CN117285335B - 高温相变储能陶瓷材料及其制备方法 - Google Patents

高温相变储能陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN117285335B
CN117285335B CN202311577978.XA CN202311577978A CN117285335B CN 117285335 B CN117285335 B CN 117285335B CN 202311577978 A CN202311577978 A CN 202311577978A CN 117285335 B CN117285335 B CN 117285335B
Authority
CN
China
Prior art keywords
powder
parts
temperature
ceramic material
change energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311577978.XA
Other languages
English (en)
Other versions
CN117285335A (zh
Inventor
田贵山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN202311577978.XA priority Critical patent/CN117285335B/zh
Publication of CN117285335A publication Critical patent/CN117285335A/zh
Application granted granted Critical
Publication of CN117285335B publication Critical patent/CN117285335B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5029Magnesia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于储能陶瓷材料技术领域,具体涉及高温相变储能陶瓷材料及其制备方法。所述的高温相变储能陶瓷材料的制备方法,包括以下步骤:将氧化铝粉、钠长石粉、石英砂粉、Cr2O3和/或铬铁矿粉干混,将Al(H2PO4)3溶液和氢氧化铝粉湿混,将上述混料和预处理后的原盐混合,经模压成型、干燥、烧结,得到微胶囊素坯;将电熔镁砂粉、Al(H2PO4)3溶液、钠长石粉、石英砂粉、无机硅胶溶液、粘结剂混合均匀,得到料浆悬浮液,喷涂或浸渍在微胶囊素坯表面,然后干燥、烧结,得到高温相变储能陶瓷材料。所制备的高温相变储能陶瓷材料,与其它无机盐相比,显热潜热量大,热传导性能好,可以以最大程度储能蓄热。

Description

高温相变储能陶瓷材料及其制备方法
技术领域
本发明属于储能陶瓷材料技术领域,具体涉及高温相变储能陶瓷材料及其制备方法。
背景技术
储能(蓄热)技术是余热回收利用、分布式能源等技术的关键环节。钢铁、冶金、水泥等行业的工业窑炉的余热,是一种典型的二次能源,工业窑炉能耗巨大,余热产生量也巨大,若能回收这些余热,不仅可以节约能源,还可以减少污染。一般采用耐火材料或陶瓷材料作为蓄热载体,利用其耐高温性进行显热蓄热。
目前,高温窑炉蓄热室的结构和蓄热用材料由耐火砖转变为蓄热球或蜂窝体,但这些改变仅仅局限在结构上,而材料本质没有变化。工业窑炉余热资源利用的难点在于其温度跨度大、空间分布广,且存在时间上和数量上的波动性。余热传递和存储技术的落后已成为限制工业余热利用的关键性因素之一,而储能技术正是将非稳态热量整流成稳态热量的技术,即将非稳态热量用储能材料将其存储,等到需要热量时,再可控和稳定地利用非稳态余热,它克服了钢铁工业许多余热间隙性的难点,并有效地解决了热量供需不匹配的矛盾关系。因此,将储能技术应用于工业窑炉余热利用领域,对具有非稳态余热资源的高品质回收利用具有重大意义。
