CN117353586A - 一种cllc变换器数字化同步整流控制方法 - Google Patents

一种cllc变换器数字化同步整流控制方法 Download PDF

Info

Publication number
CN117353586A
CN117353586A CN202311326075.4A CN202311326075A CN117353586A CN 117353586 A CN117353586 A CN 117353586A CN 202311326075 A CN202311326075 A CN 202311326075A CN 117353586 A CN117353586 A CN 117353586A
Authority
CN
China
Prior art keywords
synchronous rectification
signal
output
speed comparator
secondary side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311326075.4A
Other languages
English (en)
Inventor
李贺龙
吴周宇
陈鹏
王澳
李沐阳
赵爽
杨之青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Energy of Hefei Comprehensive National Science Center
Original Assignee
Institute of Energy of Hefei Comprehensive National Science Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Energy of Hefei Comprehensive National Science Center filed Critical Institute of Energy of Hefei Comprehensive National Science Center
Priority to CN202311326075.4A priority Critical patent/CN117353586A/zh
Publication of CN117353586A publication Critical patent/CN117353586A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种CLLC变换器数字化同步整流控制方法。本方法采用DSP芯片对CLLC变换器进行控制,包括通过ADC模块对输出电压和输出电流实时采样;对电压电流采样信号进行计算处理;计算输出功率控制副边同步整流使能;使用高速比较器模块处理副边谐振电流采样信号;经算法输出副边同步整流控制信号,通过副边驱动电路控制副边开关管通断。本发明通过CLLC变换器的开关频率确定工作状态,对副边开关管的开通做不同的延迟处理,确保其ZVS开通和避免误开通导致的电流倒灌问题,提高***的效率和可靠性。

Description

一种CLLC变换器数字化同步整流控制方法
技术领域
本发明属于电力电子技术领域,具体涉及一种CLLC变换器的数字化同步整流控制方法。
背景技术
随着可再生能源、电动汽车、电力电子变压器、储能***等领域的发展,双向隔离型DC-DC变换器得到了广泛的应用,也是目前的研究热点。高功率密度和高效率一直是DC-DC变换器的研究重点,特别是对于谐振变换器,如何提高其运行时的效率、减少变换器能量损耗是研究的努力方向之一。
为了减小副边网络的导通损耗,常常对副边开关管采取同步整流控制,使得当电流流经对应开关管时,给其门极施加驱动信号使其导通,让电流的流通路径由开关管的体二极管变为沟道,从而减小电流流经开关管造成的损耗。目前常用的同步整流控制方法有模拟控制和数字控制。模拟控制需要额外的模拟电路,如比较器,对电流等信号进行处理,增加了电路的成本;数字控制不需要额外的模拟电路,更加经济。传统的同步整流方法开通时不做延迟处理,使得副边开关管是硬开通,开关损耗较大;也有学者提出在欠谐振工作状态做延迟开通处理,但未考虑过谐振工作状态下,死区时间和寄生参数的影响,使得CLLC变换器存在同步整流误开通而导致的电流倒灌问题。
发明内容
为解决现有技术中的问题,本发明提出一种CLLC变换器数字化同步整流控制方法,使得CLLC变换器同步整流ZVS开通和避免副边能量倒灌的问题。本发明采用DSP芯片对CLLC变换器进行控制,包括通过ADC模块对输出电压和输出电流实时采样;对电压电流采样信号进行计算处理;计算输出功率控制副边同步整流使能;使用高速比较器模块处理副边谐振电流采样信号;经算法输出副边同步整流控制信号,通过副边驱动电路控制副边开关管通断。本发明通过CLLC变换器的开关频率确定工作状态,对副边开关管的开通做不同的延迟处理,确保其ZVS开通和避免误开通导致的电流倒灌问题,提高***的效率和可靠性。
为达到上述目的,本发明采用以下技术方案:
一种CLLC变换器数字化同步整流控制方法,通过CLLC变换器和控制电路实现;所述CLLC变换器由原边网络、副边网络和谐振腔构成;所述控制电路包括输出电压采样电路、输出电流采样电路、副边谐振电流采样电路、DSP控制器、原边驱动电路和副边驱动电路,该方法包括以下步骤:
步骤1:DSP芯片的ADC模块对输出电压采样电路和输出电流采样电路的输出信号实时采集;
步骤2:对ADC模块采集到的信号进行处理,计算输出功率,判断是否开启同步整流使能;
步骤3:根据CLLC变换器的开关频率,判定电路工作状态,所述电路工作状态包括状态A和状态B;
当CLLC变换器开关频率fs小于或等于谐振频率fr时,表示工作在状态A;
当CLLC变换器开关频率fs大于谐振频率fr时,表示工作在状态B;
步骤4:跟据CLLC变换器的工作状态,选择同步整流信号开通延迟时间,以获得同步整流信号的开通时间;
步骤5:DSP芯片的高速比较器模块对副边谐振电流采样电路的输出信号进行处理,与阈值做比较,得到同步整流信号的关断时间;
步骤6:根据同步整流信号的开通时间和关断时间,DSP芯片发出同步整流控制信号,通过副边驱动电路控制副边开关管的通断。
进一步地,所述输出电压采样电路和输出电流采样电路是分别通过电压传感器和电流传感器将输出电压和输出电流转换为0-3.3V的弱电信号。
进一步地,所述DSP芯片的ADC模块采集输出电压采样电路和输出电流采样电路的输出信号,将模拟的弱电信号转换为数字信号,以供DSP芯片处理计算。
进一步地,在对ADC模块采集的信号计算前,先对其进行滤波处理,再还原电压电流数值大小,然后采用功率计算公式计算实时输出功率。
进一步地,所述步骤2中,判断是否开启同步整流使能包括:
当输出功率小于功率阈值Pth1时,同步整流使能信号SREN为0,表示不开启同步整流,副边开关管不动作;
当输出功率大于功率阈值Pth2时,同步整流使能信号SREN为1,表示开启同步整流,副边开关管动作,其中功率阈值Pth1小于功率阈值Pth2
进一步地,所述步骤4中,选择同步整流信号开通延迟时间包括:
所述开通延迟在对应原边开关管开通时间的基础上做延迟处理;
当CLLC变换器工作在状态A时,开通延迟时间固定在to
当CLLC变换器工作在状态B时,开通延迟时间根据开关频率在to基础上做阶梯型递增,开关频率最大时,延迟时间达到最大tn,即tn是最大延迟时间,其中,n表示阶梯个数。
进一步地,所述步骤5中,高速比较器模块的处理包括:
高速比较器模块中的高速比较器对副边谐振电流采样电路的输出信号VI_Sec做比较,其中,包括正负各半周的关断时间处理;高速比较器模块包括高速比较器CMPSS_H、高速比较器CMPSS_L;
高速比较器CMPSS_H进行正半周期内比较判断,当VI_Sec<Vth1时,高速比较器输出为0,表示给副边网络对应开关管关断信号;
高速比较器CMPSS_L进行负半周期内比较判断,当VI_Sec>Vth2时,高速比较器输出为0,表示给副边网络对应开关管关断信号;
其中,VI_Sec是副边谐振电流采样电路的输出信号,Vth1和Vth2是副边谐振电流接近于0时所对应的两个阈值。
进一步地,to是根据电路特性设定的,tn是根据死区时间、电路特性以及最恶劣的工况设定的。
与现有技术相比,本发明技术方案的有益效果是:
1、本发明采用数字化同步整流控制方法,通过对副边谐振电流实时采样,采用DSP高速比较器处理采样信号,不增加额外的模拟电路,适用性强,简化了控制电路,减小电路成本。
2、本发明针对CLLC变换器开关频率,将其工作状态进行区分,在状态A做同步整流固定开通延迟,避开副边开关管漏源电压的振荡过程,使得开关管ZVS开通,从而减少开关损耗;在状态B考虑死区时间和电路寄生参数的影响,根据开关频率对开通延迟时间做阶梯型设定,在尽可能扩宽同步整流时间的同时,确保开通时副边电流已经反向,从而避免误开通而导致的副边能量倒灌问题。
附图说明
图1是本发明中CLLC变换器数字化同步整流方法的控制框图;
图2是本发明中CLLC变换器数字化同步整流控制方法的步骤示意图;
图3是本发明中CLLC变换器数字化同步整流使能控制图;
图4是本发明中CLLC变换器数字化同步整流开通延迟图;
图5是本发明中CLLC变换器数字化同步整流控制驱动时序图;
图6是本发明中CLLC变换器数字化同步整流实验结果图;其中,(a)为CLLC变换器工作在状态A的实验结果图,(b)为工作在状态B的实验结果图。
具体实施方式
为了使本发明的技术方案更加清楚明白,下面结合附图和实施例,对本发明做进一步的说明。
本实施例提供一种CLLC变换器数字化同步整流控制方法,该方法的应用拓扑和控制电路如图1所示。CLLC变换器的拓扑由原边网络、副边网络和谐振腔构成,原边网络是由原边开关管S1-S4组成;副边网络是由副边开关管S5-S8组成;谐振腔是由原边谐振电感Lr1,原边谐振电容Cr1、副边谐振电感Lr2、副边谐振电容Cr2和高频变压器组成。控制电路包括输出电压采样电路、输出电流采样电路、副边谐振电流采样电路、DSP控制器、原边驱动电路和副边驱动电路。
具体地说,如图2所示,本实施例的一种CLLC变换器数字化同步整流控制方法包括以下步骤:
步骤1:DSP芯片的ADC模块对输出电压采样电路和输出电流采样电路的输出信号实时采集;
输出电压采样电路和输出电流采样电路是分别通过电压传感器和电流传感器将输出电压和输出电流转换为0-3.3V的弱电信号,ADC模块采集此信号,将模拟的弱电信号转换为数字信号,以供DSP芯片处理计算。
步骤2:对ADC模块采集到的信号进行处理,计算输出功率,判断是否开启同步整流使能;
在对ADC模块采集的信号计算前,先对其进行滤波处理,再还原电压电流数值大小,然后采用功率计算公式(1)计算实时输出功率;
Po=UoIo (1)
其中,Uo是输出电压,Io是输出电流,Po是输出功率。
同步整流使能判断进行滞环设定,以防止***震荡,如图3所示,当输出功率小于功率阈值Pth1时,同步整流使能信号SREN为0,表示不开启同步整流,副边开关管S5-S8不动作;当输出功率大于功率阈值Pth2时,同步整流使能信号SREN为1,表示开启同步整流,副边开关管S5-S8动作,其中功率阈值Pth1小于功率阈值Pth2
步骤3:根据CLLC变换器的开关频率,判定电路工作状态,包括状态A和状态B;
当CLLC变换器开关频率fs小于或等于谐振频率fr时,表示工作在状态A;
当CLLC变换器开关频率fs大于谐振频率fr时,表示工作在状态B;
其中谐振频率fr按公式(2)得到;
其中,Lr1是原边谐振电感,Cr1是原边谐振电容。
步骤4:跟据CLLC变换器的工作状态,选择同步整流信号开通延迟时间,以获得同步整流信号的开通时间,如图4所示,其中,f1是第一开关频率阈值,f2是第二开关频率阈值,fmax是最大开关频率;
当CLLC变换器工作在状态A时,开通延迟时间固定在to
当CLLC变换器工作在状态B时,开通延迟时间根据开关频率在to基础上做阶梯型递增,开关频率最大时,延迟时间达到最大tn,即tn是最大延迟时间,其中,n表示阶梯个数。
其中,to是根据电路特性设定,tn是根据死区时间、电路特性以及最恶劣的工况设定。
本实施例中,谐振频率为120kHZ,开关频率范围是70-200kHZ,当CLLC变换器工作在状态B时,即开关频率为120-200kHZ,为保证同步整流时间尽可能长,每10kHz做一级延迟,如公式(3)所示;
其中,t是开通延迟时间,t1是第一延迟时间,t2是第二延迟时间,tn是最大延迟时间。
步骤5:DSP芯片的高速比较器模块对副边谐振电流采样电路的输出信号进行处理,与阈值做比较,得到同步整流信号的关断时间;高速比较器模块包括高速比较器CMPSS_H、高速比较器CMPSS_L;
高速比较器CMPSS_H进行正半周期内比较判断,当VI_Sec<Vth1时,高速比较器输出为0,表示给副边网络对应开关管关断信号;
高速比较器CMPSS_L进行负半周期内比较判断,当VI_Sec>Vth2时,高速比较器输出为0,表示给副边网络对应开关管关断信号;
其中,VI_Sec是副边谐振电流采样电路的输出信号,Vth1和Vth2是副边谐振电流接近于0时所对应的两个阈值。
步骤6:根据同步整流信号的开通和关断时间,DSP芯片发出同步整流控制信号,通过副边驱动电路控制副边开关管S5-S8的通断。
如图5所示,是同步整流控制驱动时序图,副边开关管S5和S7驱动信号相同,S6和S8驱动信号相同,其相对原边开关管在开通时有延迟。
图6是本实施例的实验结果图,其中,图6的(a)是CLLC变换器工作在状态A的实验结果图,图6的(b)是工作在状态B的实验结果图。从图6中可以看出,副边开关管开通时相对原边有延迟,且关断有一定的提前。关断提前是由于阈值Vth1和Vth2是分别对应谐振电流稍大于0和稍小于0的值,以避开由于干扰导致的电流过零采样不准问题。采用本发明可以有效实现同步整流开关管的ZVS开通和防止副边能量倒灌。

Claims (8)

1.一种CLLC变换器数字化同步整流控制方法,通过CLLC变换器和控制电路实现;所述CLLC变换器由原边网络、副边网络和谐振腔构成;所述控制电路包括输出电压采样电路、输出电流采样电路、副边谐振电流采样电路、DSP控制器、原边驱动电路和副边驱动电路,其特征在于,包括以下步骤:
步骤1:DSP芯片的ADC模块对输出电压采样电路和输出电流采样电路的输出信号实时采集;
步骤2:对ADC模块采集到的信号进行处理,计算输出功率,判断是否开启同步整流使能;
步骤3:根据CLLC变换器的开关频率,判定电路工作状态,所述电路工作状态包括状态A和状态B;
当CLLC变换器开关频率fs小于或等于谐振频率fr时,表示工作在状态A;
当CLLC变换器开关频率fs大于谐振频率fr时,表示工作在状态B;
步骤4:跟据CLLC变换器的工作状态,选择同步整流信号开通延迟时间,以获得同步整流信号的开通时间;
步骤5:DSP芯片的高速比较器模块对副边谐振电流采样电路的输出信号进行处理,与阈值做比较,得到同步整流信号的关断时间;
步骤6:根据同步整流信号的开通时间和关断时间,DSP芯片发出同步整流控制信号,通过副边驱动电路控制副边开关管的通断。
2.根据权利要求1所述的一种CLLC变换器数字化同步整流控制方法,其特征在于,所述输出电压采样电路和输出电流采样电路是分别通过电压传感器和电流传感器将输出电压和输出电流转换为0-3.3V的弱电信号。
3.根据权利要求1所述的一种CLLC变换器数字化同步整流控制方法,其特征在于,所述DSP芯片的ADC模块采集输出电压采样电路和输出电流采样电路的输出信号,将模拟的弱电信号转换为数字信号,以供DSP芯片处理计算。
4.根据权利要求1所述的一种CLLC变换器数字化同步整流控制方法,其特征在于,在对ADC模块采集的信号计算前,先对其进行滤波处理,再还原电压电流数值大小,然后采用功率计算公式计算实时输出功率。
5.根据权利要求1所述的一种CLLC变换器数字化同步整流控制方法,其特征在于,所述步骤2中,判断是否开启同步整流使能包括:
当输出功率小于功率阈值Pth1时,同步整流使能信号SREN为0,表示不开启同步整流,副边开关管不动作;
当输出功率大于功率阈值Pth2时,同步整流使能信号SREN为1,表示开启同步整流,副边开关管动作,其中功率阈值Pth1小于功率阈值Pth2
6.根据权利要求1所述的一种CLLC变换器数字化同步整流控制方法,其特征在于,所述步骤4中,选择同步整流信号开通延迟时间包括:
所述开通延迟在对应原边开关管开通时间的基础上做延迟处理;
当CLLC变换器工作在状态A时,开通延迟时间固定在to
当CLLC变换器工作在状态B时,开通延迟时间根据开关频率在to基础上做阶梯型递增,开关频率最大时,延迟时间达到最大tn,即tn是最大延迟时间,其中,n表示阶梯个数。
7.根据权利要求1所述的一种CLLC变换器数字化同步整流控制方法,其特征在于,所述步骤5中,高速比较器模块的处理包括:
高速比较器模块中的高速比较器对副边谐振电流采样电路的输出信号VI_Sec做比较,其中,包括正负各半周的关断时间处理;高速比较器模块包括高速比较器CMPSS_H、高速比较器CMPSS_L;
高速比较器CMPSS_H进行正半周期内比较判断,当VI_Sec<Vth1时,高速比较器输出为0,表示给副边网络对应开关管关断信号;
高速比较器CMPSS_L进行负半周期内比较判断,当VI_Sec>Vth2时,高速比较器输出为0,表示给副边网络对应开关管关断信号;
其中,VI_Sec是副边谐振电流采样电路的输出信号,Vth1和Vth2是副边谐振电流接近于0时所对应的两个阈值。
8.根据权利要求6所述的一种CLLC变换器数字化同步整流控制方法,其特征在于,to是根据电路特性设定的,tn是根据死区时间、电路特性以及最恶劣的工况设定的。
CN202311326075.4A 2023-10-13 2023-10-13 一种cllc变换器数字化同步整流控制方法 Pending CN117353586A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311326075.4A CN117353586A (zh) 2023-10-13 2023-10-13 一种cllc变换器数字化同步整流控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311326075.4A CN117353586A (zh) 2023-10-13 2023-10-13 一种cllc变换器数字化同步整流控制方法

Publications (1)

Publication Number Publication Date
CN117353586A true CN117353586A (zh) 2024-01-05

Family

ID=89364522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311326075.4A Pending CN117353586A (zh) 2023-10-13 2023-10-13 一种cllc变换器数字化同步整流控制方法

Country Status (1)

Country Link
CN (1) CN117353586A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117767766A (zh) * 2024-02-01 2024-03-26 深圳市优优绿能股份有限公司 桥式整流功率电路的同步整流控制***和电源***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117767766A (zh) * 2024-02-01 2024-03-26 深圳市优优绿能股份有限公司 桥式整流功率电路的同步整流控制***和电源***
CN117767766B (zh) * 2024-02-01 2024-07-09 深圳市优优绿能股份有限公司 桥式整流功率电路的同步整流控制***和电源***

Similar Documents

Publication Publication Date Title
CN107425728B (zh) 一种llc全桥变换器同步整流的数字优化控制方法及其***
CN112117905B (zh) 有源钳位反激变换器的控制***及方法
CN113691140B (zh) 一种用于llc变换器双向同步整流控制装置的控制方法
CN111953185B (zh) 一种有源钳位反激拓扑自适应死区时间的zvs控制方法
TW201720036A (zh) 一種二次側同步整流器盲時調控之高效率llc共振式轉換器
CN117353586A (zh) 一种cllc变换器数字化同步整流控制方法
CN110611431A (zh) 有源钳位反激变换器的原边调节控制***及控制方法
CN111953186B (zh) 一种开关电源控制电路
CN112491277B (zh) 一种通过死区时间自适应提高电力电子变压器效率的方法
US20220416644A1 (en) Asymmetric half-bridge flyback converter and control method thereof
CN111585440B (zh) 有源钳位反激变换器的控制***及方法
CN112087146B (zh) 一种不对称半桥反激变换器的控制方法及电路
WO2020228818A1 (zh) 准谐振反激变换器的同步整流控制***及方法
CN113676060B (zh) Cllc谐振变换器的自适应同步整流控制方法及***
CN113452254B (zh) 谐振变换***和控制方法
CN112072921A (zh) 一种双箝位ZVS Buck-Boost变换器的原边调节控制***及控制方法
CN114448249A (zh) 四开关升降压双向变换器的全数字软开关控制电路
CN110168892A (zh) 一种直流升降压电路
CN110266191B (zh) 一种软开关型双向串联谐振变换器及其恒增益控制方法
CN111585441B (zh) 一种原边调节有源钳位反激变换器的控制***及方法
CN113346753B (zh) 一种钳位不对称半桥反激变换器的轻空载控制方法及电路
Yang et al. SR control with zero current detection delay compensation for GaN CRM totem-pole PFC rectifier
CN114545178A (zh) 一种检测方法及检测电路
CN113193754B (zh) 一种适用于llc谐振电路的低损耗同步整流控制方法及***
CN116979789A (zh) 用于四开关降压-升压变换器的次峰值电流定频控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination