材料 Download PDF

Info

Publication number
CN1188441C
CN1188441C CNB018128513A CN01812851A CN1188441C CN 1188441 C CN1188441 C CN 1188441C CN B018128513 A CNB018128513 A CN B018128513A CN 01812851 A CN01812851 A CN 01812851A CN 1188441 C CN1188441 C CN 1188441C
Authority
CN
China
Prior art keywords
polymer
polymer materials
softening agent
reactive behavior
required form
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018128513A
Other languages
English (en)
Other versions
CN1443207A (zh
Inventor
M·R·豪斯顿
T·赫诺
D·S·索阿尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZMS LLC
Original Assignee
ZMS LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZMS LLC filed Critical ZMS LLC
Publication of CN1443207A publication Critical patent/CN1443207A/zh
Application granted granted Critical
Publication of CN1188441C publication Critical patent/CN1188441C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S525/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S525/903Interpenetrating network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31826Of natural rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Graft Or Block Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polyethers (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本发明涉及可聚合材料的快速就地固化以得到大分子网络的方法和“形态截留的”制品;即,它显示出通过固化步骤锁定的固定相形态和/或分子取向。该方法包括以下步骤:将无活性聚合物或预聚物,反应活性增塑剂或稀释剂,和引发剂一起混合而得到可聚合的组合物;将混合物进一步处理以获得聚合物成分的所需相形态和/或分子取向;将可聚合物的组合物成形为所需的几何结构;和在没有混合的条件下将可聚合的组合物暴露于聚合能量源,得到了具有被锁定的所需相形态和/或分子取向的最终产物。刚好在可聚合的组合物的固化之前存在的相形态和分子取向随后通过固化步骤被截留或锁定,以阻止或抑制形态的进一步变化。

Description

形态截留和它适合使用的材料
本发明的领域
本发明涉及聚合,聚合物相形态,和模塑加工的领域。更具体地说,本发明涉及锁定单相或多相聚合物体系的形态结构的方法。该方法使得能够生产出物体,后者在后续处理步骤中或在使用过程中具有抵抗它们的相形态进一步变化的能力。
本发明的背景
相分离体系是聚合物世界中无所不在的,主要因为没有多少种聚合物共混物是真实相容的。幸运地,多相形态常常在聚合物体系中证明有用。一个原因是相分离的材料通过协同效应提供较高的性能,这可通过显示出例如以下这些重要性能的多相体系来证实:抗冲击性,韧性,高温性能,高模量,拉伸强度,较低膨胀系数,尺寸稳定性,对于塑料而言的高强度/重量比,对于弹性体而言的改进的弹性或阻尼性能,阻燃性,伸长率,光泽,和/或较好粘合性。聚合物共混物也能够获得所需要的物理性能如熔体粘度,更高或更低的软化点,更容易的加工性能,和耐溶剂性。最后,聚合物混合物或共混物的使用可通过经济性来简单地指示,用较便宜的材料稀释更昂贵的材料以降低成本。
然而,聚合物共混物的几个方面的益处并不是没有它们的缺点。例如,一些所希望的相形态难于实现,需要高加工温度或充分混合。其它形态,一旦实现,可能对外界刺激比较敏感,容易受到诱导应力、高温偏移(excursions)或与溶剂接触的破坏或改变。例如,含有一种或多种聚合物的某些材料体系在加工过程中显示出临界溶解温度(CST)相变,据此,体系相穿越相边界而分离。当在加热时观察到相分离时,该体系显示了下临界溶解温度(LCST)。当在冷却时观察到相分离时,该体系显示了上临界溶解温度(UCST)。LCST或UCST发生转变的温度取决于体系的组成,以及其它物理条件如压力,pH等。然而,此类相变急剧地改变了所给定的聚合物共混物的相形态并且常常是不希望的。在冷却时因为相分离而变得混浊的光学透明聚合物共混物是显示出不稳定相形态的材料体系的一个例子。
聚合物形态在单组分或均匀的多组分体系中也是重要的,当聚合物链的分子水平取向产生了所需要或不需要的效果时。一种此类情况可以在经历“溶剂诱导”裂纹的聚碳酸酯体系中见到,当接触到各种溶剂时。该裂纹情况体现特征于链再取向过程(在这种情况下的微晶结晶),获得了脆性和/或不透明材料,因此是不希望的。另外地,分子水平取向有时候是有益的,如在拉伸过的聚合物膜或纤维中,其中所获得的分子(水平)取向提高了改进的性能如拉伸强度或刺痕或抗撕裂性。另外,取向的膜因为它们的固有的光学各向异性而在光学应用中找到用途。取向的膜和纤维常常通过在升高的温度下拉伸来获得,它们本身是耗时和耗能的过程。另外,通过此类技术实现的分子水平取向在以后接触到高温时容易发生分子链再次无序化,导致再缠结,收缩和性能下降。因此,希望有一种材料体系,它具有在接触到不利环境时抵抗该形态-改变裂纹和/或再无序化过程的能力。
不论在加工过程中或在使用中,不利的条件常常导致给定的材料形态的所不希望的改变或破坏。与在聚合物体系中存在的形态的不稳定性有关的问题,部分地或完全地,随后通过这里公开的本发明来解决。
本发明的概述
本发明涉及调节和控制在含有至少一种聚合物组分的各种材料中的相分离性能、形态和分子取向的方法。它能够是适合于大批量制造的极其经济的方法。本发明进一步涉及新型聚合物材料的配方,它显示出了相形态或分子水平取向的截留,导致最终物体的最佳化工程性质的稳定化。本发明的独特的特征是刚好在可聚合的组合物的固化之前存在的相形态和分子取向随后通过固化步骤来截留或锁定,从而抑制或防止了形态的进一步变化。该形态截留可以涉及到宏观相-,微观相-,和纳米相-分离体系,或涉及均匀到分子水平的体系。所获得的聚合物材料可以包括一种或多种聚合物组分,该聚合物分子彼此无规地缠绕或取向。单相,二相,和多相体系全部落在本发明范围内。
更具体地说,本发明涉及材料的快速就地聚合提供聚合物高分子网络的方法和属于“形态截留”的制品;即,它们显示了通过聚合步骤锁定的固定的相形态和/或分子取向。该方法包括以下步骤:将无活性聚合物或预聚物,反应活性增塑剂或稀释剂,和引发剂混合在一起得到可聚合的组合物;进一步加工混合物以获得聚合物成分的所需要的形态和/或分子取向;将该可聚合的组合物成形为所需几何形状;和在没有混合的情况下让可聚合的组合物暴露于聚合能量源,得到了具有尺寸稳定性和锁定所需相形态和/或分子取向的最终产物。在目前的优选实施方案中,该可聚合的组合物是半固体的。
在这一方法中,所需要的材料形态(相形态和分子取向)和该制品(part)的所需要的总体形状或构型可以在材料固化之前定型。如此生产的形态截留制品能够任选地是透明的和/或具有抗冲击性(回弹性)。所获得的形态截留高分子网络体现特征于具有,例如,i)反应活性增塑剂在缠结的无活性聚合物周围和之内缠绕的半互穿***联聚合物网络(semi-IPN);ii)在缠结的无活性聚合物内反应活性增塑剂的互穿***联聚合物网络,该反应活性增塑剂聚合物网络进一步交联到该无活性聚合物上;或iii)在缠结的无活性聚合物之内的互穿性反应活性增塑剂聚合物链(未交联的),它可以是线性的,支化的,等等。因此,可聚合的组合物的固化得到了最终的复合聚合物材料,其中刚好在固化的起始之前所存在的相形态和/或分子取向可通过反应活性增塑剂聚合链和/或网络的形成来维持,对于无活性聚合物-反应活性增塑剂的情况而言。根据本发明,通过在固化过程中以物理或化学方式锁定该材料的分子结构,使得这一相形态截留变得可能。
如果固化动力学是快速的,则这一措施是特别有效的。更具体地说,该反应活性的增塑剂或稀释剂会促进两种聚合物(均聚物或共聚物)的混合和相容化,在这种情况下反应活性增塑剂或稀释剂也用作相容剂。在所获得的假-相容状态下,该体系快速固化和/或交联来将部分相容性“冻结”。这样,以其它方式(即不使用相容剂)无法实现的形态现在可以获得和维持。
这里所公开的形态截留方法明显不同于体系例如高抗冲聚苯乙烯(HIPS)的制造方法,在后者中随着聚合的进行将散失所需的形态。在HIPS制造过程,聚丁二烯颗粒(典型地轻度交联的)被加入到过量的苯乙烯单体中。因为该苯乙烯单体在聚丁二烯存在下发生聚合,非常特定的形态会散失,这取决于该体系所经历的混合类型和程度。本发明的形态截留方法明显不同于诸如HIPS制造和其它方法之类的方法,因为需要截留的形态在固化之后就存在,在最终的固化步骤中没有混合。
这里公开的本发明包括处理步骤和方法,通过它们可生产出形态-截留材料,以及包括所生产的材料。它进一步包括该方法可使用的某些可聚合的组合物,以及具有锁定形态的固化材料。该组合物可以任选包括在现有技术中熟知的其它添加剂以便提供某些所需特性,如有利于脱模,获得改进的稳定性或耐气候性,非泛黄性质,等等。本发明允许反应化学的宽选择以获得具有所需形态的最终制品(part),该形态基于相分离性和/或该材料内各分子的几何取向。所获得的工程材料和方法能够用于制造具有优异的机械、热或光学性质,或具有其它所需的但难以实现的特性的产物。
发明的详细说明:
这里和所附权利要求中使用的术语“a”和“an”是指“一种(个)或多种(个)”。
这里和所附权利要求中使用的术语“形态”是指聚合物成分相对于在给定的材料体系中任何其它成分而言的形态。这可以包括均聚物体系,聚合物共混物(当聚合物与其它聚合物混合时),聚合物网络(当聚合物链彼此交联时),和聚合物复合材料(当聚合物与其它非聚合物材料混合时)。在有一种以上的聚合物成分存在的聚合物共混物或复合物中,该聚合物常常显示出相分离,这可通过至少两种界限分明的相畴的存在来证实。在这方面,聚合物组分的形态可以根据在给定的材料体系中一种或多种聚合物相的存在、尺寸、形状和密度来规定。例子包括在连续相内球形或圆柱形夹附物的存在,互穿的双连续圆柱体的存在,或二相的交替薄片的存在。许多其它构型也存在,比如相-在一个相内-再在另一个相内(phase-within-a-phase-within-a-phase)或界面型排列,这些对于赋予给定的材料以某些所需机械和光学性能如冲击强度是特别重要的。用于多组分体系中的聚合物体系的形态已在文献中充分描述。参见,例如,L.H.Sperling的教科书“Polymeric Multicomponent Materials”(John Wiley & Sons,Inc.,1997),它被引入本文中供参考。
聚合物成分的一种或多种在分子水平上的取向也落在术语“形态”的范围内。例如,聚合链可以通过拉伸(即膜或纤维)或通过涉及到高剪切的操作(例如注塑)来彼此纵向取向,或聚合链可以通过例如吹塑的操作来双轴取向。这一取向对于给定的应用获得所需机械性能来说是极其重要的。聚合物材料的形态也可以取向。在这种情况下,形态特征如圆柱体或薄片被诱导相对于彼此取向和/或相对于该制品(part)的外表面来取向(例如通过拉伸或在模具内流动)。形态取向也对于为相分离材料获得所需机械(和有时候光学)性能来说是极其重要的。
该术语“形态”进一步包括聚合物材料在界面上或在形成界面时的物理排列。尤其,在两聚合物相之间或在聚合物相和非聚合物相(例如添加剂,如填料粒子、纤维或小片状体)之间的界面上聚合物成分的排列和取向对于确定所获得的复合材料的机械性能来说是特别重要的。所考虑的其它界面不必是固体-固体,而可以是固体-液体或固体-气体界面,如在有孔隙度的材料中存在的那些。在聚合物材料内孔隙的尺寸,形状,取向,和构型已经被普遍认识到在材料的阻隔或渗透性质(例如它用作过滤器的能力),以及它的机械性能上起着重要的作用。该界面构型和/或孔隙特征因此被术语“形态”所包括。
这里和在所附权利要求中使用的术语“截留”或“锁定”是指除了另外在较纯、未处理的聚合物体系中见到的那些形态以外的形态的稳定化。该稳定化效果对应于一个或多个不利的影响,如高或低温度偏差,不宜的化学环境,外应力或负荷,和诱导体系形态上的变化的任何其它条件。
这里和在所附权利要求中使用的术语“无活性聚合物”是指完全聚合的、一般非反应活性的聚合物。当使用某些聚合物化学时,一旦固化被引发时该无活性聚合物可与反应活性增塑剂反应,即使该无活性聚合物不具有在链内或附着于链上的不饱和或反应活性的实体(entities)。或该无活性聚合物可以有意地在聚合物链内具有一定水平或程度的不饱和。该无活性聚合物可以是线性或支化的均聚物或共聚物。对于共聚物而言,该序列分布可以在顺序或嵌段上是无规的。嵌段共聚物可以是组成递变的,或具有接枝的侧链。无活性聚合物的层次结构可以进一步地是支化的,多链的,梳形的或星形的。二-嵌段,三嵌段或多嵌段结构全部落在本发明范围内。对于许多材料体系,通过生产两种或多种聚合物或共聚物的混合物来实现相关的性质,对于本公开物来说所有这些聚合物或共聚物应该称作无活性聚合物。
用于生产根据本公开物的形态-截留聚合物材料的可聚合的组合物是通过将无活性聚合物与至少一种小分子物质混合来制备的,因为在小分子内存在一个或多个反应活性的实体,该小分子本身是可聚合的或可交联的。这一小分子物质在这里和在所附权利要求中被称作“反应活性增塑剂”。该反应活性增塑剂可以包括单体,交联剂,低聚物反应物,低聚物交联剂,或大分子反应物或大单体交联剂(总称大单体)。该反应活性增塑剂能够增塑该无活性聚合物以获得具有所需组成的组合物,它应该在混合后在名义上是均匀的,尽管该多相形态是多组分的聚合物体系所常见的。混合物可以进一步加热或冷却到所需要的温度(即,加工温度)以获得所需要的材料形态或赋予材料以所需的可塑性或可变形性,满足任选的模塑或涂敷步骤的需要。该加工温度能够方便地选择以便适当地高于或低于环境温度,以使得周期时间最大程度地减少。混合物也可随后或同时地进行压缩,挤压,拉伸,或另外调控处理,无论在固化之前为获得所需的材料形态所需要的何种加工条件下。从溶剂溶液流延是为了获得所需的材料形态的另一种有用方法,该形态是其它方式难于获得的。然而,在所有此类情况下,在进行最终的固化步骤之前,所需要的混合程度和所获得的形态已存在。
该反应活性增塑剂能够是混合物本身,由单官能的、双官能的、三官能的或其它多官能的实体组成。例如,引入单官能的和多官能的反应活性增塑剂的混合物将,在聚合之后,导致形成了反应活性增塑剂聚合物网络,其中反应活性增塑剂聚合物链是彼此交联的(即,semi-IPN)。在聚合过程中,正在生长的反应活性增塑剂聚合物链也可接枝该无活性聚合物或与其反应,产生一种类型的IPN,即使在该无活性聚合物链内不存在不饱和的或其它在表面上似乎反应活性的实体。因此,该无活性聚合物可在固化过程中用作交联实体,导致了交联的反应活性增塑剂聚合物网络的形成,即使当仅仅单官能的反应活性增塑剂存在于混合物中时。接枝到无活性聚合物链上或交联到无活性聚合物链上通常不损害从本发明的实施所获得的最终的复合材料,但是,事实上增强了本公开物所要求的相形态和/或分子取向截留性能。
总之,在所获得的配制料中反应活性增塑剂(它本身包括具有各种官能度的单体和交联剂的混合物)的量和组成应使得该固化的复合聚合物材料显示出通过反应活性增塑剂聚合物链的形成来锁定或截留的形态。也就是说,该反应活性增塑剂是以一定浓度存在,该浓度足以维持或稳定刚好在固化之前存在的形态。形态维持通常以物理方式限制在固化的复合材料中聚合物成分的重排(动力学或化学方式或两者),使得所需要的形态在所考虑的时间(和条件如温度和压力)内在名义上保持恒定,来实现。尽管不希望受理论的束缚,但可以相信,对于聚合物成分的运动的物理限制通过如下实现:i)相邻或周围的反应活性增塑剂网络的形成,它由于对扩散或迁移的物理阻碍而减缓或在物理上抑制附近聚合物分子的运动(动力学的截留);ii)在固化反应过程中反应活性增塑剂链可化学交联和/或接枝到无活性聚合物链上,使得聚合物分子的后来的运动通过该交联来抑制(化学截留);iii)以上i)和ii)的结合;或iv)界面的产生,在界面的一侧上该材料发生部分交联。用于实现该形态或分子取向截留的反应活性增塑剂的量通常是大约0.1%至大约90%(按重量计),优选大约1%到大约50%,更优选大约5%到大约30%。
所使用的反应活性增塑剂的类型可以为了增强该形态截留效果来进行适当选择,例如通过选择可形成热稳定的、刚性的聚合物链(即,具有较高玻璃化转变温度的聚合物)的反应活性增塑剂。该链倾向于是不易弯曲的,因此在物理上限制了该无活性聚合物的任何运动或重排。该反应活性增塑剂可以进一步选择包括能够接枝到无活性聚合物上或与其反应的反应活性实体,使得在固化后发生完全的交联。应该还认识到,某些类型的反应活性增塑剂优先迁移到一种无活性聚合物相中,与另一种无活性聚合物相相比而言。对于一般术语,“象-溶解-象(like-dissolves-like)”的概念适用于该无活性聚合物-反应活性增塑剂体系,因此能够预见反应活性增塑剂倾向于在具有类似化学结构的无活性聚合物相中浓缩。然而,为了在固化后获得一种锁定形态所需要的反应活性增塑剂的类型和量能够无需过多的实验就可确定。可用于本发明的实施的反应活性增塑剂的广度和品种应该认为是本发明的优先条件(underlying strength),这在下面进一步讨论。
聚合引发剂被加入到混合物中以便在暴露于聚合能源如光,热,离子束,微波,X射线,电子束,或γ辐射线之后触发聚合反应。另外,缩合,开环和其它聚合机理可以类似地通过添加合适的单体前体和引发剂来实施。此类引发剂是现有技术中熟知的。任选地,包括其它的添加剂,如脱模剂,非反应活性的普通增塑剂或增韧剂,颜料,染料,有机或无机纤维或颗粒状增强或增量填料,触变剂,指示剂,抑制剂或稳定剂(耐候改进剂或泛黄阻止剂),UV吸收剂,表面活性剂,流动助剂,链转移剂,发泡剂,孔隙改性剂,等。引发剂和其它任选的添加剂可以在与无活性聚合物混合之前被溶解或分散在反应活性增塑剂组分中,有利于在无活性聚合物中的完全溶解和与无活性聚合物的均匀混合。另外地,该引发剂和其它任选的添加剂可以在任何时候被加入到混合物中,包括刚好在聚合之前,当例如使用热引发剂时这是优选的。
在聚合混合物中的各成分能够通过手工或通过机械混合方式来掺混。这些成分优选稍微加热,以使该无活性聚合物组分软化或液化。任何合适的混合器可用来机械地均化该混合物,如掺混器,捏合机,密闭式混合机,配混机,挤出机,磨机,在线混合器,静态混合器等,任选在高于环境温度的温度下掺混,或任选在高于或低于大气压的压力下掺混。
在本发明的一个当前优选的实施方案中,允许有任选的等候时间,在这一段时间中这些成分不进行机械搅拌。这一任选的等候时间可以是在成分最初被计量加入到容纳容器中的时间和这些成分被机械或手工均化的时间之间。另外地,这些成分可以计量加入到混合器中该,混合设备操作足够的时间以干混该成分,然后在进一步混合之前确保任选的等候时间。或,该成分可以在机械装置中充分混合,在这一段时间之后接着是等候时间。该等侯时间可以延伸大约一个小时到一天或多天。该等候时间可用于使给定聚合物体系均化成非常细小的规格,因为机械混合技术通常不会在微相畴的规格上进行混合。因此,机械混合和等候时间两者的结合可以用于实现在所有规格上的均化。该等候时间段和在处理序列上的顺序可以根据经验和无需过多实验地来选择为可得到就能量消耗、总加工过程经济性和最终材料性能而言的最有效的总体混合过程的一段时间。
当可聚合的混合物含有高分数的无活性聚合物成分时,尤其当无活性聚合物在环境温度下是玻璃状的或硬质的时,本发明的这一实例是特别有利的。当无活性聚合物是热敏性的和因此不能在没有过分降解的条件下在一定时间中在高于其软化点的温度下加工时,等候时间的利用是特别有利的。当试图共混两种或多种聚合物时,首先可以将反应活性增塑剂加入到具有最高玻璃化转变温度的组分中,让其得到增塑。另一种较低Tg组分然后在低于所能使用但没有反应活性增塑剂的增塑效果的该温度的一种温度下被混入,因此减少了体系的总体热暴露。另外地,反应活性增塑剂可以分配在需要混合的这些聚合物之间,将它们当中每一种分别增塑。独立地增塑的聚合物然后在较低温度下混合,相应地有较低的能量消耗和聚合物降解。
在本发明的一个方面中涉及到的材料当中的供选择的一种类型包括官能化聚合物,以下简称预聚物。“预聚物”是指已官能化,从而能够经历加成聚合的低聚物或聚合物链。在优选的实施方案中,该预聚物包括丙烯酸酯或甲基丙烯酸酯官能团。用于使聚合物官能化的方法是现有技术领域中的那些技术人员已知的。可以认识到的是,含有侧挂的羟基,羧基,醛,和胺基的聚合物是十分容易接受官能化的,这些是含有氢基的那些聚合物。
当本发明的预聚物具有高分子量和/或显示高玻璃化转变温度时,或当环境温度加工是所想望的时,希望将附加的增塑剂与无活性聚合物或预聚物混合以获得所需要的半固体稠度。在这种情况下的增塑剂可以是反应活性的(即,反应活性增塑剂)或是非反应活性的。增塑本发明的无活性聚合物或预聚物的非反应活性物质以下称为“稀释剂”。
在本发明的这一方面的一个优选的实施方案中,该预聚物包括已经用侧挂的丙烯酸酯或甲基丙烯酸酯基团官能化的水不溶性聚合物。然后向预聚物中添加可增塑该预聚物的稀释剂以便在混合之后形成透明、均质的半固体。在添加引发剂之后,混合物然后可成形和通过UV光来固化,得到具有所需材料形态的交联的样品。优选地,该材料形态是让交联的预聚物吸收10-90wt%水但没有相分离的一种形态(这可通过在接触水之后的混浊或浊度来证明)。
在本发明的这一方面的特别优选的实施方案中,该预聚物是聚甲基丙烯酸羟乙基酯(pHEMA)的甲基丙烯酸酯官能化的聚合物或共聚物。甲基丙烯酸酯官能化度可以是大约0.2mol%到大约10mol%的侧挂羟基。该共聚物可以从HEMA和其它包括诸如己内酯,吡咯烷酮,丙烯酸,甲基丙烯酸,和丙烯酰胺之类的基团的单体物质获得。此类原料在接触透镜工业领域中已知用于形成适合用作隐形眼镜的水凝胶。
优选的稀释剂包括丙二醇,甘油,PEG400(分子量400的聚乙二醇),PEG1000,乙氧基化和丙氧基化葡糖苷,亚砜,和水。特别优选的稀释剂是水与丙二醇或与PEG400的混合物。
应该指出,尽管发明人提到了无活性聚合物-反应活性增塑剂结合物,但这同样适用于预聚物-反应活性增塑剂和预聚物-稀释剂结合物,以及这些混合物可以在本说明书中互换地替代,除非另外指明。
应该指出的是,用于混合多种聚合物的技术和程序,以及由本发明给出的无活性聚合物-反应活性增塑剂-引发剂或预聚物-稀释剂-引发剂混合物,常常影响所获得的材料体系的相形态和/或分子取向。因为相形态和分子取向能够对所需的材料性能具有深的影响,通常必须对该方法的混合步骤进行更多的考虑。通常,传统上用于获得纯聚合物体系的所需相形态和/或分子取向的处理技术同样可用于本发明的实施(有时候在较低温度和/或压力下是有益的)而获得基本上相同的结果,尤其当反应活性增塑剂含量保持低于约30%时。本发明的这一和其它有益的方面将在下面进行描述。
一旦该无活性聚合物,预聚物,反应活性增塑剂,稀释剂和引发剂被掺混,混合物常常提供优选的组合物,它在室温下是半固体的和非流动性的,使得它能够作为离散的产物(part)或物体容易地进行处理而没有过多的粘性或变形,而且是可挠的和有延展性的。结果,当该优选的混合物被放置在随后被封闭的两个模具中时,它将没有过多的阻力而变成为所需的几何结构,尤其如果施加轻微的加热以使得该混合物升温至稍微高于环境温度。当复合材料的压缩,拉伸,或其它处理或成形操作用于获得所需的相形态、分子取向或形态取向,该方法同样可通过可挠的、可变形的稠度来促进,该稠度可用反应活性增塑剂来增塑该无活性聚合物和任选加热或冷却该混合物来实现。
以上描述的可挠的、可变形的混合物是令人想望的,因为它们对于模塑、成形或分子取向操作有较少的阻力。另外地,该操作可以在比另外用于可比的操作的温度更低的温度下进行,该可比的操作是对于不含任何增塑组分的单独聚合物体系进行的。在任一种情况下,反应活性增塑剂的存在使得变形的材料有更好的捏合(与纯聚合物体系相比),减少了在所获得的物体中的应力集中点和双折射率。另一个益处是该组合物可以在室温下处理和贮存,而模塑或成形为所需几何结构的过程可以在稍微偏离或适度偏离环境温度的那些温度下进行。反应活性增塑剂和无活性聚合物的类型和相对量将决定了混合物的随时间-和温度-而变的粘弹性质。应该认识到的是,所选择的组合物的粘弹性质可以是宽范围的和变化的。因为几乎所有已知的材料体系在加热之后变得更加柔顺(没有化学反应),该模塑温度通常,但不必地,等于或高于处理温度。
当根据本发明的实施来获得或锁定所需要的分子或形态取向,反应活性增塑剂的增塑效果将被证明对于以纯净状态在室温下呈现玻璃状的聚合物是尤其有利的。通常,该聚合物必须在任何取向操作(例如流动或拉伸)进行之前被加热至大约它们的玻璃化转变温度或更高温度。然而,由于至少少量反应活性增塑剂的存在,聚合物的玻璃化转变温度有效地降低,使得该取向操作可以在相应较低温度下进行。还有,一旦聚合开始,该反应活性增塑剂的增塑效果可以消除(当形成了具有与无活性聚合物类似的Tg的聚合物时),得到了复合材料,后者具有与处在分子有序排列状态下的纯无活性聚合物体系类似或改进的性能。在固化之前在较低温度下加工的能力具有减少周期时间和能量消耗的益处,从而使该方法更加经济。另外,温度敏感的聚合物的热降解被减少了,该降解是与较高温度加工有关的固有不利因素。
在本发明的实施中,本发明人的意图是,所需材料形态(相形态以及分子和/或形态取向)和该制品(part)的所需总体形状或构型都可以在材料固化之前设定。在单个固化步骤中锁定精确形状和材料形态的能力应该由聚合物加工和模塑加工领域中的那些技术人员所认识。尽管有可能通过机械研磨、切、抛光或其它此类操作来将固化的制品(part)进一步成形,但是此类后续加工超出了本发明的范围。
在将加工过的无活性聚合物-反应活性增塑剂-引发剂混合物暴露于聚合能量源来触发固化反应之后,该反应活性增塑剂形成了主要由在混合物中存在的单体物质组成的聚合链,常常有一定程度接枝或交联到该无活性聚合物链上。聚合在单体物质当中进行(即使当聚合能源关闭时),一直到反应活性部位被淬灭或一直到所有单体有效地反应到生长的聚合链中为止。需要指出的是,该“单体”物质能够是单官能的或多官能的(因此可用作链增长剂或交联剂)。该单体物质也可具有较大的分子量,达到了通常与低聚物有关的那些分子量。暴露于聚合能量源的时间长度和强度将取决于所使用的单体物质和引发剂的类型和量(以及所使用的聚合能源的类型)来变化。例如,对于加热到稍微高于环境温度来热固化的那些制品(part),固化时间常常持续数分钟到数天。另外地,当使用自由基或阳离子固化机理并通过高强度UV光源来触发时,固化时间可以持续几秒到几分钟。
除了有益地减少周期时间,快的反应时间(即快速固化)对于所需形态的快速锁定也是重要的,尤其如果该所需形态不表示平衡状态或对条件的小变化敏感的话。对于本公开物的目的,“快速固化或快速反应”时间应该指其中95%或95%以上的单体在短于1小时内固化的固化周期。更优选地,99%的该单体是在低于10分钟的时间内固化。表示平衡状态的形态能够更缓慢地固化但没有这些担心,虽然从经济性考虑更快的周期时间通常是优选的。
应该指出的是,与纯单体体系的固化相比,在本发明的固化操作中典型地观察到了较低的收缩和仅仅中等的温度升高。这是因为在整个混合物中单体物质的百分比是低于90%,或优选低于50%,或更优选低于30%。因此,尽管纯单体浇铸操作可以经历高达约15%的收缩和约200℃的温度尖峰,但是当仅仅30%的此类单体被引入到本发明的优选混合物中时收缩率降低至低于约5%和该温升被节制到不足大约70℃。固化后收缩的量和温升都下降,甚至当低于30%的反应活性增塑剂用于混合物时。例如,现实的配方可以含有仅仅大约10wt%的反应活性增塑剂。在固化混合物之后,观察到了低于大约2%的收缩率和大约20℃的温升。这样的低的收缩和温度峰值对于尺寸精确物体的生产是十分容易掌握的,它在工业中找到了许多用途。
相似的论据也适用于含有预聚物的混合物。每当该反应活性物质的总浓度保持较低时,不论是否通过反应活性增塑剂的添加或通过预聚物的官能化来引入反应活性物质,对于浇铸精确成形体而言的收缩率和温升问题一般会减轻。应该指出,典型的反应活性单体如甲基丙烯酸甲酯具有大约9摩尔/升的甲基丙烯酸酯浓度。对于本说明书的目的,反应活性基团的低浓度应该指是该(浓度)值的大约25%的浓度,或相对于官能团的大约7摩尔浓度(molar)。更优选,该反应基团应该以不大于约2.5摩尔浓度(molar)的浓度存在。
当固化结束时,最终制品或物体具有固定或锁定的相形态,分子取向和/或形态取向(“形态截留”)的优势。也就是说,该体系形态显示的稳定度超越了另外在纯聚合物体系中所见到的稳定度。例如,在加热或冷却后正常显示相变的多组分体系(即UCST或LCST)能够让它们的相态锁住,使得在预期的转变温度下没有观察到相变。因此,在暴露于升高的温度之后通常相分离或另外改变它们的形态的那些体系能够通过本发明的实施来截留在所需的状态下。在如此生产的材料中,在类似的温度偏差过程中可防止相分离和/或形态变化。作为另一个实例,某些嵌段共聚物在从溶剂溶液流延之后显示了所需的形态(例如,分散在连续相中的圆柱形棒条),但在加热或冷却之后改变为交替薄片或球状夹附物。通过本发明的实施,该圆柱形棒条构型可以被截留,使得后续的加热或冷却不破坏所需的形态。
另一个实例将是通过拉伸而使聚合物分子双轴取向的聚合物膜,用于为聚合物膜赋予耐穿刺和撕裂性能的一种方法。然而,当该膜被加热至聚合物链获得足够的活动性以使彼此之间发生相对运动的程度时,它们典型地使它们自己重新取向而采取无规的构型,破坏了用于获得所需抗冲击和/或抗撕裂性的双轴取向。通过引入反应活性增塑剂到膜材料中,将该材料拉伸获得分子水平取向,然后固化该体系来截留或锁定该优选的分子取向,该膜变得更加耐降解和有时候不受降解的影响,该降解是因为在高温暴露过程中聚合物链取向的热诱导的再次无规化分布而导致的。
类似地,显示出交替的薄片结构(或就此而言圆柱形棒条体)的嵌段共聚物可通过在双轴上让材料流动而在形态上取向。在两模具瓣之间挤压该材料是一个例子,其中该薄片预计粗略地垂直于压缩方向来组织。在这种情况下,在用于模塑的升高温度下太长的时间将使形态松弛到较少取向的状态,因为将面对高温暴露。然而,当反应活性增塑剂经固化来锁定所需的形态取向(在本实例中双轴),这样的问题被消除。根据本公开物的形态截留也消除了对于快速冷却程序的需要,在该程序中制品被骤冷以便在松弛发生(如果冷却太缓慢的话所常见的结果)之前维持现有的所需形态。
作为再另一个实例,许多原料响应外加应力或改变的化学环境而经历产生裂纹或类似的相分离行为。例如,当暴露于一般溶剂如丙酮时聚碳酸酯显示出溶剂诱导的微裂,这导致获得浑浊、不透明的材料。然而,通过将无活性聚合物与反应活性增塑剂混合,然后固化以锁定链的分子构象(在这种情况下,链的无定形的构型),此类行为能够减轻。当此类复合材料然后被暴露于相同的溶剂时,没有观察到材料的微裂或混浊,表明了固化的反应活性增塑剂的稳定化效果。
最后,需要指出,某些材料的所需形态是它们的孔隙度或内空隙结构的体现。这是通过在加工过程中包含发泡剂所发泡的或通过包含孔隙度改进剂(通常是一旦所述改进剂被除去会留下多孔结构的不相容的液体试剂)而变得多孔的材料。在这些材料中,泡孔和/或孔隙的尺寸,和它们的构型(开孔或闭孔,连通或不连通的孔隙)强烈影响最终性能,如强度/重量比,渗透性(扩散性和溶解度),吸附和吸收,等等。不幸地,当此类材料暴露于不利的环境条件如高温或压力,相容或不相容的溶剂,外应力等时,该泡孔或孔隙结构会发生改变和/或损害。然而,通过这里所公开的本发明的实施,所给定的材料的形态特征可以固定,保护材料避免在例如它的孔隙或泡孔结构上发生所不希望的波动。这样的形态截留尤其可以被希望在超越他们的目前能力的条件(温度,压力,溶剂暴露,等)下使用目前的材料体系的那些技术人员所认识。
无数的实例存在于一些应用中,在这些应用中发现理想的是截留或锁定所给定的形态,以便在后续加工步骤中和/或在使用条件下获得稳定性。当所不希望的相或形态变化伴随着温度或其它环境条件的所需或不可避免的波动时,经常遇到这一情况。这里描述的本发明的用途是,通过引入反应活性增塑剂组分和合适的引发剂,随后在有所需形态存在的条件下进行聚合反应,形态截留可以容易和经济地进行。不仅形态截留的益处能够以简单方式实现,而且反应活性增塑剂组分的增塑效果能够用于促进在固化之前该混合物的加工特性(较低温度加工,容易的模塑,等)。
材料设计考虑:
对本申请有意义的体系含有一种或多种聚合物组分(无活性聚合物)。该聚合物组分可以是线性,支化,或交联的。该聚合物链应该有足够的长,以使得形态或分子取向可以沿着一些长度规模,通常大约十个“链节”(重复单元)或更多,来确定。对于一种或多种相畴的物理排列,体系可以显示出小到纳米级尺寸(即大约1-100纳米的相分离的畴)至大到几个毫米的宏观相域(例如分散在聚合物基质中的毫米长的纤维)的各清晰的相域。另外,对于分子取向的材料形态集中注意力于埃-尺寸的长度规模。因此,包括在本发明范围内的是显示出所考虑的形态的任何材料体系,它是大约毫米级长度规模到埃级长度规模范围内,该材料体系包括至少一种聚合物组分。
此类体系的最简单的形式可以认为是平常的均聚物,其中反应活性增塑剂和引发剂可以容易地引入和反应,刚好在固化之前进行无活性聚合物链的分子取向的截留。在此情况下,该反应活性增塑剂通常被选择与所考虑的无活性聚合物相容,至少在一些所需要的温度和压力的加工条件下。“相容性”是指反应活性增塑剂使该无活性聚合物发生溶剂化和/或增塑的热力学状态。在实践中,已经发现具有结构相似性的分子链段会促进相互的溶解。因此,在聚合物上的芳族结构部分一般溶于芳族增塑剂中,反之亦然。亲水性和疏水性是在选择反应活性增塑剂以便与给定的无活性聚合物混合的附加考虑因素。相容性通常在体系中表现为在混合后呈现清澈或透明状态,虽然为了本发明,相容性不是要求,而只是优选的,尤其当生产透明物体时。
即使当在室温下观察到仅仅部分的相容性,混合物常常在稍微升高的温度下变得均匀;即,许多体系在稍微升高的温度下变得清澈。这样的温度可以稍微高于环境温度或可以延伸到100℃附近或到100℃以上。在此情况下,反应活性组分能够在升高的温度下快速固化以便在体系冷却之前“锁定”该固化树脂中的相容性相态。因此,相-形态截留可用于生产光学清澈的材料,而不是另外通过冷却所形成的半透明或不透明的材料。
因为此类材料和加工措施能够用来生产光学清澈的制品,这一公开物代表了用于透明物体的生产的一种有效的新技术。光学清澈和相态上稳定的制品具有广泛的应用潜力。对于这里所述的加工工艺革新,能够开发出独特的复合材料体系以生产透明物体,后者具有在此以前达不到的或难以获得的性能。例如,光学透明材料如聚碳酸酯,聚苯乙烯,聚甲基丙烯酸甲酯,聚砜,聚苯醚,聚对苯二甲酸乙二醇酯,无定形的聚烯烃类,热塑性弹性体,和它们的变化形式,共聚物,和/或混合物能够通过与合适的反应活性增塑剂包装料混合而用于产生有用的配制料。光学透明的相分离的体系可以通过将作为无活性聚合物的相分离的等折射混合物混入该体系中来有利地制备。当添加反应活性增塑剂时,它(1)将其本身大约同样地分配在各相之间或(2)在聚合之后具有与无活性聚合物混合物的折射指数类似的折射指数,在固化之后获得清澈的制品。另外地,当反应活性增塑剂没有将其本身同样地分配在各相之间和在固化之后不具有与聚合物混合物类似的折射指数时,这些相中的一种的折射指数会发生改变而得到等折射混合物。这样的操作可以有利地根据本发明来进行,为的是对于给定的材料体系来达到在此以前无法达到的性能(即,同时的机械,光学和加工性能)。
光学清澈的原料的生产无法经受住,几乎任何热塑性塑料可以用作供形态截留材料的生产用的无活性聚合物。例如,这些可以包括:聚苯乙烯,聚甲基丙烯酸甲酯,聚(丙烯腈-丁二烯-苯乙烯),聚氯乙烯,聚碳酸酯,聚砜,聚乙烯基吡咯烷酮,聚己酸内酯,和聚醚酰亚胺。该热塑性塑料可以任选具有少量的连接于聚合物骨架上(共聚合,接枝或另外引入)的反应活性实体,以促进在固化后的交联。它们可以是无定形的或晶体的。它们可以分类为高性能的工程热塑性塑料(例如,聚醚酰亚胺,聚砜类,聚醚酮等),或它们可以是可生物降解的,天然的聚合物(例如淀粉,醇溶谷蛋白,和纤维素)。它们可以具有低聚物或高聚物性质。这些实例不是意图限制在本发明的实施过程中可能的组成范围,而仅仅是说明在本公开物下允许的热塑性塑料化学的宽的选择。
反应活性增塑剂可以与热塑性聚合物如以上列出的那些混合,以得到半固体状组成,它容易模塑加工成尺寸精确的物体。在聚合形成固化树脂之后,刚好在固化之前在材料内的相形态被锁定以得到复合材料,后者显示出提高程度的形态稳定性。选择热塑性聚合物以便在最终的物体中得到光学透明度,高折射率,低双折射率,异常好的抗冲击性,热稳定性,UV透明或阻断,抗撕裂性或抗穿刺性,所说水平或孔隙度,对所需透过物的选择渗透性(例如高的氧渗透性),耐变形性能,低成本,这些和/或其它性质的结合。
通过物理混合两种或多种聚合物所获得的聚合物共混物常常用于在给定的材料体系中引出所需要的机械性能。在实践中,这样的共混物可以是机械,胶乳,或溶剂-浇铸型共混物;接枝-型共混物(表面改性接枝体,偶然的接枝体(IPN,机械化学共混物)),或嵌段共聚物。取决于该聚合物的化学结构,分子尺寸,和分子结构,该共混物可以得到包括相容性和不相容性、无定形或结晶性组分的混合物。
大多数的聚合物共混物和嵌段共聚物,和许多其它共聚物,可获得相分离的体系,提供了许许多多的相构型以便为材料设计者所利用。相畴的物理排列是简单或复杂的,并可显示出连续的,离散/不连续的,和/或双连续的形态。这些中的一些可通过以下例子来说明:相I分散在相II中所形成的球,或反之亦然;相I分散在相II中的圆柱体,或反之亦然;互联圆柱体;相I在相II中的有序双连续的、双菱形的互联柱体(已在文献中对于星形嵌段共聚物描述过);交替的薄层(对于几乎等链长度的二嵌段共聚物是众所周知的);形成雀巢状球形壳或螺旋体的环;相中有相再有相(HIPS和ABS);和从相分离的热力学(成核和生长两者以及亚稳态分解机理),相分离的动力学,和混合方法,或它们的结合所形成的这些相态的同时多重化。这样的形态构型可以有利地与本发明相结合使用,因为这里所公开的本发明不代替现有技术领域中已知用于产生此类有用相态的方法。作为替代,本发明提供了在使用普通方法已获得的给定状态下锁定或截留所需的形态。一旦截留,该材料可以干燥以除去溶剂,加热或冷却,施加应力,机械裁切,研磨,或抛光,或接触到不利的化学环境,全部有利于获得稳定化的形态。
材料的另一种类利用”热塑性弹性体”作为该无活性聚合物。举例的热塑性弹性体是具有一般结构“A-B-A”的三嵌段共聚物,其中A是热塑性塑料硬质聚合物(即具有高于环境温度的玻璃化转变温度)和B是弹性(橡胶状)聚合物(低于环境温度的玻璃化转变温度)。在纯状态下,ABA形成微相分离或纳米相分离的形态。这一形态是由通过橡胶状链(B)连接和包围的硬质玻璃状聚合物区域(A),或通过玻璃状(A)连续相包围的橡胶状相(B)的夹附物所组成。取决于在聚合物中(A)和(B)的相对量,聚合物链的形状或构型(即,线性,支化,星形,不对称的星形等),和所使用的加工条件,可以在热塑性弹性体材料中观察到交替的薄层,半连续的棒条体,或其它相-畴结构。在某些组成和加工条件下,该形态应使得相关畴尺寸小于可见光波长。因此,由该ABA共聚物制得的制品能够是透明的或在最坏的情况下半透明的。没有硫化的热塑性弹性体具有与通用橡胶硫化产品的那些性能类似的橡胶状性能,但是在高于玻璃状聚合物区域的玻璃化转变温度以上的温度下可作为热塑性塑料那样流动。商业上重要的热塑性弹性体例如有SBS,SIS,和SEBS,其中S是聚苯乙烯和B是聚丁二烯,I是聚异戊二烯,和EB是乙烯-丁烯共聚物。许多其它二嵌段或三嵌段候选者是已知的,如聚(芳族酰胺)-硅氧烷,聚酰亚胺-硅氧烷,和聚氨酯类。SBS和氢化SBS(即SEBS)是Shell Chemicals的著名产品(Kraton)。DuPont的Lycra也是嵌段共聚物。
当热塑性弹性体被选择为供配方设计用的起始无活性聚合物时,可通过与反应活性增塑剂混合来制造特别高的抗冲击性但仍然清澈的制品。该热塑性弹性体本身不是化学交联的和需要较高温度的加工步骤来进行模塑。在冷却后,这样的温度波动导致获得尺寸不稳定,收缩或翘曲的制品。如果通过自身固化,则选择反应活性增塑剂以形成相对玻璃状的、刚性网络或相对软的、橡胶状网络,但在任一种情况下具有较高的收缩率。然而,当热塑性弹性体和反应活性增塑剂被掺混在一起并进行反应而形成固化树脂时,它形成了复合网络,后者具有优异的振动吸收和抗冲击性能,同时在固化过程中显示出较小的收缩。“抗冲击性”是指被在受到外来物体撞击时抵抗破裂或碎裂的能力。取决于在配制料中使用的无活性聚合物和反应活性增塑剂的性质,最终固化的树脂可以比起始的无活性聚合物有更高或更低的柔性(另外,更硬或更软)。显示出理想韧性的复合制品可通过使用本身含有沿着聚合物链分布的可聚合基团的热塑性弹性体来制造。在这一点上优选的组成将是例如SBS三嵌段或星形共聚物,其中该反应活性增塑剂被认为用SBS聚合物的丁二烯链段中的不饱和基团进行轻度交联。
开发光学清澈的和高度抗冲击性的材料的优选配制料可使用含有至多约75%苯乙烯的富含苯乙烯的SBS三嵌段共聚物。这些SBS共聚物可以从Shell Chemicals(Kraton),Phillips Chemical Company(K-Resin),BASF(Styrolux),Fina Chemicals(Finaclear),Asahi Chemical(Asaflex)等商购。除了高度抗冲击性和良好的光学透明度外,此类富含苯乙烯的共聚物可得到一种材料体系,它显示出其它有时候所想望的性能如较高的折射指数(即,等于或大于约1.54的折射指数)和/或低密度(对于30%或更少的反应活性增塑剂,它们的密度是低于大约1.2g/cc,和更典型地大约1.0g/cc)。
当混合物折射指数是尤其重要的因素时,高折射指数的聚合物可以用作该无活性聚合物组分中的一种或多种。此类聚合物的例子包括聚碳酸酯类和卤代和/或磺化的聚碳酸酯类,聚苯乙烯类和卤代和/或磺化的聚苯乙烯类,聚苯乙烯-聚丁二烯嵌段共聚物和它们的氢化、磺化的和/或卤代的版本(它们全部可以是线性,支化,星形的,或非对称支化的或星形的,等),聚苯乙烯-聚异戊二烯嵌段共聚物和它们的氢化、磺化的和/或卤代的版本(包括线性,支化,星形的,和非对称的支化和星形的变型,等),聚乙烯或聚对苯二甲酸丁二醇酯(或它的其它变型),聚((甲基)丙烯酸五溴苯基酯),聚乙烯咔唑,聚乙烯基萘,聚乙烯基联苯,聚(甲基)丙烯酸萘基酯,聚乙烯基噻吩,聚砜类,聚苯硫或聚苯醚,尿素-,苯酚-,或萘基-甲醛树脂,聚乙烯基苯酚,氯化的或溴化的聚苯乙烯,聚(α-或β-溴丙烯酸苯基酯),聚偏氯乙烯或聚偏溴乙烯,等等。通常,提高芳烃含量,该卤素含量(尤其溴),和/或该硫含量是现有技术领域中公知用于提高材料的折射指数的有效方式。高折射指数,低密度,和抗冲击性是眼科透镜尤其优选的性质,这些使得能够生产出超薄的、质轻的眼透镜,而这是配戴者的低型面外观和舒适性和安全性所希望的。
另外地,弹性体,热固性材料(例如,环氧树脂,蜜胺树脂,丙烯酸酯化的环氧树脂,丙烯酸酯化的聚氨酯等,处于它们的未固化状态),和其它非热塑性塑料聚合物组合物是在本发明的实施中所希望使用的。
如上所述,此类材料的混合物也可有利地用于产生具有所需性能的形态上稳定的制品。例如,耐冲击性改进剂(通常是轻度交联的颗粒或线性聚合物链)可以掺混到各种热塑性塑料或热塑性弹性体中,以改进最终固化树脂的冲击强度。在此情况下,反应活性增塑剂的存在可通过降低需要掺混的聚合物的软化温度来促进掺混。当温度敏感性材料与高-Tg聚合物掺混时,这是尤其理想的。当需要光学清澈的材料时,可以选择混合物各组分(即无活性聚合物,该耐冲击性改进剂,和/或该反应活性增塑剂)以便在各相之间产生相同的折射指数(等折射),以减少光散射。当等折射组分是不可利用的时,该反应活性增塑剂仍然可用作相容剂以协助减少在两种不混溶的聚合物之间的畴尺寸到低于光的波长,因此生产出光学清澈的聚合物混合物(而过去以其它方式则是不透明的)。反应活性增塑剂的存在也在一些时候改进在耐冲击性改进剂和无活性聚合物之间的粘合性,改进了所获得的混合物的性能。
该反应活性增塑剂(稀释剂)能够单独或以混合物使用,以促进给定的无活性聚合物的溶解。该反应活性官能团可以是丙烯酸酯,甲基丙烯酸酯,丙烯酸酐,丙烯酰胺,乙烯基,乙烯醚,乙烯基酯,乙烯基卤化物,乙烯基硅烷,乙烯基硅氧烷,(甲基)丙烯酸酯化的聚硅氧烷,乙烯基杂环,二烯烃,烯丙基等等。能够使用其它不太已知的但可聚合的官能团,如环氧基(对于硬化剂)和脲烷类(在异氰酸酯和醇类之间的反应)。原则上,任何单体可以用作根据本发明的反应活性增塑剂,虽然优选的是在环境温度下或稍高于环境温度下作为液体存在并且可通过在合适引发剂存在下采用聚合能量源如光或热来容易和快速聚合的那些单体。
含有丙烯酸酯或甲基丙烯酸酯官能团的反应活性单体,低聚物,和交联剂是众所周知的并且可以从Sartomer,Radcure和Henkel商购。类似地,乙烯基醚可以从Allied Signal商购。Radcure也提供UV可固化的环脂烃类环氧树脂。光引发剂如Irgacure和Darocur系列是众所周知的并且可以从Ciba Geigy商购,还有Sartomer的Esacure系列。热引发剂如偶氮二异丁腈(AIBN),过氧化苯甲酰,过氧化二枯基,叔丁基氢过氧化物,和过硫酸钾也是公知的并可从化学品供应商如Aldrich商购。乙烯基,二烯烃,和烯丙基化合物可以从很多化学品供应商那里获得,二苯甲酮也是如此。对于引发剂,参见例如,Polymer Handbook,J.Brandrup,E.H.Immergut编,第三版,Wiley,New York,1989。在下面我们将使用丙烯酸酯(和在少数情况下,甲基丙烯酸酯)来说明我们的配方途径的灵活性。具有以小或大的分子层次结构为基础的其它反应活性基团(如丙烯酰胺,乙烯基醚,乙烯基,二烯烃类等)的类似结构可以与所公开的浇铸方法相结合使用。
为了证明能够用于获得该相容性的反应活性增塑剂的巨大差异,我们从成百上千种商购化合物的目录中仅仅命名少数几种。例如,单官能化的实体包括,但不限于:丙烯酸丁酯,丙烯酸辛基酯,丙烯酸异癸基酯,丙烯酸十六烷基酯,丙烯酸硬脂基酯,(甲基)丙烯酸异冰片基酯,苯甲酸乙烯基酯,四氢化糠基的丙烯酸酯(或甲基丙烯酸酯),己内酯丙烯酸酯,(甲基)丙烯酸环己基酯,(甲基)丙烯酸苄基酯,苯基醚丙烯酸乙二醇酯,甲基丙烯酸甲酯,丙烯酸乙酯,和丙烯酸丙基酯,等等。双官能的实体包括,但不限于:二丙烯酸聚乙二醇酯,二丙烯酸聚丙二醇酯,二丙烯酸己二醇酯,Photomer 4200(从Henkel获得),聚丁二烯的二丙烯酸酯(或二甲基丙烯酸酯),Ebecryl8402(从Radcure获得),双酚A二(甲基)丙烯酸酯,乙氧基化(或丙氧基化)双酚A二(甲基)丙烯酸酯,等等。三官能的和更高官能的实体包括,但不限于:三(甲基)丙烯酸(三羟甲基丙烷)酯(和它的乙氧基化或丙氧基化衍生物),四丙烯酸季戊四醇酯(和它的乙氧基化或丙氧基化衍生物),Photomer 6173(Henkel公司的有专利权的具有多官能度的丙烯酸酯化低聚物),以及从Sartomer(SR系列),Radcure(Ebecryl系列),和Henkel(Photomer系列)获得的全部目录的脂肪族和芳族丙烯酸酯化低聚物和丙烯酸酯化脲烷型低聚物。
当需要高折射指数的材料时,该反应活性增塑剂因此可以选择具有高折射指数的那些。此类反应活性增塑剂的例子,除了以上提及的那些之外,包括(甲基)丙烯酸溴化或氯化苯基酯(例如,甲基丙烯酸五溴苯基酯,丙烯酸三溴苯基酯,等),(甲基)丙烯酸溴化或氯化萘基或联苯基酯,溴化或氯化苯乙烯类,(甲基)丙烯酸三溴新戊基酯,乙烯基萘,乙烯基联苯,乙烯基苯酚,乙烯基咔唑,乙烯基溴或氯,偏二溴乙烯或偏二氯乙烯,(甲基)丙烯酸溴乙基酯,溴苯基异氰酸酯,等等。如前面所述,提高反应活性增塑剂的芳族,硫和/或卤素含量是获得高折射指数性质的公知技术。
在目前优选的实施方案中,含有丙烯酸酯,甲基丙烯酸酯,丙烯酰胺,和/或乙烯基醚结构部分的反应活性增塑剂发现可得到适当的、快速固化的UV-触发体系。
无活性聚合物-反应活性增塑剂混合物的相容性可通过在室温下或稍微高于室温,检查所获得材料的光学透明度来证明,这可通过以下实施例表1中来说明。
实施例
实施例1.实验规程
无活性聚合物被加入到预先装有少量所述反应活性增塑剂的管形瓶中。施加温和的加热,同时搅拌以均化混合物。所获得的半固体状物料可在视觉上进行观察,并记录在各种温度下的光学透明度。完全的透明度是组分溶混性的指征。薄雾提示为部分溶混性,而不透明度等于互不相容(相分离引起的光散射)。因此考察了许多对的无活性聚合物-反应活性增塑剂。
实施例2至8报告了按照这一程序获得的,体系相容性和部分相容性的几个调查结果。
实施例2.Kraton型体系
下列聚合物通过使用在实施例1中描述的规程来研究。附表总结了聚合物特性。
表1
 Kraton类型 组成(%) 说明
G1652  SEBS(S:29/EB:71) 线性,低分子量
G1650  SEBS(S:29/EB:71) 线性,中等Mw
G1657  SEBS(S:13/EB:87) 线性
D1102  SBS(S:28/B:72) 线性,低Mw
D4141  SBS(S:31/B:69) 线性
D4240p (SB)n(S:44/B:56) 支化
D1116 (SB)n(S:21/B:79) 支化
D1107  SIS(S:14/1:86) 线性
S=苯乙烯,EB=乙烯丁烯,B=丁二烯,I=异戊二烯
Kraton产品是由苯乙烯(S),乙烯/丁烯(EB),丁二烯(B)和异戊二烯(I)的不同组合构成的嵌段共聚物。每个聚合物中存在的具体组分和用量在表1的‘组成’一列中指出;该聚合物的具体特性在‘说明’一列中列出。标号(G1652,G1650,等等)代表不同品质的聚合物。
二丙烯酸己二醇酯使全部Kraton样品都充分溶剂化,但G1650除外,它显示部分溶混性。Photomer 4200在升高的温度下使D1102,D1107,D4141,D4240p和G1657溶剂化。Photomer 4200(低聚物二丙烯酸酯)使G1652部分地溶剂化。聚丁二烯的二甲基丙烯酸酯(Sartomer CN301)在升高的温度下使D1116,D1102,和D4141部分地溶剂化。Ebecryl 8402使G1657溶剂化。丙烯酸异癸基酯与所有上述Kraton系列相容。丙烯酸十六烷基酯,丙烯酸月桂基酯,和丙烯酸硬脂基酯在升高的温度下使Kraton溶剂化。
使Kraton溶剂化的其它单体包括丙烯酸丁酯,丙烯酸异辛基酯,丙烯酸异冰片基酯,丙烯酸苄酯,丙烯酸四氢化糠基酯,和苯甲酸乙烯基酯。通常,脂肪族丙烯酸酯使橡胶状Kraton充分溶剂化。乙氧基化双酚A二丙烯酸酯(424的平均分子量)仅仅轻微地使KratonD4240p,D1107,D4141和D1102溶剂化。
实施例3.富含苯乙烯的SBS体系
Kraton D1401P是线性富含苯乙烯的SBS三嵌段共聚物。使KratonD1401P溶剂化的反应活性增塑剂包括:苯甲酸乙烯基酯;丙烯酸四氢化糠基酯;苄基的丙烯酸酯和甲基丙烯酸酯;异冰片基的丙烯酸酯和甲基丙烯酸酯;丙烯酸丁酯;丙烯酸辛基酯;丙烯酸异癸基酯;二丙烯酸丁二醇酯;二丙烯酸己二醇酯;和乙氧基化双酚A二丙烯酸酯和二甲基丙烯酸酯。
为了获得含有富含苯乙烯的SBS三嵌段共聚物的热力学相容性体系,Kraton D1401P能够被其它SBS共聚物如可从Phillips ChemicalCompany(K-Resin),BASF(Styrolux),Fina Chemicals(Finaclear),和Asahi Chemical(Asaflex)商购的那些共聚物替代。
实施例4.PMMA型体系
这一研究是用分子量25,000的聚甲基丙烯酸甲酯(PMMA)样品来进行的。许多反应活性增塑剂已经发现与PMMA相容。这些是:Photomer4200;Photomer 6173;许多烷氧基化多官能的丙烯酸酯类,如丙氧基化甘油三丙烯酸酯;尿烷丙烯酸酯,如Ebecryl 8402(脂肪族)和Ebecryl 4827,4849和6700(芳族);丙烯酸四氢化糠基酯;丙烯酸苄酯;丙烯酸丁酯;二丙烯酸丁二醇酯;二丙烯酸己二醇酯;丙烯酸辛基癸基酯;丙烯酸异冰片基酯;和乙氧基化双酚A二丙烯酸酯。
实施例5.聚苯乙烯型体系
使聚苯乙烯溶剂化的丙烯酸酯增塑剂包括Photomer 4200,丙烯酸四氢化糠基酯,丙烯酸异癸基酯。双酚A二丙烯酸酯,丙烯酸十六烷基酯,和丙烯酸硬脂基酯在升高的温度(大约100℃)下显示相容性。
实施例6.聚碳酸酯型体系
双酚A二丙烯酸酯,烷氧基化双酚A二丙烯酸酯,环脂烃类环氧树脂,N-乙烯基-2-吡咯烷酮,和丙烯酸四氢化糠基酯已经发现可用于聚碳酸酯在升高的温度下的溶剂化。几种芳族尿烷丙烯酸酯能够与以上组分混合以便有助于这些成分的相容性。
实施例7.ARTON型体系
使ARTON FX4727T1(JSR Corporation,为降冰片烯聚合物)溶剂化的反应活性增塑剂是:丙烯酸苄酯;丙烯酸异冰片基酯;甲基丙烯酸异冰片基酯;丙烯酸丁酯;丙烯酸辛基酯;丙烯酸异辛基酯;丙烯酸异癸基酯;丙烯酸月桂基酯;丙烯酸二十二烷基酯。脂肪族丙烯酸酯使ARTON很好地溶剂化。
实施例8.ZEONEX型体系
丙烯酸辛基癸基酯,丙烯酸丁酯,和丙烯酸异辛基酯使Zeonex480R(Nippon Zeon Co.,Ltd,为降冰片烯聚合物)溶剂化。(甲基)丙烯酸异冰片基酯使Zeonex 480R和E48R,和Zeonor 1420R,1020R和1600R溶剂化。丙烯酸月桂基酯和丙烯酸二十二烷基酯在升高的温度下使ZEONEX 480R和E48R溶剂化。被加入到单体混合物中的附加的多官能的丙烯酸酯包括二丙烯酸己二醇酯,二甲基丙烯酸十二烷二醇酯,和三环辛烷[5.2.1.0(2,6)]癸烷二甲醇二丙烯酸酯。
实施例9.等折射体系
显示该材料性能和体现这里所述的工艺革新的优选体系是由与具有类似折射指数的苯乙烯-甲基丙烯酸甲酯(SMMA)共聚物(例如NovaChemicals的NAS21)掺混的SBS热塑性弹性体(例如Phillips的K-Resin)获得的。该SMMA含量可以是0wt%到大约95wt%。为了实现较低温度混合,该SMMA共聚物可以通过添加5-30wt%的反应活性增塑剂(例如,苄基的丙烯酸酯或甲基丙烯酸酯)来软化。一旦该SMMA-反应活性增塑剂混合物被均化,接着它与SBS材料在比两种聚合物能够本身掺混的那一温度更低的总体温度下进行掺混。另外地,该聚合物可以与反应活性增塑剂和引发剂一起加入到单个容器中,同时通过将封闭的容器在稍微加热的烘箱(例如大约60℃)中保持若干天来溶剂化。一旦充分混合(和不考虑所使用的混合过程或历程),这一混合物可以模塑(任选地)或优选压塑加工,以使该物体在100-110℃的温度下经历至多15,000psi的压力。该制品可以快速地冷却,然后固化以锁定复合体系的相形态。另外地,该制品可以在升高的温度和压力下固化,然后以任何适当的速率冷却。所获得的制品是光学清澈的,抗冲击性和形态稳定的物体。
实施例10.利用等候时间和压缩模塑的透明体系
苯乙烯-丁二烯-苯乙烯嵌段共聚物,K-Resin KR03-NW(Chevron-Phillips Chemical Company,Bartlesville,Oklahoma)与苯乙烯-甲基丙烯酸甲酯共聚物,NAS-21(Nova Chemicals of Chesapeake,Virginia)按重量比30∶70进行物理混合。聚合物和单体混合物按重量比80∶20被加入到管形瓶中。该单体混合物由甲基丙烯酸苄基酯(“BMA”)和乙氧基化双酚A二甲基丙烯酸酯(1个乙氧基化)的9∶1共混物组成。封盖的管形瓶在70℃的对流烘箱中放置一个星期,在此之后引发剂(Ciba Geigy的Darocur 1173)以0.5wt%的量(基于体系的总重量)被加入到混合物中,并溶于该体系中,同时使用设定到大约150℃的热板来加热和手工混合。
为了将样品模塑加工成无缺陷的圆盘形状,将大约5克的该半固体混合物放置在位于Carver,Inc.的压塑模(Catalog No.2091.2)的一面上的垫片(McMaster-Carr的垫片类型AS568A,dash #222)的中间。模具被密封并转移到具有处于约270°F下的加热压板的液压机中。然后将大约7吨的力施加于压板达10分钟。在压缩后,该压板通过使用工业用水被快速冷却至环境温度。压塑模具被拆卸和取出大约2mm厚度和55mm直径的无气泡的圆盘。该圆盘然后被放置在加热的石英片之间,然后稍微压缩,因此半固体的圆盘贴合石英片的表面。然后将该组合体放置在90℃的热板上,立即在上石英片之上照射UV光以固化该半固体的圆盘。UV光源是具有泛色球囊的Blak-Ray Model B100AP长波紫外线灯(UVP,Upland,California)。在大约10分钟的固化之后,样品和片从热板上移开,冷却到室温。然后从片上取下样品,得到扁圆形的固化树脂,它显示出良好的光透射和在83-84范围内的肖氏D硬度测量值。
实施例11.分子取向的截留
聚苯乙烯与两种反应活性增塑剂(丙烯酸苄酯和乙氧基化双酚A二丙烯酸酯)的混合物分别按照85∶10∶5重量比进行掺混。光引发剂如Irgacure 184也以2wt%的浓度添加。这些组分在60℃的烘箱内的密闭容器中放置若干天的时间。混合物然后在120℃下运行的双螺杆挤压机中均化。输出的膜在流动方向上和水平地、垂直于流动方向来拉伸。在拉伸操作之后,膜具有该聚合物链的双轴的分子取向,通过让该膜在UV灯下走过使该材料固化来锁定该取向。所制备的膜(它具有聚合物链的双轴取向)具有有益的形态,它随后被稳定化以抵抗对于现有形态的未来破坏或改变。
实施例12.相形态截留
SBS三嵌段共聚物(BASF Corporation的Styrolux 684D)与反应活性增塑剂(甲基丙烯酸异冰片基酯(Sartomer 423A),三丙烯酸(三羟甲基丙烷)酯(Radcure的TMPTA-N),和乙氧基化双酚A二丙烯酸酯(Sartomer 349))的混合物分别按重量比1.5∶0.1∶0.1∶0.1进行掺混。光引发剂如Irgacure 184也以2wt%的浓度添加。这些组分在60℃的烘箱内的密闭容器中放置若干天的时间。混合物然后在双螺杆挤压机设备中均化或在大约150℃的温度下手工混合被均化。如果混合物随后被冷却到室温,则获得了稍微混浊的材料,不管该材料之后是否固化。然而,如果该材料通过暴露于聚合能量源如UV光在升高的温度下固化,则该反应活性增塑剂进行反应形成网络,从而截留或锁定了现有透明形态。所获得的制品然后冷却至室温而没有诱导模糊或浑浊的形态,生产出透明物体。
实施例13.形态截留体系
具有300k的平均分子量的聚甲基丙烯酸羟乙基酯(pHEMA)可以从Scientific Polymer Products,Inc.,Ontario,New York购买。该聚合物溶于吡啶中,然后与甲基丙烯酸酐反应而将大约5mol%的该pHEMA羟基转化成甲基丙烯酸酯官能团。该聚合物然后沉淀和洗涤若干次来进行提纯,生产出薄片粉末形式的官能化pHEMA。
该官能化pHEMA与稀释剂混合物,PEG400或丙二醇∶水50∶50混合物进行混合,达到40wt%的聚合物浓度。光引发剂如ACVA也以1wt%添加。该混合物在环境条件下简单地变均匀;然而,机械搅拌和/或加热可用于加速和改进聚合物-稀释剂混合物的均化。一旦与稀释剂混合,该聚合物变成在室温下有挠性的清澈半固体。该聚合物-稀释剂混合物然后被放置在两模具瓣之间,该模具瓣被组合在一起或彼此面对组装,产生所需的几何结构。该模具组装体然后用UV光辐射10分钟(Blak-Ray BP-100,UVP,Inc.,Upland,CA)以固化半固体混合物和固定该聚合物-稀释剂形态。在固化之后,该制品被冷却至环境温度,然后打开该模具组装体和取出制品。固化后的制品然后浸泡在纯水中没有变浑浊或模糊,表明固定或锁住的形态能够阻止pHEMA链的部分结晶或聚集,这是当用水饱和时所典型地见到的并且以浑浊的样品为特征。
实施例14.透明光固化体系
含有无活性聚合物,反应活性增塑剂,和光引发剂的混合物通过在实施例1中描述的规程来混合。反应活性增塑剂的量典型地是3%到25%和该光引发剂是1%到5%,按重量计。举例的光引发剂包括Sartomer的Esacure KT046和Ciba Geigy的Irgacure 184。
所获得的半固体的组合物被稍微地加热(小于或等于约100℃),在两平玻璃板之间加压,和通过UV光来泛色-曝光。观察到快速聚合,得到清澈和固体状材料。
透明光固化体系的例子包括:由实施例3报道的Kraton D1401P型体系;由实施例4报道的PMMA型体系;由实施例7报道的ARTON型体系。Kraton D1401 P型体系也显示出非凡的抗冲击性。
实施例15.具有高折射指数的透明光固化体系
含有无活性聚合物,反应活性增塑剂,和光引发剂的混合物通过在实施例1中描述的规程进行混合,并按照实施例14中所述进一步加工。该无活性聚合物是Kraton D1401 P和该反应活性增塑剂是丙烯酸苄酯,按重量比88/12进行混合。Irgacure 184以2wt%加入到混合物中,基于体系的总重量。在UV固化之后,生产出了具有2.4毫米厚度的平试样,它在700纳米的波长下显示出88%透光率。在室温下在钠D线下,固化样品的折射指数是1.578。

Claims (25)

1.锁定聚合物材料中所需形态的方法,该方法包括以下步骤:
将无活性聚合物,反应活性增塑剂和引发剂一起混合,形成可聚合的组合物;
将该可聚合的组合物加工,得到该可聚合的组合物的聚合物成分的所需形态;
将该可聚合的组合物成形为所需的几何结构;和
将该可聚合的组合物暴露于聚合能量源,得到其中所需形态被锁定的聚合物材料。
2.根据权利要求1的方法,进一步包括在该可聚合的组合物被成形之后和在暴露于聚合能量源之前提供在预定温度下的等候时间的步骤。
3.根据权利要求1的方法,其中的混合步骤包括等候时间。
4.根据权利要求1的方法,其中所需的形态是该聚合物材料的相分离的形态。
5.根据权利要求1的方法,其中所需的形态是该聚合物材料的分子取向。
6.根据权利要求1的方法,其中所需的形态是该聚合物材料的取向的相分离的形态。
7.根据权利要求1的方法,其中所需的形态是该聚合物材料的多孔性。
8.根据权利要求1或2的方法,其中所需的形态包括两种或多种等折射的相。
9.根据权利要求1或2的方法,其中该加工步骤和成形步骤是通过在模具中压缩该可聚合的组合物来进行的,该模具对应于所需的几何结构。
10.根据权利要求1或2的方法,其中聚合物材料是光学透明的。
11.根据权利要求1的方法,其中该反应活性增塑剂形成了具有比无活性聚合物的玻璃化转变温度更高的玻璃化转变温度的聚合物链。
12.根据权利要求1的方法,其中该无活性聚合物是苯乙烯类嵌段共聚物。
13.根据权利要求1的方法,其中该元活性聚合物是热塑性弹性体。
14.根据权利要求1的方法,其中该无活性聚合物是与苯乙烯-甲基丙烯酸甲酯共聚物共混的聚苯乙烯-聚丁二烯-聚苯乙烯热塑性弹性体。
15.根据权利要求1的方法,其中聚合能量源是UV光和所需的形态通过快速固化来锁定。
16.固化树脂,包括在缠结的无活性聚合物中反应活性增塑剂的半互穿聚合物网络,其中固化树脂具有被锁定的所需形态。
17.根据权利要求16的固化树脂,其中反应活性增塑剂的网络进一步被交联到该无活性聚合物上。
18.聚合物材料,如下制备:
将无活性聚合物,反应活性增塑剂和引发剂一起混合,形成可聚合的组合物;
将该可聚合的组合物加工,得到该可聚合的组合物的聚合物成分的所需形态;
将该可聚合的组合物成形为所需的几何结构;和
将该可聚合的组合物暴露于聚合能量源,得到其中所需形态被锁定的聚合物材料。
19.根据权利要求18的聚合物材料,其中所需的形态是该聚合物材料的相分离的形态。
20.根据权利要求18的聚合物材料,其中所需的形态是该聚合物材料的分子取向。
21.根据权利要求18的聚合物材料,其中所需的形态是该聚合物材料的取向的相分离的形态。
22.根据权利要求18的聚合物材料,其中所需的形态是该聚合物材料的多孔性。
23.根据权利要求18的聚合物材料,其中所需的形态包括两种或多种等折射的相。
24.根据权利要求18的聚合物材料,其中聚合物材料是光学透明的。
25.根据权利要求18的聚合物材料,其中聚合能量源是UV光和所需的形态通过快速固化来锁定。
CNB018128513A 2000-06-13 2001-06-13 形态截留和它适合使用的材料 Expired - Fee Related CN1188441C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/592,873 2000-06-13
US09/592,873 US6419858B1 (en) 2000-06-13 2000-06-13 Morphology trapping and materials suitable for use therewith

Publications (2)

Publication Number Publication Date
CN1443207A CN1443207A (zh) 2003-09-17
CN1188441C true CN1188441C (zh) 2005-02-09

Family

ID=24372395

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018128513A Expired - Fee Related CN1188441C (zh) 2000-06-13 2001-06-13 形态截留和它适合使用的材料

Country Status (12)

Country Link
US (3) US6419858B1 (zh)
EP (1) EP1294784B1 (zh)
JP (1) JP2004503638A (zh)
KR (1) KR100668580B1 (zh)
CN (1) CN1188441C (zh)
AT (1) ATE304028T1 (zh)
AU (2) AU6694101A (zh)
BR (1) BR0111771A (zh)
CA (1) CA2413185A1 (zh)
DE (1) DE60113258T2 (zh)
HK (1) HK1051050A1 (zh)
WO (1) WO2001096448A2 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173089B2 (en) * 1998-09-22 2007-02-06 Zms, Llc. Near-net-shape polymerization process and materials suitable for use therewith
US6874885B2 (en) * 1998-09-22 2005-04-05 Zms, Llc Near-net-shape polymerization process and materials suitable for use therewith
US6800254B1 (en) * 2000-06-07 2004-10-05 Tegal Corporation Visual indicator cold trapping system
US6419858B1 (en) * 2000-06-13 2002-07-16 Zms, Llc Morphology trapping and materials suitable for use therewith
US7087195B2 (en) * 2000-12-13 2006-08-08 Tokuyama Corporation Photochromic curable composition and cured articles thereof
JP3961954B2 (ja) * 2001-01-17 2007-08-22 三井化学株式会社 樹脂組成物、該組成物を含む塗料、塗膜および塗膜の形成方法
US20030020870A1 (en) * 2001-06-27 2003-01-30 Zms, Llc Biomedical molding materials from semi-solid precursors
EP1442079B1 (en) * 2001-10-18 2006-03-29 KRATON Polymers Research B.V. Solid curable polymeric composition
BR0307827A (pt) * 2002-02-15 2005-03-15 Zms Llc Processo e materiais de polimerização para aplicações biomédicas
US6846892B2 (en) * 2002-03-11 2005-01-25 Johnson & Johnson Vision Care, Inc. Low polydispersity poly-HEMA compositions
US20060100408A1 (en) * 2002-03-11 2006-05-11 Powell P M Method for forming contact lenses comprising therapeutic agents
KR20100119802A (ko) * 2002-08-16 2010-11-10 존슨 앤드 존슨 비젼 케어, 인코포레이티드 콘택트 렌즈 제조용 금형
JP4589234B2 (ja) * 2003-10-07 2010-12-01 ウィンテックポリマー株式会社 レーザ溶着用樹脂組成物及び成形品
US7348076B2 (en) 2004-04-08 2008-03-25 Saint-Gobain Ceramics & Plastics, Inc. Single crystals and methods for fabricating same
US20060051454A1 (en) * 2004-08-26 2006-03-09 Ansell Scott F Molds for producing ophthalmic lenses
WO2006052623A2 (en) * 2004-11-08 2006-05-18 Nova Chemicals Inc. Polymer blends of a monovinylarene conjugated diene block copolymer and a monovinylarene acrylate copolymer
US20060276560A1 (en) * 2005-06-07 2006-12-07 Sivapackia Ganapathiappan Polymer precursor and method of making the same
US20070078194A1 (en) * 2005-10-04 2007-04-05 St Clair David J Flexographic printing plate and flexographic printing plate precursor composition for preparing same
US20100016513A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Functional Polymeric Phase Change Materials and Methods of Manufacturing the Same
US9234059B2 (en) 2008-07-16 2016-01-12 Outlast Technologies, LLC Articles containing functional polymeric phase change materials and methods of manufacturing the same
US8404341B2 (en) 2006-01-26 2013-03-26 Outlast Technologies, LLC Microcapsules and other containment structures for articles incorporating functional polymeric phase change materials
US20070173154A1 (en) * 2006-01-26 2007-07-26 Outlast Technologies, Inc. Coated articles formed of microcapsules with reactive functional groups
US20100012883A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Functional Polymeric Phase Change Materials
US7463417B2 (en) * 2006-02-13 2008-12-09 3M Innovative Properties Company Optical articles from curable compositions
US20070191506A1 (en) * 2006-02-13 2007-08-16 3M Innovative Properties Company Curable compositions for optical articles
US20070267765A1 (en) * 2006-05-18 2007-11-22 Ansell Scott F Biomedical device mold
US20070284770A1 (en) * 2006-06-07 2007-12-13 Ansell Scott F Decreased lens delamination during ophthalmic lens manufacture
US20080001317A1 (en) * 2006-06-28 2008-01-03 Jason Tokarski Water soluble biomedical device mold
DE102006040181A1 (de) * 2006-08-26 2008-02-28 Nordenia Technologies Gmbh Elastische Folie, insbesondere für Hygieneartikel
US20100015430A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Heat Regulating Article With Moisture Enhanced Temperature Control
US8221910B2 (en) * 2008-07-16 2012-07-17 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing polymeric phase change materials
US8507063B2 (en) 2009-09-22 2013-08-13 Graham Packaging Lc, L.P. Pet containers with enhanced thermal properties
US9023446B2 (en) 2009-09-22 2015-05-05 Graham Packaging Lc, L.P. PET containers with enhanced thermal properties and process for making same
US8673448B2 (en) 2011-03-04 2014-03-18 Outlast Technologies Llc Articles containing precisely branched functional polymeric phase change materials
JP6358960B2 (ja) * 2012-02-09 2018-07-18 ダウ シリコーンズ コーポレーション 勾配ポリマー構造及び方法
TWI478962B (zh) * 2013-10-09 2015-04-01 Univ Nat Taiwan 增進嵌段共聚物有序規整結構之製造方法
US9725802B2 (en) 2014-11-11 2017-08-08 Graham Packaging Company, L.P. Method for making pet containers with enhanced silicon dioxide barrier coating
US10003053B2 (en) 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US10431858B2 (en) 2015-02-04 2019-10-01 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
JP6884068B2 (ja) * 2017-08-18 2021-06-09 株式会社クラレ 刺激硬化性ゲル
US11944574B2 (en) 2019-04-05 2024-04-02 Amo Groningen B.V. Systems and methods for multiple layer intraocular lens and using refractive index writing
US11583388B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for spectacle independence using refractive index writing with an intraocular lens
US11583389B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing
US11529230B2 (en) 2019-04-05 2022-12-20 Amo Groningen B.V. Systems and methods for correcting power of an intraocular lens using refractive index writing
US11678975B2 (en) 2019-04-05 2023-06-20 Amo Groningen B.V. Systems and methods for treating ocular disease with an intraocular lens and refractive index writing
US11564839B2 (en) 2019-04-05 2023-01-31 Amo Groningen B.V. Systems and methods for vergence matching of an intraocular lens with refractive index writing

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR823850A (fr) 1936-07-09 1938-01-27 Siemens Ag Procédé de fabrication d'objets en produits fortement polymérisés
GB577432A (en) 1943-01-26 1946-05-17 Reinhard Staeger A process for the production of bubble-free bodies from synthetic materials
US4187159A (en) * 1975-01-06 1980-02-05 Stauffer Chemical Company Process for forming a crosslinked polyvinyl chloride foam and product thereof by means of radiation crosslinking
US4180447A (en) * 1977-01-10 1979-12-25 Lonza Ltd. Process for the production of hard plastic foams using a polyvinylchloride base
US4402887A (en) * 1978-03-14 1983-09-06 Dainippon Ink And Chemicals Inc. Sheet-like articles of polyvinyl chloride
DE3137416A1 (de) 1981-09-19 1983-03-31 Basf Ag, 6700 Ludwigshafen Fotopolymerisierbare gemische und elemente daraus
US4510593A (en) 1982-10-18 1985-04-09 Minnesota Mining And Manufacturing Company Information disk of grooved, metal-coated crosslinked polymeric layer
US4524162A (en) 1983-05-26 1985-06-18 Union Carbide Corporation Low shrinking curable molding compositions containing a poly(acrylate)
JPS6067538A (ja) * 1983-09-22 1985-04-17 Omron Tateisi Electronics Co 屈析率分布形レンズの製造方法
US4785064A (en) 1984-07-10 1988-11-15 Minnesota Mining And Manufacturing Company Ultra-violet light curable compositions for abrasion resistant articles
CA1296121C (en) 1986-02-27 1992-02-18 Lori J. Klingler Uv or heat curable reinforced elastomer compositions
US5114632A (en) 1989-05-01 1992-05-19 Soane Technologies, Inc. Controlled casting of a shrinkable material
US5110514A (en) 1989-05-01 1992-05-05 Soane Technologies, Inc. Controlled casting of a shrinkable material
US5278243A (en) 1992-01-14 1994-01-11 Soane Technologies, Inc. High impact resistant macromolecular networks
DE69006472T2 (de) 1989-12-21 1994-09-01 Minnesota Mining & Mfg Zahnärztliche Zusammensetzungen, Verfahren zur Herstellung von geformten, zahnärztlichen Artikeln via "photoiniferte Polymerisation" von zahnärztlichen Zusammensetzungen und dadurch erzeugte geformte, zahnärztliche Artikel.
NL9002758A (nl) * 1990-12-14 1992-07-01 Stamicarbon Eindloze voorwerpen uit thermohardbare monomeren.
GB9115683D0 (en) 1991-07-19 1991-09-04 Ici Plc Polymerisable composition
US5747553A (en) 1995-04-26 1998-05-05 Reinforced Polymer Inc. Low pressure acrylic molding composition with fiber reinforcement
JP3812924B2 (ja) * 1998-06-15 2006-08-23 財団法人川村理化学研究所 表面多孔質体の製造方法
EP1149314B1 (en) * 1998-09-22 2006-12-06 Zms, Llc Near-net-shape polymerization process and materials suitable for use therewith
DE29914205U1 (de) 1999-03-15 2000-01-05 Böger, David, 64846 Groß-Zimmern Ballschleuder als Hundesport-, Sport- und Freizeitartikel
CA2368168C (en) * 1999-03-16 2007-10-30 David S. Soane Precision integral articles
JP2001214070A (ja) * 2000-02-04 2001-08-07 Kawamura Inst Of Chem Res 共連続構造を有する樹脂複合体及びその製造法
US6416690B1 (en) * 2000-02-16 2002-07-09 Zms, Llc Precision composite lens
JP2001234074A (ja) * 2000-02-22 2001-08-28 Kawamura Inst Of Chem Res 共連続構造を有する樹脂複合体及びその製造法
US6419858B1 (en) * 2000-06-13 2002-07-16 Zms, Llc Morphology trapping and materials suitable for use therewith

Also Published As

Publication number Publication date
KR100668580B1 (ko) 2007-01-18
US6746632B2 (en) 2004-06-08
ATE304028T1 (de) 2005-09-15
US6733700B2 (en) 2004-05-11
US20020190408A1 (en) 2002-12-19
WO2001096448A2 (en) 2001-12-20
BR0111771A (pt) 2003-07-08
EP1294784A2 (en) 2003-03-26
HK1051050A1 (en) 2003-07-18
AU2001266941B2 (en) 2005-01-13
JP2004503638A (ja) 2004-02-05
CA2413185A1 (en) 2001-12-20
EP1294784B1 (en) 2005-09-07
US6419858B1 (en) 2002-07-16
AU6694101A (en) 2001-12-24
CN1443207A (zh) 2003-09-17
DE60113258D1 (de) 2005-10-13
DE60113258T2 (de) 2006-06-29
US20030212208A1 (en) 2003-11-13
KR20030016290A (ko) 2003-02-26
WO2001096448A3 (en) 2002-03-21

Similar Documents

Publication Publication Date Title
CN1188441C (zh) 形态截留和它适合使用的材料
AU2001266941A1 (en) Morphology trapping and materials suitable for use therewith
AU2001237015B2 (en) Precision composite article
CN1643435A (zh) 用于生物医学应用的聚合方法和材料
AU769459B2 (en) Precision integral articles
US6380314B1 (en) Near-net-shape polymerization process and materials suitable for use therewith
AU2001237015A1 (en) Precision composite article
CN1910235A (zh) 具有长贮存期的反应性热固化体系
US20030020870A1 (en) Biomedical molding materials from semi-solid precursors
GB2090273A (en) Method of polymerizing blends of bis(allyl carbonate) monomers with polymers and polymer blends prepared thereby
JPS58201838A (ja) ポリアクリレ−ト樹脂とシロキサン共重合体との混合物
US7173089B2 (en) Near-net-shape polymerization process and materials suitable for use therewith
US6874885B2 (en) Near-net-shape polymerization process and materials suitable for use therewith
US6821458B2 (en) Near-net-shape polymerization process and materials suitable for use therewith
US20020120066A1 (en) Near-net-shape polymerization process and materials suitable for use therewith
JP5100545B2 (ja) 重合硬化性組成物
CN1721450A (zh) 具有二次转变温度的形状记忆聚合物及其制备方法
JPS62278024A (ja) 軟質眼用レンズ材料の加工方法
US20060276560A1 (en) Polymer precursor and method of making the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050209