储能(蓄热)技术主要包括显热储能、相变(潜热)储能、热化学/吸附储能技术等。其中,热化学储能的储能密度最大,但距离工业应用尚有很多问题亟待解决,并具有一定的危险性;显热储能技术是目前市场中应用最为成熟的储能技术(如镁砖),但显热储能材料的蓄热密度偏低,容易导致储能***体积庞大、成本过高;相变(潜热)储能主要是依靠相变材料在相变过程中吸收和释放热量的特性来进行蓄热和放热,其在一定程度上综合了热化学储能密度高和显热储能工艺简单成熟的优点。
无机盐类相变储能材料,主要包括各类硝酸盐、碳酸盐、氟盐、盐酸盐及其混合物。工业生产中通常使用其混合物作为储能材料,通过选择混合盐中不同组分的配比来调整其熔点,以适应不同场景下的工作温度或寻求更高的相变潜热。常用无机盐混合物的熔点一般在150-900℃,甚至可达更高温度,主要应用于中高温储能领域。熔融盐类潜热(相变)储能材料是由多种酸根与碱性金属复合组成,其中常见的有氯化盐(盐酸盐)、氟化盐、硝酸盐、碳酸盐、硫酸盐等,常见的碱金属有锂、钠、钾、镁等。复合形成的熔融盐类相变储能材料种类广泛,且相较于有机类相变储能材料,其蓄热密度高,对温度变化响应速度更快。
但是,盐酸盐发生相变过程时会有大量的熔融盐产生,其流出会对容器和设备造成很强的腐蚀。
发明内容
针对现有技术的不足,本发明的目的是:提供一种高温相变储能陶瓷材料,与其它无机盐相比,显热潜热量大,热传导性能好,可以以最大程度储能蓄热;本发明还提供其制备方法,原材料与制作成本低,制备工艺简单可行,适合大规模工业生产与应用。
本发明所述的高温相变储能陶瓷材料的制备方法,包括以下步骤:
(1)素坯原料混合:将氧化铝粉、钠长石粉、石英砂粉、Cr2O3和/或铬铁矿粉进行干混,得到混合干料;将Al(H2PO4)3溶液和氢氧化铝粉进行湿混,硬化,得到混合湿料;然后将上述混合干料、混合湿料混合,并加入预处理后的原盐,混合均匀后得到素坯浆料;
(2)微胶囊素坯制备:将素坯浆料经模压成型,然后干燥、烧结、冷却,得到微胶囊素坯;
(3)素坯封装:将电熔镁砂粉、Al(H2PO4)3溶液、钠长石粉、石英砂粉、无机硅胶溶液、粘结剂混合均匀,得到料浆悬浮液,喷涂或浸渍在微胶囊素坯表面,然后干燥、烧结、冷却,得到高温相变储能陶瓷材料。本发明所采用的粉料粒度均在200-400目之间,优选为300目。
步骤(1)中,以质量份数计,各原料的用量如下:
氧化铝粉 100份,
预处理后的原盐 70-90份,
Al(H2PO4)3溶液 20-30份,
氢氧化铝粉 4-8份,
钠长石粉 5-10份,
石英砂粉 5-10份,
Cr2O3和/或铬铁矿粉 15-20份。
其中,氧化铝粉的氧化铝含量≥99%。
钠长石粉一种常见的长石矿物,钠长石的化学分子式为Na2O·Al2O3·6SiO2,其理论化学组成为:Na2O11.8%,Al2O319.4%,SiO268.8%。
石英砂粉的主要矿物成分是SiO2
铬铁矿粉的主要成分为铁、镁和铬的氧化物。高温相变储能陶瓷材料在使用过程中,原盐会频繁处于熔融状态,可能会分解产生氯气或氯化氢气体,加入的Cr2O3或铬铁矿粉起到酸性抑制剂的作用,防止产生过量的氯气或氯化氢气体。
Al(H2PO4)3溶液的浓度为40-60wt.%;无机硅胶溶液的浓度为30-40wt.%。
Al(H2PO4)3溶液的pH值≥2.0,浓度在40-60wt.%之间为宜,优选为50wt.%。本发明将Al(H2PO4)3溶液和氢氧化铝粉进行湿混时,可以加入适量水进行稀释,水的加入量优选为Al(H2PO4)3溶液的0.2-1倍。湿混后的得到混料pH值为中性,采用酸性的Al(H2PO4)3溶液(pH≥2.0)加入适量的氢氧化铝粉,可以加快微胶囊素坯的硬化时间,其中Al(H2PO4)3溶液pH≥2.0,过低的酸性会导致制成的微胶囊素坯强度过低。
原盐的主要化学成分含量为:NaCl≥95wt.%、Ca2+≤0.2wt.%、Mg2+≤0.1wt.%、SO4 2-≤0.5wt.%、H2O≤2wt.%、水不溶物≤0.2wt.%。
优选的,所述原盐的预处理方法为:将原盐经球磨机干磨0.5-2h,过200-400目筛,再在380-400℃温度下保温1-3h,即得预处理后的原盐。对原盐进行预处理,一方面使原盐粒径与氧化铝粉粒径保持一致,另一方面可以去除原盐内含的自由水、结晶水、一些有机物杂质,可以省去球磨、干燥环节。
步骤(1)中,将Al(H2PO4)3溶液和氢氧化铝粉进行湿混后,硬化4-6h。
步骤(2)中,模压成型时,将素坯浆料在4h之内压制成型;所采用的模具可以为标准试样模具、方形砖模具、孔型砖模具等;压力机操作时,加压次数3次,加压速度为“一轻、二重、慢提起”。
步骤(2)中,干燥时,在100-120℃保温3-4h,优选的,在0.5-1h时间内由室温匀速升至100-120℃。
步骤(2)中,烧结时,在740-760℃保温0.5-2h,优选的,在5-6h时间内匀速升至740-760℃。烧结时需要控制适宜的升温速率,若升温过快,素坯极易开裂。
步骤(2)中,冷却时,自然条件下冷却至室温。
步骤(3)中,以质量份数计,各原料的用量如下:
电熔镁砂粉 100份,
Al(H2PO4)3溶液 40-50份,
钠长石粉 10-15份,
石英砂粉 6-10份,
无机硅胶溶液 10-16份,
粘结剂 10-16份。
其中,电熔镁砂粉为死烧细粉,选取电熔镁砂的目的,一是改善粘结性能;二是因为镁砂具有较高的导热系数,一般为40-60W·m-1·K-1,加入镁砂以后,能够明显增加成品陶瓷材料的导热性能。如果选择轻烧氧化镁(≤1350℃烧结),硬化速度过快,一般几秒内硬化,不易控制料浆和涂覆性能。
Al(H2PO4)3溶液的pH值≥2.0,浓度在40-60wt.%之间为宜,优选为50wt.%。
钠长石粉一种常见的长石矿物,钠长石的化学分子式为Na2O·Al2O3·6SiO2,其理论化学组成为:Na2O11.8%,Al2O319.4%,SiO268.8%。
石英砂粉的主要矿物成分是SiO2
无机硅胶溶液的浓度为30-40wt.%,优选为35wt.%。无机硅胶平均孔径为2-3nm,比表面积为650-800m3/g,添加无机硅胶可以改善粘结性能。
粘结剂为羧甲基纤维素钠(CMC)、羧甲基纤维素钠、甲基纤维素、聚乙烯醇、聚丙烯酸中的一种或多种。粘结剂25℃粘度为10000-20000Pa•s。
步骤(3)中,当采用喷涂方式将料浆悬浮液喷涂在微胶囊素坯表面时,一般采用喷枪喷涂;当采用浸渍方式将料浆悬浮液浸渍在微胶囊素坯表面时,一般浸渍1-5s。
步骤(3)中,干燥时,在100-120℃保温3-4h,优选的,在0.5-1h时间内由室温匀速升至100-120℃。
步骤(3)中,烧结时,在820-850℃保温0.5-2h,优选的,在5-6h时间内匀速升至820-850℃。烧结时需要控制适宜的升温速率,要求不得高于120℃/h,若升温过快(大于200℃/h),封装层容易开裂。
步骤(3)中,冷却时,自然条件下冷却至室温。
本发明在微胶囊素坯烧结过程中,会有少量有机物或结晶水以气体的方式溢出,这是为了排除有机物和陶瓷胶囊内残存的结晶水,而最终制备的高温相变储能陶瓷材料,在今后的使用中,因为进行了封装,一些残存或原盐融化产生的一些气体,因毛细管的作用,会依附在微胶囊内壁,并不会有气体溢出成品陶瓷砖外。
本发明还提供上述制备方法所制备的高温相变储能陶瓷材料,熔点为800-805℃(差示扫描量热仪DSC测试),体积密度为2.0-2.2g/cm3(GB/T2997-2015),常温耐压强度≥17MPa(GB/T5072-2008),800℃×0.5h条件下高温抗折强度≥0.48MPa(GB/T3002-2017),导热系数≥40W·m-1·K-1
盐酸盐具有相变潜热大,发生相变时的温度变化小且易于控制等优点,但在盐酸盐发生相变过程时会有大量的熔融盐产生,其流出会对容器和设备造成很强的腐蚀。氧化铝陶瓷材料本身具有高抗压强度和良好的致密度,且其耐高温和化学稳定性良好,其性质正好可以弥补熔融盐作为相变材料存在的缺陷。高温相变储热(蓄热)氧化铝陶瓷材料由氧化铝陶瓷基体材料和盐酸盐相变材料复合而成,在进行高温烧结的过程中陶瓷材料表面会形成致密的微观网络结构,其产生的毛细作用力可以将在高温熔融盐吸附在氧化铝陶瓷基体内。
此外,在金属冶炼过程中的高温服役环境温度控制领域,封装后的高温相变储能材料具有蓄热性能且在蓄热过程中可以保持温度基本不变。将封装后的高温相变蓄热材料代替或者部分代替常规的普通耐火材料永久层,利用高温吸收的热量补充低温时所需的热量,可以起到一定的温控作用,使得整个冶炼过程处于相对平稳的温度环境。
与现有技术相比,本发明的有益效果如下:
(1)本发明在陶瓷材料表面进行封装,与其它无机盐相比,盐酸盐的高温显热潜热量大,热传导性能好,外表面的陶瓷膜层封装材料耐强碱酸腐蚀性好,冷热循环过程中不开裂,原盐的摩尔百分数达到60%,可以以最大程度储能蓄热;
(2)本发明制得的高温相变储能陶瓷材料,体积密度为2.0-2.2g/cm3,常温耐压强度≥17MPa,800℃×0.5h条件下高温抗折强度≥0.48MPa,导热系数≥40W·m-1·K-1
(3)本发明的原材料与制作成本低,制备工艺简单可行,适合大规模工业生产与应用。
附图说明
图1为本发明实施例1所制备的高温相变储能陶瓷材料的微观形貌图;
图2为本发明实施例1所制备的高温相变储能陶瓷材料的差示扫描量热仪DSC测试图。
具体实施方式
下面结合实施例对本发明作进一步说明,实施例中所使用的原料,如无特别说明,均为市售常规原料;实施例中所使用的工艺方法,如无特别说明,均为本领域常规方法。
实施例中,所采用的原盐满足以下要求:NaCl≥95wt.%、Ca2+≤0.2wt.%、Mg2+≤0.1wt.%、SO4 2-≤0.5wt.%、H2O≤2wt.%、水不溶物≤0.2wt.%。
实施例中,所采用的粉料粒度均在200-400目之间。
实施例中,高温相变储能陶瓷材料的熔点采用差示扫描量热仪DSC测试,温度范围30-900℃,升温速率10℃/min;体积密度依据标准GB/T2997-2015进行测试,常温耐压强度依据标准GB/T5072-2008进行测试,800℃×0.5h条件下高温抗折强度依据标准GB/T3002-2017进行测试。
实施例1
一种高温相变储能陶瓷材料,制备方法如下:
(1)素坯原料混合:
将原盐经球磨机干磨1h,过300目筛,再在390℃温度下保温2h,得到预处理后的原盐;
称取以下质量份数的原料:氧化铝粉100份,预处理后的原盐80份,Al(H2PO4)3溶液(浓度50wt.%)25份,氢氧化铝粉6份,钠长石粉8份,石英砂粉7份,Cr2O3粉18份;
将称取的氧化铝粉、钠长石粉、石英砂粉、Cr2O3粉进行干混,得到混合干料;
将称取的Al(H2PO4)3溶液,加入0.5倍的水稀释,并加入氢氧化铝粉混合,置于通风良好处,硬化5h,得到混合湿料;
将上述混合干料、混合湿料进行混合,再加入预处理后的原盐,混合均匀后得到素坯浆料。
(2)微胶囊素坯制备:
采用标准试样模具(直径50mm,高50mm,依据GB/T5072-2008),将素坯浆料在压力机上半干压制成型,0.5h由室温匀速升至120℃,然后保温3h,进行干燥;6h由室温匀速升至750℃,然后保温1h,进行烧结;之后自然匀速冷却到室温,制得到微胶囊素坯。
(3)素坯封装:
称取以下质量份数的原料:电熔镁砂粉100份,Al(H2PO4)3溶液45份,钠长石粉12份,石英砂粉8份,无机硅胶溶液(浓度35wt.%)12份,粘结剂14份;
将上述原料混合均匀,得到料浆悬浮液,喷涂在微胶囊素坯表面,将喷涂料浆悬浮液后的微胶囊素坯0.5h由室温匀速升至120℃,然后保温3h,进行干燥;6h由室温匀速升至830℃,然后保温1h,进行烧结,之后自然匀速冷却到室温,制得高温相变储能陶瓷材料。
所制备的高温相变储能陶瓷材料的微观形貌图如图1,差示扫描量热仪DSC测试结果如图2。经测试,高温相变储能陶瓷材料熔点为802.9℃,体积密度为2.09g/cm3,常温耐压强度18.4MPa,800℃×0.5h条件下高温抗折强度0.49MPa,导热系数41.4W·m-1·K-1
实施例2
一种高温相变储能陶瓷材料,制备方法如下:
(1)素坯原料混合:
将原盐经球磨机干磨2h,过400目筛,再在380℃温度下保温1h,得到预处理后的原盐;
称取以下质量份数的原料:氧化铝粉100份,预处理后的原盐70份,Al(H2PO4)3溶液(浓度40wt.%)30份,氢氧化铝粉8份,钠长石粉10份,石英砂粉5份,Cr2O3粉15份;
将称取的氧化铝粉、钠长石粉、石英砂粉、Cr2O3粉进行干混,得到混合干料;
将称取的Al(H2PO4)3溶液,加入0.5倍的水稀释,并加入氢氧化铝粉混合,置于通风良好处,硬化6h,得到混合湿料;
将上述混合干料、混合湿料进行混合,再加入预处理后的原盐,混合均匀后得到素坯浆料。
(2)微胶囊素坯制备:
采用标准试样模具(200mm×53mm×35mm),将素坯浆料在160吨压力机上半干压制成型,1h由室温匀速升至190℃,然后保温4h,进行干燥;5h由室温匀速升至740℃,然后保温2h,进行烧结;之后自然匀速冷却到室温,制得到微胶囊素坯。
(3)素坯封装:
称取以下质量份数的原料:电熔镁砂粉100份,Al(H2PO4)3溶液(浓度40wt.%)50份,钠长石粉10份,石英砂粉10份,无机硅胶溶液(浓度40wt.%)10份,甲基纤维素16份;
将上述原料混合均匀,得到料浆悬浮液,喷涂在微胶囊素坯表面,将喷涂料浆悬浮液后的微胶囊素坯1h由室温匀速升至190℃,然后保温4h,进行干燥;5h由室温匀速升至820℃,然后保温2h,进行烧结,之后自然匀速冷却到室温,制得高温相变储能陶瓷材料。
经测试,高温相变储能陶瓷材料熔点为803.2℃,体积密度为2.18g/cm3,常温耐压强度18.6MPa,800℃×0.5h条件下高温抗折强度0.52MPa,导热系数40.2W·m-1·K-1
实施例3
一种高温相变储能陶瓷材料,制备方法如下:
(1)素坯原料混合:
将原盐经球磨机干磨0.5h,过200目筛,再在400℃温度下保温3h,得到预处理后的原盐;
称取以下质量份数的原料:氧化铝粉100份,预处理后的原盐90份,Al(H2PO4)3溶液(浓度60wt.%)20份,氢氧化铝粉4份,钠长石粉5份,石英砂粉10份,铬铁矿粉18份;
将称取的氧化铝粉、钠长石粉、石英砂粉、铬铁矿粉进行干混,得到混合干料;
将称取的Al(H2PO4)3溶液,加入0.2倍的水稀释,并加入氢氧化铝粉混合,置于通风良好处,硬化4h,得到混合湿料;
将上述混合干料、混合湿料进行混合,再加入预处理后的原盐,混合均匀后得到素坯浆料。
(2)微胶囊素坯制备:
采用标准试样模具(220mm×80mm×65mm),将素坯浆料在400吨压力机上半干压制成型,0.5h由室温匀速升至120℃,然后保温3h,进行干燥;6h由室温匀速升至760℃,然后保温0.5h,进行烧结;之后自然匀速冷却到室温,制得到微胶囊素坯。
(3)素坯封装:
称取以下质量份数的原料:电熔镁砂粉100份,Al(H2PO4)3溶液(浓度60wt.%)45份,钠长石粉12份,石英砂粉8份,无机硅胶溶液(浓度30wt.%)14份,聚丙烯酸13份;
将上述原料混合均匀,得到料浆悬浮液,喷涂在微胶囊素坯表面,将喷涂料浆悬浮液后的微胶囊素坯0.5h由室温匀速升至120℃,然后保温3h,进行干燥;6h由室温匀速升至850℃,然后保温0.5h,进行烧结,之后自然匀速冷却到室温,制得高温相变储能陶瓷材料。
经测试,高温相变储能陶瓷材料熔点为804.5℃,体积密度为2.15g/cm3,常温耐压强度18.1MPa,800℃×0.5h条件下高温抗折强度0.50MPa,导热系数42.0W·m-1·K-1
实施例4
一种高温相变储能陶瓷材料,制备方法如下:
(1)素坯原料混合:
将原盐经球磨机干磨1h,过300目筛,再在390℃温度下保温2h,得到预处理后的原盐;
称取以下质量份数的原料:氧化铝粉100份,预处理后的原盐85份,Al(H2PO4)3溶液(浓度50wt.%)25份,氢氧化铝粉5份,钠长石粉8份,石英砂粉8份,铬铁矿粉20份;
将称取的氧化铝粉、钠长石粉、石英砂粉、铬铁矿粉进行干混,得到混合干料;
将称取的Al(H2PO4)3溶液,加入1倍的水稀释,并加入氢氧化铝粉混合,置于通风良好处,硬化5h,得到混合湿料;
将上述混合干料、混合湿料进行混合,再加入预处理后的原盐,混合均匀后得到素坯浆料。
(2)微胶囊素坯制备:
采用标准试样模具(220mm×200mm×76mm,20孔型砖),将素坯浆料在400吨压力机上半干压制成型,0.5h由室温匀速升至120℃,然后保温3h,进行干燥;6h由室温匀速升至750℃,然后保温1h,进行烧结;之后自然匀速冷却到室温,制得到微胶囊素坯。
(3)素坯封装:
称取以下质量份数的原料:电熔镁砂粉100份,Al(H2PO4)3溶液(浓度50wt.%)40份,钠长石粉15份,石英砂粉6份,无机硅胶溶液(浓度35wt.%)16份,聚乙烯醇10份;
将上述原料混合均匀,得到料浆悬浮液,喷涂在微胶囊素坯表面,将喷涂料浆悬浮液后的微胶囊素坯0.5h由室温匀速升至120℃,然后保温3h,进行干燥;6h由室温匀速升至830℃,然后保温1h,进行烧结,之后自然匀速冷却到室温,制得高温相变储能陶瓷材料。
经测试,高温相变储能陶瓷材料熔点为800.6℃,体积密度为2.01g/cm3,常温耐压强度17.8MPa,800℃×0.5h条件下高温抗折强度0.48MPa,导热系数42.3W·m-1·K-1

Claims (10)

1.一种高温相变储能陶瓷材料的制备方法,其特征在于:包括以下步骤:
(1)素坯原料混合:将氧化铝粉、钠长石粉、石英砂粉、Cr2O3和/或铬铁矿粉进行干混,得到混合干料;将Al(H2PO4)3溶液和氢氧化铝粉进行湿混,硬化,得到混合湿料;然后将上述混合干料、混合湿料混合,并加入预处理后的原盐,混合均匀后得到素坯浆料;
(2)微胶囊素坯制备:将素坯浆料经模压成型,然后干燥、烧结、冷却,得到微胶囊素坯;
(3)素坯封装:将电熔镁砂粉、Al(H2PO4)3溶液、钠长石粉、石英砂粉、无机硅胶溶液、粘结剂混合均匀,得到料浆悬浮液,喷涂或浸渍在微胶囊素坯表面,然后干燥、烧结、冷却,得到高温相变储能陶瓷材料。
2.根据权利要求1所述的高温相变储能陶瓷材料的制备方法,其特征在于:Al(H2PO4)3溶液的浓度为40-60wt.%;无机硅胶溶液的浓度为30-40wt.%。
3.根据权利要求2所述的高温相变储能陶瓷材料的制备方法,其特征在于:步骤(1)中,以质量份数计,各原料的用量如下:
氧化铝粉 100份,
预处理后的原盐 70-90份,
Al(H2PO4)3溶液 20-30份,
氢氧化铝粉 4-8份,
钠长石粉 5-10份,
石英砂粉 5-10份,
Cr2O3和/或铬铁矿粉 15-20份。
4.根据权利要求3所述的高温相变储能陶瓷材料的制备方法,其特征在于:原盐的主要化学成分含量为:NaCl≥95wt.%、Ca2+≤0.2wt.%、Mg2+≤0.1wt.%、SO4 2-≤0.5wt.%、H2O≤2wt.%、水不溶物≤0.2wt.%。
5.根据权利要求4所述的高温相变储能陶瓷材料的制备方法,其特征在于:所述原盐的预处理方法为:将原盐经球磨机干磨0.5-2h,过200-400目筛,再在380-400℃温度下保温1-3h,即得预处理后的原盐。
6.根据权利要求1所述的高温相变储能陶瓷材料的制备方法,其特征在于:步骤(1)中,将Al(H2PO4)3溶液和氢氧化铝粉进行湿混后,硬化4-6h。
7.根据权利要求1所述的高温相变储能陶瓷材料的制备方法,其特征在于:步骤(2)中,干燥时,在100-120℃保温3-4h,在0.5-1h时间内由室温匀速升至100-120℃;
烧结时,在740-760℃保温0.5-2h,在5-6h时间内匀速升至740-760℃。
8.根据权利要求2所述的高温相变储能陶瓷材料的制备方法,其特征在于:步骤(3)中,以质量份数计,各原料的用量如下:
电熔镁砂粉 100份,
Al(H2PO4)3溶液 40-50份,
钠长石粉 10-15份,
石英砂粉 6-10份,
无机硅胶溶液 10-16份,
粘结剂 10-16份。
9.根据权利要求1所述的高温相变储能陶瓷材料的制备方法,其特征在于:步骤(3)中,干燥时,在100-120℃保温3-4h,在0.5-1h时间内由室温匀速升至100-120℃;
烧结时,在820-850℃保温0.5-2h,在5-6h时间内匀速升至820-850℃。
10.一种由权利要求1-9任一项所述的制备方法制备得到的高温相变储能陶瓷材料,其特征在于:熔点为800-805℃,体积密度为2.0-2.2g/cm3,常温耐压强度≥17MPa,800℃×0.5h条件下高温抗折强度≥0.48MPa,导热系数≥40W·m-1·K-1
CN202311577978.XA 2023-11-24 2023-11-24 高温相变储能陶瓷材料及其制备方法 Active CN117285335B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311577978.XA CN117285335B (zh) 2023-11-24 2023-11-24 高温相变储能陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311577978.XA CN117285335B (zh) 2023-11-24 2023-11-24 高温相变储能陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN117285335A CN117285335A (zh) 2023-12-26
CN117285335B true CN117285335B (zh) 2024-01-30

Family

ID=89244731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311577978.XA Active CN117285335B (zh) 2023-11-24 2023-11-24 高温相变储能陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117285335B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100070917A (ko) * 2008-12-18 2010-06-28 제일모직주식회사 상변화물질-에어로겔 복합체 및 그 제조 방법
WO2021147411A1 (zh) * 2020-01-20 2021-07-29 武汉科技大学 一种相变蓄热自流式耐火浇注料及其制备方法
CN113717695A (zh) * 2021-09-10 2021-11-30 中国矿业大学 一种熔融盐基复合相变储热大胶囊的制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100070917A (ko) * 2008-12-18 2010-06-28 제일모직주식회사 상변화물질-에어로겔 복합체 및 그 제조 방법
WO2021147411A1 (zh) * 2020-01-20 2021-07-29 武汉科技大学 一种相变蓄热自流式耐火浇注料及其制备方法
CN113717695A (zh) * 2021-09-10 2021-11-30 中国矿业大学 一种熔融盐基复合相变储热大胶囊的制备方法与应用

Also Published As

Publication number Publication date
CN117285335A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
CN107011868B (zh) 一种石蜡/铁尾矿陶瓷复合相变储能材料的熔融浸渗制备方法
CN106542843B (zh) 一种利用固体废弃物制备轻质保温墙体材料的方法
CN108503371B (zh) 一种利用高炉渣和高铝粉煤灰制备发泡陶瓷材料的方法
CN107417185A (zh) 一种新型环保型相变蓄能砖及其制备方法
CN113480324A (zh) 一种粉煤灰和冶金废渣制备的发泡陶瓷及其制备方法
CN110144194B (zh) 一种粉煤灰基固-固复合相变储能发热材料及其制备方法
CN107940782B (zh) 一种低成本的太阳能热发电显热-潜热复合储热陶瓷及其制备方法
CN113896563B (zh) 一种利用硼泥制备高强度发泡陶瓷材料的方法及发泡陶瓷材料
CN106318338A (zh) 原位合金‑氧化物复相蓄热耐火材料及其制备方法
CN108503338A (zh) 一种利用粉煤灰制备高强度发泡陶瓷材料的方法
CN113716940A (zh) 一种新型的蓄热砖及制备方法
CN107266035A (zh) 一种以铜渣为原料的陶瓷基储热材料及其制备方法
CN107500748A (zh) 一种镁铝尖晶石‑石墨烯耐火材料制品及其制备工艺
CN102633426A (zh) 一种利用工业赤泥生产微晶泡沫保温板材的方法
CN117285335B (zh) 高温相变储能陶瓷材料及其制备方法
CN106431434A (zh) 一种闭孔型矾土基莫来石材料及其制备方法
CN111533567B (zh) 一种石墨耐火材料板及生产工艺
CN116535233B (zh) 多孔高强建筑陶瓷板材、多孔高强调温建筑陶瓷板材及其制备方法
CN104829262A (zh) 一种耐高温高压复合材料隔热板及其制造方法
CN105541371B (zh) 一种利用油井土和废玻璃制备的泡沫陶瓷及其方法
CN115710136B (zh) 一种中空保温陶粒及其制备方法
CN104446459A (zh) 用于钨钼烧结中频炉的氧化锆空心球隔热制品的制备方法
CN102206084B (zh) 高荷软低容重硅质隔热制品及其制备方法
CN117362002B (zh) 以固废为原料的高温相变蓄热陶瓷砖及其制备方法
CN104072160B (zh) 超低气孔莫来石砖

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant