CN116396225A - 锌空气电池用金属有机框架材料及其配体和应用 - Google Patents

锌空气电池用金属有机框架材料及其配体和应用 Download PDF

Info

Publication number
CN116396225A
CN116396225A CN202310644724.9A CN202310644724A CN116396225A CN 116396225 A CN116396225 A CN 116396225A CN 202310644724 A CN202310644724 A CN 202310644724A CN 116396225 A CN116396225 A CN 116396225A
Authority
CN
China
Prior art keywords
zinc
ligand
mof
metal organic
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310644724.9A
Other languages
English (en)
Other versions
CN116396225B (zh
Inventor
赵礼义
李衍初
许名飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Zhuo Cai Xin Yan Technology Co ltd
Original Assignee
Jilin Zhuo Cai Xin Yan Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Zhuo Cai Xin Yan Technology Co ltd filed Critical Jilin Zhuo Cai Xin Yan Technology Co ltd
Priority to CN202310644724.9A priority Critical patent/CN116396225B/zh
Publication of CN116396225A publication Critical patent/CN116396225A/zh
Application granted granted Critical
Publication of CN116396225B publication Critical patent/CN116396225B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/08Radicals containing only hydrogen and carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

锌空气电池用金属有机框架材料及其配体和应用。本发明属于储能领域。本发明开发了一种具有特定结构的有机配体以及基于该配体的金属有机框架材料MOF‑ET21,经过煅烧碳化后,得到含有富氮碳层的双功能催化剂MOF‑ET21/NC,该催化剂具备导电性高、催化活性位点多的优势,将其应用于锌空气电池领域中,有助于实现高效氧还原反应和氧析出反应。此外,该空气电池的开路电压电位为1.62 V,在经过循环后,仍然保持了良好的循环稳定性,在锌空气电池领域中具有优异的发展前景。

Description

锌空气电池用金属有机框架材料及其配体和应用
技术领域
本发明属于储能领域,具体涉及一种锌空气电池用金属有机框架材料及其配体和应用。
背景技术
近年来,随着经济的快速发展,人们对能源的需求量日益增加,传统的化石燃料面临着严峻的资源短缺问题,此外,大量使用化石燃料还会对环境造成严重的污染,面对这些问题,人们急需将传统化石能源转变为清洁高效的可持续能源。因此,探索绿色可再生能源及新型储能技术便成为缓解能源危机和环境污染的有效途径。而作为新一代的储能装置,锌空气电池凭借其优异的经济性、潜在的高能量密度以及良好的安全性而受到科研界的广泛关注。
锌空气电池是由金属锌电极、隔膜、空气电极和碱性电解质组成,具有开发循环寿命长、能量效率高等特点。锌空气电池在放电过程中,空气中的氧气与金属锌在电解质中发生氧析出反应(OER),产生电能和氧化锌;在充电过程中,发生氧还原反应(ORR),生成氧气和金属锌,从而保持充放电反应的循环不断。但是目前锌空气电池受限于空气电极的氧还原反应和氧析出反应的反应速度,导致锌空气电池的充放电寿命较短,能量效率较低,已严重阻碍了锌空气电池的商业化进程,而空气电极催化剂可以有效地加快ORR和OER反应的进行,所以寻找高效、稳定的双功能催化剂对于提升锌空气电池的实际性能至关重要。
金属有机框架材料(Metal-Organic Frameworks,MOFs)是一类由金属离子或金属团簇与有机配体,通过配位键自组装而成的多孔晶体材料,具有结构的可调节性、高孔径率、功能可设计性等特点,是催化、储能、气体吸附分离等领域有前景的材料。MOFs具有的多孔结构,能大限度的暴露活性位点,提高材料的比表面积和导电性,改善电催化性能,被认为是ORR和OER催化剂的可选择材料,但现有MOFs对于氧还原反应和氧析出反应的反应速度的提高仍然有限,因此开发电催化性能优异的MOFs是该领域需要攻克的重要难题。
发明内容
为了克服现有技术的不足,本发明开发了一种具有特定结构的有机配体以及基于该配体的金属有机框架材料MOF-ET21,经过煅烧碳化后,得到含有富氮碳层(NC层)的双功能催化剂MOF-ET21/NC,该催化剂具备导电性高、催化活性位点多的优势,将其应用于锌空气电池领域中,有助于实现高效氧还原反应和氧析出反应。
本发明的目的是通过如下技术方案来完成的:
本发明的目的之一是提供一种金属有机框架材料配体,所述配体具有以下结构:
Figure SMS_1
本发明的目的之二在于提供一种上述配体的制备方法,所述配体的制备方法按以下步骤进行:
S1:将5,6-二羟基基苯并咪唑溶于四氯化碳中,于冰盐浴中冷却至0℃,再加入溴和氯化铝,然后从冰盐浴中取出,加热至25℃,并在该温度下反应16小时,反应结束后,用冰水进行骤冷,然后萃取有机相,并对其进行水洗和干燥,得到中间体;
S2:向容器中加入中间体、3-氨基-4-硼苯甲酸、1,4-二氧六环和碳酸钾,然后脱气50分钟,再加入四(三苯基膦)钯,密封后于110℃油浴中反应48小时,反应结束后冷却至25℃,然后先萃取,合并有机相后进行纯化,得到配体。
进一步限定,S2中纯化是以己烷和二氯甲烷按5:1的体积比为洗脱剂进行硅胶柱层析。
本发明的目的之三在于提供一种基于上述配体的金属有机框架材料,所述金属有机框架材料化学式为[Co2Zn2L],简称为MOF-ET21,其中L为上述配体。
本发明的目的之四在于提供一种上述金属有机框架材料的制备方法,所述制备方法按以下步骤进行:
S1:将上述配体溶解在甲醇中,然后加入Zn(NO3)2·6H2O的甲醇溶液,搅拌反应12h,离心、洗涤、干燥,得到固体产物;
S2:将固体产物超声分散于正己烷中,然后在超声条件下滴加Co(NO3)2·6H2O的甲醇溶液,搅拌2h,离心、洗涤、干燥,得到金属有机框架材料。
本发明的目的之五在于提供一种上述金属有机框架材料的应用,所述金属有机框架材料用于制备空气电极用双功能催化剂。
本发明的目的之六在于提供一种双功能催化剂MOF-ET21/NC,所述双功能催化剂MOF-ET21/NC由上述金属有机框架材料经煅烧碳化,得到含有富氮碳层(NC层)的双功能催化剂MOF-ET21/NC。
本发明的目的之七在于提供一种双功能催化剂MOF-ET21/NC的制备方法,所述双功能催化剂MOF-ET21/NC的制备方法按以下步骤进行:
将上述金属有机框架材料放置管式炉中,在氮气氛围下,1000℃下煅烧2h,得到含有富氮碳层(NC层)的双功能催化剂MOF-ET21/NC。
进一步限定,升温速率为5℃/min。
本发明的目的之八在于提供一种空气电极,所述空气电极由上述双功能催化剂MOF-ET21/NC负载的玻碳电极构成。
本发明的目的之九在于提供一种空气电极的制备方法,所述双功能催化剂MOF-ET21/NC的制备方法按以下步骤进行:
将上述双功能催化剂MOF-ET21/NC均匀分散在Nafion的乙醇溶液中,然后涂覆于玻碳电极表面,得到空气电极。
本发明的目的之十在于提供一种空气电极的应用,所述空气电极应用于锌空气电池领域。
本发明与现有技术相比具有的显著效果:
本发明开发了一种具有特定结构的有机配体以及基于该配体的金属有机框架材料MOF-ET21,再通过煅烧获得MOF-ET21/NC催化剂,该催化剂具备导电性高、催化活性位点多的优势,将其应用于锌空气电池领域中,有助于实现高效氧还原反应和氧析出反应。此外,该空气电池的开路电压电位为1.62 V,在经过循环后,仍然保持了良好的循环稳定性,在锌空气电池领域中具有优异的发展前景。
附图说明
图1为本发明中金属有机框架材料配体的合成路线图;
图2为本发明实施例中中间体的核磁氢谱表征图;
图3为本发明实施例中中间体的核磁碳谱表征图;
图4为本发明实施例中中间体的质谱表征图;
图5为本发明实施例中配体的核磁氢谱表征图;
图6为本发明实施例中配体的核磁碳谱表征图;
图7为本发明实施例中配体的质谱表征图;
图8为本发明中空气电极的氧还原性能测试图;
图9为本发明中空气电极的氧析出性能测试图;
图10为本发明中锌空气电池的开路电压测试图;
图11为本发明中锌空气电池的放电极化曲线测试图;
图12为本发明中锌空气电池的循环性能测试图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
下述实施例中所使用的实验方法如无特殊说明均为常规方法。所用材料、试剂、方法和仪器,未经特殊说明,均为本领域常规材料、试剂、方法和仪器,本领域技术人员均可通过商业渠道获得。
下述实施例中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
本发明所述“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
下述实施例中所用5,6-二羟基基苯并咪唑(CAS:102169-73-3)、3-氨基-4-硼苯甲酸(CAS:116378-39-3)均从Sigma-Aldrich公司直接采购获得。
实施例:
金属有机框架材料MOF-ET21的合成路线如说明书附图1所示。具体的制备方法按以下步骤进行:
第一步、配体的合成:
S1、中间体的合成:
将5,6-二羟基基苯并咪唑(0.75克,5.0毫摩尔)溶于四氯化碳(15毫升)中。然后将溶液在冰盐浴中冷却至0℃,再将溴(1.07克,0.34毫升,6.7毫摩尔)和氯化铝(0.73克,5.5毫摩尔)加入到溶液中。从冰盐浴中取出,将反应混合物加热至25℃。反应16小时后,用冰水将溶液骤冷。然后将有机层用二氯甲烷萃取,再用水洗涤,最后用硫酸氢钠干燥,得到0.62克白色固体,即为中间体,收率为40%。
核磁表征鉴定结果:
氢谱(如图2所示):1H NMR (400 MHz, DMSO):δ8.05 (s, 1 H), 3.85 (s, 1 H),3.59 (s, 1 H).
碳谱(如图3所示):13C NMR (100 MHz, DMSO):δ144.26, 143.44, 139.18,131.12, 128.90, 103.39, 98.62..
质谱表征结果(如图4所示):
ESI(m/z): [M+H]+Calcd. for C7H4Br2N2O2, 307.93; Found, 308.67.
元素分析测试结果:
Calcd. for C7H4Br2N2O2, C, 27.30, H, 1.31, O, 10.39; Found, C, 28.12,H, 2.01, O, 11.06.
根据以上分析数据可知,获得的中间体的结构为:
Figure SMS_2
S2、配体的合成:
向三口瓶中加入中间体(0.63克,2.03 毫摩尔)、3-氨基-4-硼苯甲酸(0.81克,4.46毫摩尔)、30毫升1,4-二氧六环和碳酸钾(2.24克,16.2毫摩尔),脱气50分钟。然后加入四(三苯基膦)钯(469毫克,406微摩尔),密封并放置在110℃油浴中反应48小时。反应结束后,将混合物冷却至25℃,用乙酸乙酯萃取,每次50毫升,萃取3次。然后将有机相合并,并用硫酸钠干燥,最后以己烷/二氯甲烷(体积比=5:1)为洗脱剂进行硅胶柱层析,得到0.71克白色固体,即为配体,收率为83 %。
核磁表征鉴定结果:
氢谱(如图5所示):1H NMR (400 MHz, DMSO):δ8.07 (d, 2 H), 7.90 (d, 1 H),7.78 (d, 2 H), 7.51 (m,2 H), 6.28 (d, 2 H), 5.40 (d, 2 H).
碳谱(如图6所示):13C NMR (100 MHz, DMSO):δ167.22, 149.01, 148.49,146.22, 144.91, 142.77, 136.77, 134.72, 131.39, 129.63, 129.36, 126.14,126.07, 124.12, 117.20, 114.45, 111.49.
质谱表征结果(如图7所示):
ESI(m/z): [M+H]+Calcd. for C21H16N4O6,420.38;Found, 421.29.
元素分析测试结果:
Calcd. for C21H16N4O6, C, 60.00, H, 3.84, O, 22.83; Found, C, 60.97, H,4.27, O, 23.65.
根据以上分析数据可知,获得的配体的结构为:
Figure SMS_3
第二步、MOF-ET21的合成:
S1:先将1.97克第一步得到的配体溶解在150毫升甲醇中形成溶液A,然后将1.69克Zn(NO3)2·6H2O溶解在150毫升甲醇中形成溶液B,再将溶液A和溶液B混合均匀。然后将混合物搅拌反应12小时,离心,得到的沉淀物用甲醇洗涤,然后在60℃真空中干燥,最终得到固体产物。
S2:先将S1得到的200毫克固体产物在24毫升正己烷中超声分散1小时形成悬浮液C。然后将29毫克Co(NO3)2·6H2O溶解于280微升甲醇中,超声条件下滴加入悬浮液C中。搅拌2小时。离心,得到的沉淀物用甲醇洗涤,在60℃真空干燥,得到金属有机框架材料,记为MOF-ET21。
检测试验一、多孔金属有机框架材料MOF-ET21的表征:
将上述实施例合成的MOF-ET21晶体存在玻璃毛细管中。采用单晶体X射线进行了晶体结构的测试,仪器为Bruker-ApexⅡ型CCD探测器,用Cu Kα (λ=1.54178Å )X射线源采集。数据是SADABS程序对吸收进行校正,没有对消光或衰变进行校正。用SHELXTL软件包直接求解,测试结果请见表1。
表1
Figure SMS_4
应用例:
本发明实施例制备的金属有机框架材料MOF-ET21在锌空气电池中的应用,具体如下:
第一步、双功能催化剂MOF-ET21/NC的合成
将上述实施例合成的MOF-ET21放置管式炉中,在氮气氛围下,1000℃下煅烧2小时,升温速率为5℃/min,经过煅烧碳化后,得到产物即为含有富氮碳层(NC层)的双功能催化剂MOF-ET21/NC。
第二步、空气电极的制备
将5毫克MOF-ET21/NC催化剂均匀分散在500微升含有0.25 wt %的全氟磺酸型聚合物(Nafion)的乙醇溶液中,形成匀浆,取10微升均匀分散的匀浆,滴在表面光滑且直径为5毫米的玻碳电极上,催化剂材料负载量为2.5 mg·cm-2
应用对比例:将铂碳(Pt/C)和RuO2作为催化剂材料负载于玻碳电极上作为对比例,制备方法与应用例相同。
检测试验二、催化活性测试
将0.1 mol L-1的KOH 溶液倒入电解池中,预先通入30分钟氧气使其内部的氧气达到饱和状态,将应用例电极缓慢浸入0.1 mol L-1的KOH电解池溶液,操作过程中需要防止电极之间产生气泡。采用标准的三电极体系,以Ag/AgCl电极作为参比电极,以碳棒作为反电极,以应用例制得的电极和应用对比例的电极作为工作电极。然后利用公式:ERHE=EAg/AgCl+0.196 + (0.0591×pH) V,将参比电极转化成可逆氢电极(Reversible hydrogenelectrode,RHE)。
氧还原性能测试:采用旋转圆盘电极(RDE710 RDE)在0.1 mol L-1KOH溶液中下进行LSV测试,扫速为5 mV s-1,转速为1600 rpm,并且与商用铂炭催化剂(Pt/C)作催化剂的电极进行对比。
测试结果如说明书附图8所示,在转速为1600 rpm条件下的 LSV曲线,其中MOF-ET21/NC的起始电位和半波电位分别为1.06 V和0.87 V vs. RHE,而Pt/C催化剂作为评价空气电池氧还原反应(ORR)催化剂性能的参考标准,其起始电位和半波电位分别为0.96 V和0.74 V vs. RHE,表明MOF-ET21/NC具有更优异的的ORR催化活性。
(2)氧析出性能测试:采用旋转圆盘圆环电极(E7R9 RRDE)在0.1 mol L-1KOH溶液中下进行LSV测试,测试的电压范围为1.3~1.7 V vs. RHE,扫速为5 mV s-1,转速为1600rpm,并且与公认的高性能OER催化剂的RuO2进行对比。
测试结果如说明书附图9所示,MOF-ET21/NC达到10 mA cm-2需要的过电位更小,证明MOF-ET21/NC具有比RuO2更优越的OER催化活性。
检测试验三、锌空气电池性能测试
锌空气电池性能测试使用的仪器是CHI760E电化学工作站。锌空气电池的组装:以抛光后的规则的锌板为阳极,负载催化剂的空气电极(上述应用例和应用对比例制得的)为阴极,将规格为10 mL的离心管锯成两段,用环氧树脂胶水将圆管与空气电极粘接到一起,顶部预留5 cm直径的小孔供空气进出。装入0.1 mol L-1的KOH作为锌空气电池的电解液,气体分散层(PLM0)购自长沙Spring新能源公司,进行封口。
(1)开路电压测试:在扫描速率为5 mV s-1,测试时间为600 s的条件下分别对以MOF-ET21/NC为催化剂的锌空气电池和以Pt/C+RuO2催化剂为阴极的锌空气电池进行开路电压测试。
测试结果如说明书附图10所示,以MOF-ET21/NC为阴极催化剂组装的锌空气电池开路电压电位1.62 V,高于以Pt/C+RuO2为催化剂阴极的锌空气电池(1.39V)。
(2)放电极化曲线测试:采用线性扫描伏安法,放电极化曲线测试范围是0.4~1.5V,扫描速率是5 mV s-1。由放电极化曲线,根据公式 P=J×V可以得到功率密度曲线,其中J为电流密度,V为放电电压。
测试结果如说明书附图11所示,以MOF-ET21/NC作为阴极催化剂的功率密度为275.3 mW cm−2,高于以Pt/C+RuO2为催化剂阴极的锌空气电池(151.4 mW cm−2),表明以MOF-ET21/NC作为阴极催化剂的空气电池具有更优异的倍率性能。
(3)循环稳定性测试:分别将以MOF-ET21/NC和Pt/C+RuO2为阴极催化剂的锌空气电池,在电流密度为5 mA cm-2下进行循环测试,放电为30分钟,充电为30分钟。
测试结果如说明书附图12所示,以MOF-ET21/NC为阴极催化剂的锌空气电池可稳定运行700小时,且充放电电位差几乎没有衰减,而以Pt/C+RuO2为阴极催化剂的锌空气电池仅仅可稳定运行237小时,充分证明以MOF-ET21/NC为阴极催化剂的锌空气电池具有良好的循环稳定性。
以上所述,仅为本发明较佳的具体实施方式,这些具体实施方式都是基于本发明整体构思下的不同实现方式,而且本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (6)

1.一种金属有机框架材料配体,其特征在于,所述配体具有以下结构:
Figure QLYQS_1
2.一种金属有机框架材料,其特征在于,其化学式为[Co2Zn2L],简称为MOF-ET21,其中L为权利要求1所述的配体。
3.权利要求2所述的金属有机框架材料的应用,其特征在于,它用于制备空气电极用双功能催化剂。
4.一种双功能催化剂MOF-ET21/NC,其特征在于,它由权利要求2所述的金属有机框架材料经煅烧碳化,得到含有富氮碳层的双功能催化剂MOF-ET21/NC。
5.一种空气电极,其特征在于,它由权利要求4所述的双功能催化剂MOF-ET21/NC负载的玻碳电极构成。
6.权利要求5所述的空气电极的应用,其特征在于,它应用于锌空气电池领域。
CN202310644724.9A 2023-06-02 2023-06-02 锌空气电池用金属有机框架材料及其配体和应用 Active CN116396225B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310644724.9A CN116396225B (zh) 2023-06-02 2023-06-02 锌空气电池用金属有机框架材料及其配体和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310644724.9A CN116396225B (zh) 2023-06-02 2023-06-02 锌空气电池用金属有机框架材料及其配体和应用

Publications (2)

Publication Number Publication Date
CN116396225A true CN116396225A (zh) 2023-07-07
CN116396225B CN116396225B (zh) 2023-10-20

Family

ID=87016393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310644724.9A Active CN116396225B (zh) 2023-06-02 2023-06-02 锌空气电池用金属有机框架材料及其配体和应用

Country Status (1)

Country Link
CN (1) CN116396225B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101326675A (zh) * 2005-12-06 2008-12-17 雷沃尔特科技有限公司 双功能空气电极
CN103477480A (zh) * 2011-01-28 2013-12-25 陈忠伟 用于金属空气蓄电池/燃料电池的核壳结构双功能催化剂
CN110272035A (zh) * 2019-06-28 2019-09-24 江西理工大学 一种以金属离子催化有机配体制备碳纳米笼的方法及其制备的碳纳米笼和应用
CN115232326A (zh) * 2022-09-20 2022-10-25 吉林中科研伸科技有限公司 一种金属有机框架材料及其制备和其在电极材料中的应用
CN116143618A (zh) * 2023-04-19 2023-05-23 吉林省卓材新研科技有限公司 水系锌离子电池用金属有机框架材料及配体和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101326675A (zh) * 2005-12-06 2008-12-17 雷沃尔特科技有限公司 双功能空气电极
CN103477480A (zh) * 2011-01-28 2013-12-25 陈忠伟 用于金属空气蓄电池/燃料电池的核壳结构双功能催化剂
CN110272035A (zh) * 2019-06-28 2019-09-24 江西理工大学 一种以金属离子催化有机配体制备碳纳米笼的方法及其制备的碳纳米笼和应用
CN115232326A (zh) * 2022-09-20 2022-10-25 吉林中科研伸科技有限公司 一种金属有机框架材料及其制备和其在电极材料中的应用
CN116143618A (zh) * 2023-04-19 2023-05-23 吉林省卓材新研科技有限公司 水系锌离子电池用金属有机框架材料及配体和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANGTAO JIA, ET AL.: "Access to Highly Efficient Energy Transfer in Metal−Organic Frameworks via Mixed Linkers Approach", JACS, vol. 142, pages 8580 - 8540 *
LUIS GUTIÉRREZ-ARZALUZ, ET AL.: "Directional Exciton Migration in Benzoimidazole-Based Metal-Organic Frameworks", THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, vol. 12, pages 4917 - 4927 *
XIAOXIA LV, ET AL.: "High CO2/N2 and CO2/CH4 selectivity in a chiral metal–organic framework with contracted pores and multiple functionalities", CHEM. COMMUN., vol. 20 *

Also Published As

Publication number Publication date
CN116396225B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
CN113270595B (zh) 一种基于mof制备的氮掺杂碳载非贵金属纳米催化剂
CN111001427B (zh) 一种钴氮共掺杂碳基电催化剂材料及制备方法
US7005401B2 (en) Method of preparation of non-platinum composite electrocatalyst for cathode of fuel cell
CN108923051A (zh) 一种封装金属钴纳米颗粒的氮掺杂碳纳米管复合型催化剂及其应用
CN113563551B (zh) 一种基于金属卟啉的共价有机框架材料及其制备方法与应用
CN110137516B (zh) 铁锡合金负载的硫氮共掺杂碳电催化剂及制备方法
CN111342019B (zh) 一种锡基金属-有机框架及其制备方法和作为锂离子电池负极材料的应用
CN109133014A (zh) 一种CoN3@N-C复合电催化剂的制备方法
CN108080015A (zh) 基于希夫碱-mof的功能化碳材料的制备及作为电催化剂的应用
CN116143618B (zh) 水系锌离子电池用金属有机框架材料及配体和应用
CN110247071A (zh) 一种正极材料、及其制备方法和用途
CN110862548A (zh) 基于mil-53的金属有机凝胶催化剂的制备方法及其新用途
CN109082676A (zh) 一种Pd/VN空心纳米球电催化剂及其制备方法和应用
CN112002909B (zh) 一种基于Zn-Cu-N共掺杂碳复合材料的制备方法
CN116396225B (zh) 锌空气电池用金属有机框架材料及其配体和应用
CN115050972B (zh) 一种多面体碳壳层负载过渡金属基氢氧化催化剂载体及其制备方法和应用
CN111354951A (zh) 基于包裹型卟啉的金属硫化材料的合成方法和用途
CN114361470B (zh) 一种氮掺杂MXene负载酞菁钴复合材料的制备方法和应用
CN112259750B (zh) 一种聚离子液体功能化的钴氮负载泡沫镍复合材料的制备方法和应用
CN109888316B (zh) 氮掺杂石墨烯制备催化剂的方法、工作电极及其工作电极的制备方法
CN101916868B (zh) 一种蒙脱土稳定钯催化剂的方法
CN114093678A (zh) 一种过渡金属磷化物纳米片电极材料的制备方法
CN106861699A (zh) 一种析氧反应电催化剂及其制备方法
CN112853377A (zh) 一种双功能无金属氮掺杂碳催化剂的制备方法及其应用
CN115939424B (zh) 一种负载型亚纳米铁硫簇催化剂、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant