CN116072808A - 包括中间层的全固态电池及其制造方法 - Google Patents

包括中间层的全固态电池及其制造方法 Download PDF

Info

Publication number
CN116072808A
CN116072808A CN202211368974.6A CN202211368974A CN116072808A CN 116072808 A CN116072808 A CN 116072808A CN 202211368974 A CN202211368974 A CN 202211368974A CN 116072808 A CN116072808 A CN 116072808A
Authority
CN
China
Prior art keywords
nitride
metal
battery according
solid battery
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211368974.6A
Other languages
English (en)
Inventor
林佳炫
金润星
李尚宪
崔胜皓
吴知勋
崔壮旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
SNU R&DB Foundation
Kia Corp
Original Assignee
Hyundai Motor Co
SNU R&DB Foundation
Kia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co, SNU R&DB Foundation, Kia Corp filed Critical Hyundai Motor Co
Publication of CN116072808A publication Critical patent/CN116072808A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种包括中间层的全固态电池及其制造方法。所述全固态电池包括:负极集电体;位于所述负极集电体上的中间层;位于所述中间层上的固体电解质层;位于所述固体电解质层上的正极活性物质层;以及位于所述正极活性物质层上的正极集电体,所述中间层包括:金属;以及金属氮化物。

Description

包括中间层的全固态电池及其制造方法
技术领域
本发明涉及一种包括具有金属和金属氮化物的中间层的全固态电池及其制造方法。
背景技术
全固态电池是包括接合到正极集电体的正极层、接合到负极集电体的负极层以及设置在正极层和负极层之间的固体电解质层的三阶堆叠体。通常,全固态电池的负极层包括石墨、硅等活性物质和固体电解质。所述固体电解质在负极层中用于锂离子的移动。然而,相比锂离子电池的电解液,所述固体电解质的比重较大,因此,导致负极层中的活性物质的比率降低,因此全固态电池的实际能量密度比锂离子电池低。
近来,正在对无负极全固态电池进行研究,所述无负极全固态电池去除了负极层,并在充电时将移动到负极集电体侧的锂离子直接析出到负极集电体。然而,存在于负极集电体和固体电解质层之间的物理空隙导致不均匀的电子流动,并由此导致锂局部析出。因此,引入中间层,所述中间层填充负极集电体和固体电解质层之间的空隙,并诱导锂的均匀的沉积。因此,所述中间层需要能够均匀地移动锂离子,同时还应与锂金属亲和。
现有技术文献
专利文献
(专利文献0001)韩国公开专利第10-2018-0091678号
发明内容
(一)要解决的技术问题
本发明旨在提供一种在充电时使锂均匀地沉积在负极集电体上的全固态电池。
本发明的目的不限于上述目的。本发明的目的将通过以下的描述而变得更加明确,并且将通过记载在权利要求书中的方案和其组合来实现。
(二)技术方案
根据本发明的一个实施例的全固态电池可以包括:负极集电体;位于所述负极集电体上的中间层;位于所述中间层上的固体电解质层;位于所述固体电解质层上的正极活性物质层;以及位于所述正极活性物质层上的正极集电体,所述中间层可以包括:金属;以及金属氮化物。
所述金属可以包括从由银(Ag)、锌(Zn)、锰(Mg)、铋(Bi)、锡(Sn)和它们的组合形成的组中选择的至少一种。
所述金属氮化物可以包括非共享电子对。
所述金属氮化物可以包括从由氮化钛(TiN,Titanium nitride)、氮化铝(AlN,aluminum nitride)、氮化钴(Co3N2,cobalt(II)nitride)、氮化镁(Mg3N2,magnesiumnitride)、氮化硅(Si3N4,silicon nitride)、氮化锌(Zn3N2,zinc nitride)、氮化铌(NbN、niobium nitride)、氮化铜(Cu3N,copper(I)nitride)和氮化锡(SnN,tin nitride)和它们的组合形成的组中选择的至少一种。
所述金属和金属氮化物的质量比可以是1:9至5:5。
所述金属氮化物的D50粒度(D1)和金属的D50粒度(D2)之比(D1/D2)可以是0.2至0.5。
所述金属的D50粒度可以是30nm至1000nm。
所述金属氮化物的D50粒度可以是10nm至200nm。
所述中间层可以包括:90重量%至99重量%的金属和金属氮化物;以及1重量%至10%重量的粘合剂。
所述中间层的厚度可以是0.5μm至20μm。
可以在所述负极集电体和中间层之间进一步包括锂层,并且所述锂层可以包括从由锂、所述金属和锂的合金以及它们的组合形成的组中选择的至少一种。
所述负极集电体可以包括从由镍、不锈钢、钛、钴、铁和它们的组合形成的组中选择的至少一种。
所述固体电解质层可以包括从由氧化物类固体电解质、硫化物类固体电解质、高分子电解质和它们的组合形成的组中选择的至少一种。
所述正极活性物质层可以包括正极活性物质和固体电解质,所述正极活性物质可以包括从由氧化物活性物质、硫化物活性物质和它们的组合形成的组中选择的至少一种,所述固体电解质可以包括从由氧化物类固体电解质、硫化物类固体电解质、高分子电解质和它们的组合形成的组中选择的至少一种。
正极集电体可以包括从由锰、铝、不锈钢、铁和它们的组合形成的组中选择的至少一种。
根据本发明的一个实施例的全固态电池的制造方法可以包括以下步骤:准备包括金属和金属氮化物的混合物;制造包括所述混合物、粘合剂和溶剂的浆料;将所述浆料涂覆在基材上以形成中间层;以及形成依次堆叠负极集电体、中间层、固体电解质层、正极活性物质层以及正极集电体的结构物。
所述混合物可以包括质量比为1:9至5:5的所述金属和金属氮化物。
可以通过干磨所述金属和金属氮化物来准备混合物。
所述浆料可以以所述混合物和粘合剂的整体重量为基准,包括90重量%至99重量%的所述混合物和1重量%至10%重量的所述粘合剂。
(三)有益效果
根据本发明,可以获得在充电时使锂均匀地沉积在负极集电体上的全固态电池。
本发明的效果不限于上述所提及的效果。应理解为本发明的效果包括在下述描述中可推导出的所有效果。
附图说明
图1示出根据本发明的全固态电池。
图2示出根据本发明的全固态电池的充电状态。
图3是对制造例1的混合物的扫描电子显微镜和能量分散光谱(Scanningelectron microscopy-energy dispersive spectroscopy,SEM-EDS)分析结果。
图4是对根据制造例1的混合物的X射线衍射(X-ray diffraction,XRD)分析结果。
图5是通过扫描电子显微镜(SEM)分析根据制造例2的中间层的表面的结果。
图6a是根据实施例1的半电池的第一次充放电循环的特性的测量结果。
图6b是根据实施例1的半电池的第45次充放电循环的特性的测量结果。
图7是基于根据实施例1的半电池的充放电循环的库伦效率(coulombicefficiency)的测量结果。
图8是根据实施例2的对称电池的寿命的评价结果。
附图标记说明
10:负极集电体           20:中间层
30:固体电解质层         40:正极活性物质层
50:正极集电体           60:锂层
具体实施方式
上述的本发明的目的、其他目的、特征和优点将通过与附图相关的以下的优选实施例来容易理解。然而,本发明不限于在此描述的实施例,还可以具体化为其他形式。并且,在此介绍的实施例是为了使公开的内容更加彻底和完整,并且为了能够充分地向本领域普通技术人员传达本发明的思想而提供。
在描述每个附图时,对相似的组件使用了相似的附图标记。对于附图,结构的尺寸是为了本发明的明确性而相比实际情况放大示出的。第一、第二等术语可以用于描述各种组件,但所述组件不应被所述术语所限制。所述术语仅用于区分一个组件和另一组件。例如,在不脱离本发明的权利要求范围的情况下,第一组件可以被命名为第二组件,相似地,第二组件也可以被命名为第一组件。除非在上下文中有明确说明,否则单数的表述包括复数的表述。
在本说明书中,“包括”或“具有”等术语旨在指定记载在说明书上的特征、数字、步骤、操作、组件、部件或它们的组合的存在,不应理解为事先排除一个以上的其他特征或数字、步骤、操作、组件、部件或它们的组合的存在或附加可能性。另外,当描述层、膜、区域、板等部分位于另一部分“上”时,不仅包括“直接位于另一部分上”的情况,还包括中间存在其他部分的情况。相反,当描述层、膜、区域、板等部分位于另一部分“下部”时,不仅包括“直接位于另一部分下”的情况,还包括中间存在其他部分的情况。
除非另有说明,在本说明书中表示使用的成分、反应条件、聚合物组合物和掺和物的量的所有数字、值和/或表述均为反映了从本质上与这些数字不同的数字中获取这些值时所产生的测量的各种不确定性的近似值,因此,应理解为在所有情况下均由术语“约”来修饰。另外,在本记载中公开数值范围时,这些范围是连续的,除非另有说明,否则包括从这些范围的最小值到最大值的所有值。进一步地,当这些范围表示整数时,除非另有说明,否则包括从最小值到最大值的所有整数。
图1示出根据本发明的全固态电池。参照图1,所述全固态电池可以由负极集电体10、中间层20、固体电解质层30、正极活性物质层40和正极集电体50堆叠形成。
所述负极集电体10可以是具有导电性的板装基材(substrate)。具体地,所述负极集电体10可以具有片形状或薄膜形状。
所述负极集电体10可以包括不与锂发生反应的材料。具体地,所述负极集电体10可以包括从由镍、不锈钢、钛、钴、铁和它们的组合形成的组中选择的至少一种。
所述中间层20可以包括金属和金属氮化物。
所述金属M可以与在全固态电池充电时从正极活性物质层40通过固体电解质层30移动到所述中间层20的锂离子进行如下述反应式1的电化学反应。
[反应式1]
M+Li+→M-Li(合金)
所述金属与锂形成合金,从而诱导所述锂的均匀的沉积。
与锂进行合金反应的金属(Ag、Zn、Mg和Sn等)形成M-Li(LixMy)的合金相。
在将锂负极用作参照电极时,锂离子与电子发生反应并被析出为锂金属的电压为0V。所述金属在将锂负极用作参照电极时的相对电压为0.1V至0.2V。即,相比锂离子与电子相遇并转换为锂金属的反应,锂离子与所述金属相遇并形成合金的反应更占优势。因此,在充电时,在包括金属的中间层20中,锂离子与金属之间的反应比锂离子被析出为锂金属的反应优先发生。因此,在充电过程中形成充分的M-Li合金,这种现象带来能够将锂离子均匀地分散在中间层20内部的效果。如果没有中间层20,锂离子可以反应的部位(site)只有二维平面集电体。在集电体中也不是同时在各部分发生反应,而是电子集中在具有弯曲或结合的部分,因此使得锂金属局部生长。
另外,M-Li合金与锂离子非常亲和。在充电过程中形成的M-Li合金处于锂过盈的状态,因此可以降低锂被沉积时的能量。即,存在于中间层20的金属在比锂析出电压更高的电压下与锂离子优先反应。因此,锂离子可以在三维上均匀地分布在中间层20内部。
所述金属氮化物用作一种锂离子传递介质。具体地,所述金属氮化物包括具有非共享电子对的氮元素,由此,锂离子可以在中间层20内顺畅地移动。
图2示出根据本发明的全固态电池的充电状态。参照图2,所述全固态电池可以在负极集电体10和所述中间层20之间包括锂层60。
所述全固态电池在充电初期由锂离子通过固体电解质层30移动到中间层20。所述锂离子通过所述金属氮化物移动到负极集电体10侧,并且在此过程中与金属M反应从而在负极集电体10和中间层20之间形成M-Li合金。当继续充电时,锂以所述M-Li合金为中心均匀地沉积或析出,从而形成锂层60。当全固态电池放电时产生与上述过程相反的反应。即,所述全固态电池可以实现可逆的充电和放电。
所述金属为能够和锂形成合金的金属,可以包括从由银(Ag)、锌(Zn)、锰(Mg)、铋(Bi)、锡(Sn)和它们的组合形成的组中选择的至少一种。
所述金属氮化物包括具有非共享电子对的氮元素,可以包括从由氮化钛(TiN,Titanium nitride)、氮化铝(AlN,aluminum nitride)、氮化钴(Co3N2,cobalt(II)nitride)、氮化镁(Mg3N2,magnesium nitride)、氮化硅(Si3N4,silicon nitride)、氮化锌(Zn3N2,zinc nitride)、氮化铌(NbN、niobium nitride)、氮化铜(Cu3N,copper(I)nitride)、氮化锡(SnN,tin nitride)和它们的组合形成的组中选择的至少一种。
所述金属和金属氮化物的质量比可以是1:9至5:5。当所述金属和金属氮化物的质量比属于上述数值范围内时,所述中间层20的锂亲和性和锂离子传导性可以均匀地提高。具体地,当包括在所述中间层20的金属的质量比为1以上时,锂离子才可以均匀地分散在中间层20内部。
所述金属氮化物的D50粒度D1和金属的D50粒度D2之比D1/D2可以是0.2至0.5。其中,“D50粒度”是指,当通过粒度分析仪测量相应粉末的粒度分布时,累计百分比达到50%时的粒度。当所述D50粒度比D1/D2属于上述数值范围内时,所述中间层20可以具有在由所述金属氮化物形成的基质(matrix)中分布有金属的结构,上述结构可以有利于形成均匀的锂层60。
所述金属氮化物的D50粒度D1可以是10nm至200nm。所述金属的D50粒度D2可以是30nm至1000nm。可以基于所述金属的D50粒度D2适当调整所述金属氮化物的D50粒度D1,以使其符合上述粒度比D1/D2。当所述金属的D50粒度D2属于上述数值范围内时,可以与锂离子均匀地反应。另外,当所述金属的D50粒度D2超过1000nm时,在固体电解质层30的界面中产生的空隙的尺寸可能过大。
所述金属和金属氮化物可以不彼此化学结合。即,在所述中间层20中,所述金属和金属氮化物可以以简单混合的状态存在。当所述金属和金属氮化物化学结合时,所述金属可能难以与锂离子发生反应,并且根据所述金属氮化物的锂离子的移动可能变得困难。
所述中间层20可以进一步包括粘合剂。对所述粘合剂的类型不作特别限制,可以使用任意的粘合剂,只要不与所述金属和金属氮化物发生反应即可。例如,所述粘合剂可以包括聚偏二氟乙烯(Polyvinylidene fluoride,PVDF)、羧甲基纤维素(Carboxymethylcellulose,CMC)、聚氧化乙烯(Polyethylene oxide,PEO)、聚甲基丙烯酸甲酯(Polymethylmethacrylate,PMMA)和聚四氟乙烯(polytetrafluoroethylene,PTFE)等。
所述中间层20可以包括90重量%至99重量%的所述金属和金属氮化物以及1重量%至10%重量的所述粘合剂。其中,金属和金属氮化物的含量是指加上上述两种成分的含量。当所述粘合剂的含量不足1重量%时,所述中间层20可能难以涂覆在负极集电体10上,当超过10重量%时,可能妨碍所述中间层20中的锂离子的移动。
所述中间层20的厚度可以是0.5μm至20μm。当所述中间层20的厚度不足0.5μm时,可能无法完全填充固体电解质30和负极集电体10之间的空隙,当超过20μm时,能量密度可能降低。
所述固体电解质层30是位于所述正极活性物质层40和负极集电体10之间并负责锂离子的移动的结构。
所述固体电解质层30可以包括具有锂离子传导性的固体电解质。
所述固体电解质可以包括从由氧化物类固体电解质、硫化物类固体电解质、高分子电解质和它们的组合形成的组中选择的至少一种。然而,优选地,可以使用锂离子传导率高的硫化物类固体电解质。对所述硫化物类固体电解质不作特别限制,其可以是Li2S-P2S5、Li2S-P2S5-LiI、Li2S-P2S5-LiCl、Li2S-P2S5-LiBr、Li2S-P2S5-Li2O、Li2S-P2S5-Li2O-LiI、Li2S-SiS2、Li2S-SiS2-LiI、Li2S-SiS2-LiBr、Li2S-SiS2-LiCl、Li2S-SiS2-B2S3-LiI、Li2S-SiS2-P2S5-LiI、Li2S-B2S3、Li2S-P2S5-ZmSn(m、n是正数,Z是Ge、Zn、Ga中的一种)、Li2S-GeS2、Li2S-SiS2-Li3PO4、Li2S-SiS2-LixMOy(x、y是正数,M是P、Si、Ge、B、Al、Ga、In中的一种)、Li10GeP2S12等。
所述氧化物类固体电解质可以包括钙钛矿(perovskite)型LLTO(锂镧钛氧,Li3xLa2/3-xTiO3)、磷酸盐(phosphate)类NASICON(纳超离子导体)型LATP(磷酸钛锂铝,Li1+ xAlxTi2-x(PO4)3)等。
所述高分子电解质可以包括凝胶高分子电解质、固体高分子电解质等。
所述固体电解质层30可以进一步包括粘合剂。所述粘合剂可以包括丁二烯橡胶(Butadiene rubber)、丁腈橡胶(Nitrile butadiene rubber)、氢化丁腈橡胶(hydrogenated nitrile butadiene rubber)、聚偏二氟乙烯(Polyvinylidene fluoride,PVDF)、聚四氟乙烯(polytetrafluoroethylene,PTFE)和羧甲基纤维素(Carboxymethylcellulose,CMC)等。
所述正极活性物质层40是可逆地吸藏和释放锂离子的结构。所述正极活性物质40可以包括正极活性物质、固体电解质、导电体和粘合剂等。
所述正极活性物质可以是氧化物活性物质或硫化物活性物质。
所述氧化物活性物质可以是LiCoO2、LiMnO2、LiNiO2、LiVO2和Li1+xNi1/3Co1/3Mn1/3O2等岩盐层型活性物质、LiMn2O4和Li(Ni0.5Mn1.5)O4等尖晶石(spinel)型活性物质、LiNiVO4和LiCoVO4等反尖晶石(inverse spinel)型活性物质、LiFePO4、LiMnPO4、LiCoPO4和LiNiPO4等橄榄石(olivine)型活性物质、Li2FeSiO4和Li2MnSiO4等含硅活性物质、如LiNi0.8Co(0.2-x)AlxO2(0<x<0.2)的将过渡金属的一部分置换为不同种类的金属的岩盐层型活性物质、如Li1+xMn2-x-yMyO4(M是Al、Mg、Co、Fe、Ni、Zn中的至少一种且0<x+y<2)的将过渡金属的一部分置换为不同种类的金属的尖晶石型活性物质以及Li4Ti5O12等钛酸锂。
所述硫化物活性物质可以是铜谢弗雷尔(Chevrel)、硫化铁、硫化钴、硫化镍等。
所述固体电解质可以包括从由氧化物类固体电解质、硫化物类固体电解质、高分子电解质和它们的组合形成的组中选择的至少一种。然而,优选地,可以使用锂离子传导率高的硫化物类固体电解质。对所述硫化物类固体电解质不作特别限制,其可以是Li2S-P2S5、Li2S-P2S5-LiI、Li2S-P2S5-LiCl、Li2S-P2S5-LiBr、Li2S-P2S5-Li2O、Li2S-P2S5-Li2O-LiI、Li2S-SiS2、Li2S-SiS2-LiI、Li2S-SiS2-LiBr、Li2S-SiS2-LiCl、Li2S-SiS2-B2S3-LiI、Li2S-SiS2-P2S5-LiI、Li2S-B2S3、Li2S-P2S5-ZmSn(m、n是正数,Z是Ge、Zn、Ga中的一种)、Li2S-GeS2、Li2S-SiS2-Li3PO4、Li2S-SiS2-LixMOy(x、y是正数,M是P、Si、Ge、B、Al、Ga、In中的一种)、Li10GeP2S12等。
所述氧化物类固体电解质可以包括钙钛矿(perovskite)型LLTO(锂镧钛氧,Li3xLa2/3-xTiO3)、磷酸盐(phosphate)类NASICON(纳超离子导体)型LATP(磷酸钛锂铝,Li1+ xAlxTi2-x(PO4)3)等。
所述高分子电解质可以包括凝胶高分子电解质、固体高分子电解质等。
所述导电材料可以是碳黑(Carbon black)、导电石墨(Conducting graphite)、乙烯黑(Ethylene black)和石墨烯(Graphene)等。
所述粘合剂可以包括丁二烯橡胶(Butadiene rubber)、丁腈橡胶(Nitrilebutadiene rubber)、氢化丁腈橡胶(hydrogenated nitrile butadiene rubber)、聚偏二氟乙烯(Polyvinylidene fluoride,PVDF)、聚四氟乙烯(polytetrafluoroethylene,PTFE)和羧甲基纤维素(Carboxymethyl cellulose,CMC)等。
所述正极集电体50可以是具有导电性的板状的基材。具体地,所述正极集电体50可以具有片或薄膜的形状。
所述正极集电体50可以包括从由铟、铜、锰、铝、不锈钢、铁和它们的组合形成的组中选择的至少一种。
根据本发明的全固态电池的制造方法可以包括以下步骤:准备包括金属和金属氮化物的混合物,其中,所述金属氮化物包括非共享电子对;制造包括所述混合物、粘合剂和溶剂的浆料;将所述浆料涂覆在基材上以形成中间层;以及形成依次堆叠所述负极集电体、中间层、固体电解质层、正极活性物质层以及正极集电体的结构物。
以上已描述对所述制造方法中各个成分的内容,因此将其省略。
首先,可以干磨(dry milling)金属和金属氮化物以准备混合物。可以干磨金属和金属氮化物以均匀混合,使得所述中间层20可以有效发挥其功能。在所述干磨中,传递到所述金属和金属氮化物的能量应被调整至不会使上述两种成分发生反应并形成化学结合的程度。所述能量可以通过所述干磨的转数(RPM)、粉碎粒子的含量和密度、时间等来调整。
可以将如上所述准备的混合物和粘合剂一起投入到溶剂中,以制造浆料。
所述浆料可以以除了所述溶剂之外的所述混合物和粘合剂的整体重量为基准,包括90重量%至99重量%的所述混合物和1重量%至10重量%的所述粘合剂。
只要可以分散所述混合物和粘合剂,便可以使用任意的溶剂。例如,所述溶剂可以包括水、丙酮(acetone)、乙醇(ethanol)、N-甲基吡咯烷酮(N-methyl pyrrolidone,NMP)、二甲基亚砜(Dimehtyl sulfoxide,DMSO)和四氢呋喃(Tetrahydrofuran,THF)等。
在将所述混合物和粘合剂投入到溶剂之后,可以通过各种方法来处理以使所述混合物和粘合剂能够均匀地分散到所述溶剂中,从而制造所述浆料。例如,所述处理可以是照射超声波。
对照射所述超声波的条件不作特别限制,可以以不会影响到所述混合物和粘合剂的程度的强度进行照射。
对所述混合物和粘合剂的投入顺序不作特别限制,可以同时投入或在不同时间投入。
可以在基材上涂覆所述浆料以形成中间层。
所述基材可以是负极集电体或离型纸。具体地,可以将所述浆料直接涂覆在负极集电体上以形成中间层,或者可以将所述浆料涂覆在离型纸以形成中间层,并将其转印到负极集电体上。
之后,可以形成图1所示的具有堆叠结构的结构物。对结构物的形成方法不作特别限定,例如,可以在包括负极集电体和中间层的单位体上通过附接单独制造的固体电解质层、正极活性物质层和正极集电体来形成。
通过以下实施例对本发明的其他形式进行更详细地描述。下述实施例仅仅是用于帮助理解本发明的示例,本发明的范围不限于此。
制造例1-包括金属和金属氮化物的混合物
准备银(Ag)纳米粉末作为金属。准备氮化钛(TiN)粉末作为金属氮化物。将所述金属和金属氮化物以3:7的质量比投入到装置中并进行干磨(dry milling),以准备混合物。此时,所述金属氮化物和金属的粒度比D1/D2约为0.33。
图3是所述混合物的扫描电子显微镜和能量分散光谱(Scanning electronmicroscopy-energy dispersive spectroscopy,SEM-EDS)分析结果。参照图3,可知银(Ag)和氮化钛(TiN)被均匀分布。
图4是所述混合物的X射线衍射(X-ray diffraction,XRD)分析结果。参照图4,银(Ag)和氮化钛(TiN)的晶体结构被混合,并且在干磨过程中没有发现新的晶体结构。因此,可知所述银(Ag)和氮化钛(TiN)处于没有彼此化学结合,而是简单混合的状态。
制造例2-中间层
将制造例1的95重量%的混合物和5重量%的粘合剂投入到溶剂中并制造浆料。所述粘合剂是聚偏二氟乙烯(PVDF),所述溶剂是N-甲基吡咯烷酮(NMP)。
将所述浆料涂覆在负极集电体上并进行干燥以形成中间层。所述负极集电体使用包括不锈钢(SUS)的材料。
图5是通过扫描电子显微镜(SEM)分析所述中间层的表面的结果。
实施例1
制造包括所述制造例2的中间层的半电池,并评价其充放电特性。在所述中间层上附接固体电解质层,并在所述固体电解质层上附接锂薄膜,以制造半电池,之后在约25℃下以电流密度1mA/cm2、沉积容量3mAh/cm2的条件测量充放电特性。
图6a是所述半电池的第一次充放电循环的特性的测量结果,图6b是所述半电池的第45次充放电循环的特性的测量结果。参照图6a和图6b,在-0.02V下实现了锂的稳定沉积,并且初始效率为86%。初始非可逆容量有助于形成Ag-Li合金。在第45次循环中,表现出接近100%的效率。即,可知当引入根据本发明的中间层时,可以实现锂能够均匀地沉积并能够脱锂的全固态电池。
另一方面,图7是基于所述半电池的充放电循环的库伦效率(coulombicefficiency)的测量结果。参照图7,所述半电池的初始效率为86%,并且到第50次循环为止,平均库伦效率接近100%。半电池的库伦效率表示制造全电池(full-cell)时的寿命。半电池提供无限制的锂(Li),从而可评价对在中间层20产生的锂的吸藏和释放的可逆性。平均库伦效率为100%是指充电时形成在负极集电体10上的锂金属在放电时全部锂离子化并返回。即,当平均库伦效率越高时,可视为死锂(dead lithium)越少且可逆性优异。
实施例2
制造包括所述制造例2的中间层的对称电池,并评价其寿命。在固体电解质层的两面附接所述中间层,并向所述中间层的外侧附接锂薄膜。以电流密度1mA/cm2、沉积容量1mAh/cm2的条件对所述对称电池进行充电和放电。其结果如图8。
在没有中间层的情况下具有锂-固体电解质层-锂的堆叠结构的对称电池在初始充放电循环中直接发生短路。另一方面,参照图8可知,根据本实施例2的对称电池可以稳定地驱动18小时以上。
以上对本发明的实施例进行了详细描述,本发明的权利要求范围不限于上述实施例,利用在所附权利要求书中定义的本发明的基本概念的本领域普通技术人员的各种变形和改进形式也包括在本发明的权利要求范围内。

Claims (25)

1.一种全固态电池,包括:
负极集电体;位于所述负极集电体上的中间层;位于所述中间层上的固体电解质层;位于所述固体电解质层上的正极活性物质层;以及位于所述正极活性物质层上的正极集电体,
所述中间层包括:
金属;以及
金属氮化物。
2.根据权利要求1所述的全固态电池,其中,
所述金属包括从由银、锌、锰、铋、锡和它们的组合形成的组中选择的至少一种。
3.根据权利要求1所述的全固态电池,其中,
所述金属氮化物包括非共享电子对。
4.根据权利要求1所述的全固态电池,其中,
所述金属氮化物包括从由氮化钛(TiN)、氮化铝(AlN)、氮化钴(Co3N2)、氮化镁(Mg3N2)、氮化硅(Si3N4)、氮化锌(Zn3N2)、氮化铌(NbN)、氮化铜(Cu3N)和氮化锡(SnN)和它们的组合形成的组中选择的至少一种。
5.根据权利要求1所述的全固态电池,其中,
所述金属和金属氮化物的质量比是1:9至5:5。
6.根据权利要求1所述的全固态电池,其中,
所述金属氮化物的D50粒度(D1)和金属的D50粒度(D2)之比(D1/D2)为0.2至0.5。
7.根据权利要求1所述的全固态电池,其中,
所述金属的D50粒度是30nm至1000nm。
8.根据权利要求1所述的全固态电池,其中,
所述金属氮化物的D50粒度是10nm至200nm。
9.根据权利要求1所述的全固态电池,其中,
所述中间层包括:
90重量%至99重量%的金属和金属氮化物;以及
1重量%至10%重量的粘合剂。
10.根据权利要求1所述的全固态电池,其中,
所述中间层的厚度是0.5μm至20μm。
11.根据权利要求1所述的全固态电池,其中,
在所述负极集电体和中间层之间进一步包括锂层,
所述锂层包括从由锂、所述金属和锂的合金以及它们的组合形成的组中选择的至少一种。
12.根据权利要求1所述的全固态电池,其中,
所述负极集电体包括从由镍、不锈钢、钛、钴、铁和它们的组合形成的组中选择的至少一种。
13.根据权利要求1所述的全固态电池,其中,
所述固体电解质层包括从由氧化物类固体电解质、硫化物类固体电解质、高分子电解质和它们的组合形成的组中选择的至少一种。
14.根据权利要求1所述的全固态电池,其中,
所述正极活性物质层包括正极活性物质和固体电解质,
所述正极活性物质包括从由氧化物活性物质、硫化物活性物质和它们的组合形成的组中选择的至少一种,
所述固体电解质包括从由氧化物类固体电解质、硫化物类固体电解质、高分子电解质和它们的组合形成的组中选择的至少一种。
15.根据权利要求1所述的全固态电池,其中,
正极集电体包括从由锰、铝、不锈钢、铁和它们的组合形成的组中选择的至少一种。
16.一种全固态电池的制造方法,包括以下步骤:
准备包括金属和金属氮化物的混合物;
制造包括所述混合物、粘合剂和溶剂的浆料;
将所述浆料涂覆在基材上以形成中间层;以及
形成依次堆叠负极集电体、中间层、固体电解质层、正极活性物质层以及正极集电体的结构物。
17.根据权利要求16所述的全固态电池的制造方法,其中,
所述金属包括从由银、锌、锰、铋、锡和它们的组合形成的组中选择的至少一种。
18.根据权利要求16所述的全固态电池的制造方法,其中,
所述金属氮化物包括非共享电子对。
19.根据权利要求16所述的全固态电池的制造方法,其中,
所述金属氮化物包括从由氮化钛(TiN)、氮化铝(AlN)、氮化钴(Co3N2)、氮化镁(Mg3N2)、氮化硅(Si3N4)、氮化锌(Zn3N2)、氮化铌(NbN)、氮化铜(Cu3N)和氮化锡(SnN)和它们的组合形成的组中选择的至少一种。
20.根据权利要求16所述的全固态电池的制造方法,其中,
所述混合物包括质量比为1:9至5:5的所述金属和金属氮化物。
21.根据权利要求16所述的全固态电池的制造方法,其中,
所述金属氮化物的D50粒度(D1)和金属的D50粒度(D2)之比(D1/D2)为0.2至0.5。
22.根据权利要求16所述的全固态电池的制造方法,其中,
所述金属的D50粒度是30nm至1000nm,
所述金属氮化物的D50粒度是10nm至200nm。
23.根据权利要求16所述的全固态电池的制造方法,其中,
通过干磨所述金属和金属氮化物来准备混合物。
24.根据权利要求16所述的全固态电池的制造方法,其中,
所述浆料以所述混合物和粘合剂的整体重量为基准,包括90重量%至99重量%的所述混合物和1重量%至10%重量的所述粘合剂。
25.根据权利要求16所述的全固态电池的制造方法,其中,
所述中间层的厚度是0.5μm至20μm。
CN202211368974.6A 2021-11-04 2022-11-03 包括中间层的全固态电池及其制造方法 Pending CN116072808A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0150483 2021-11-04
KR1020210150483A KR20230065411A (ko) 2021-11-04 2021-11-04 금속 및 금속 질화물을 포함하는 중간층이 구비된 전고체 전지 및 이의 제조방법

Publications (1)

Publication Number Publication Date
CN116072808A true CN116072808A (zh) 2023-05-05

Family

ID=84329759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211368974.6A Pending CN116072808A (zh) 2021-11-04 2022-11-03 包括中间层的全固态电池及其制造方法

Country Status (4)

Country Link
US (1) US20230137621A1 (zh)
EP (1) EP4177983A3 (zh)
KR (1) KR20230065411A (zh)
CN (1) CN116072808A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116742107B (zh) * 2023-07-31 2024-03-26 武汉中科先进材料科技有限公司 一种用于锂金属负极的复合固态电解质膜及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10256448B2 (en) * 2014-07-10 2019-04-09 The Board Of Trustees Of The Leland Stanford Junior University Interfacial engineering for stable lithium metal anodes
JP7050419B2 (ja) * 2017-02-07 2022-04-08 三星電子株式会社 全固体型二次電池用負極及び全固体型二次電池
EP3861585A1 (en) * 2018-10-02 2021-08-11 QuantumScape Battery, Inc. Methods of making and using an electrochemical cell comprising an interlayer

Also Published As

Publication number Publication date
KR20230065411A (ko) 2023-05-12
EP4177983A3 (en) 2023-05-24
EP4177983A2 (en) 2023-05-10
US20230137621A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
US11929463B2 (en) All-solid-state secondary battery and method of charging the same
JP7050419B2 (ja) 全固体型二次電池用負極及び全固体型二次電池
CN107093764B (zh) 正极合剂、正极和全固体锂离子二次电池、及其制造方法
CN111162276A (zh) 用于全固体电池的无负极涂层以及包括无负极涂层的全固体电池
KR20170089333A (ko) 전극 활물질 슬러리, 이의 제조 방법 및 이를 포함하는 전고체 이차전지
Morales et al. Cycling-induced stress in lithium ion negative electrodes: LiAl/LiFePO4 and Li4Ti5O12/LiFePO4 cells
CN111129424A (zh) 全固态二次电池和制备全固态二次电池的方法
US20230275261A1 (en) All-solid-state secondary battery and manufacturing method therefor
CN114365310A (zh) 电极复合材料以及使用其的电极层和固态电池
CN111755741A (zh) 全固态锂二次电池、其制造方法、其使用方法、和其充电方法
Ding et al. Mussel-inspired polydopamine-assisted uniform coating of Li+ conductive LiAlO2 on nickel-rich LiNi0. 8Co0. 1Mn0. 1O2 for high-performance Li-ion batteries
CN116072808A (zh) 包括中间层的全固态电池及其制造方法
WO2020241691A1 (ja) 全固体電池及びその製造方法
JP2020113415A (ja) 全固体二次電池およびその充電方法
JP2023542358A (ja) 固体イオン伝導体化合物、それを含む固体電解質、それを含む電気化学セル、及びその製造方法
JP2020167146A (ja) 全固体二次電池、その製造方法、その使用方法及びその充電方法
US20230275203A1 (en) All-solid-state battery having protective layer comprising metal sulfide and method for manufacturing the same
JP7192726B2 (ja) 負極材料及びその製造方法
WO2024018246A1 (ja) 全固体電池の製造方法
WO2023132304A1 (ja) 正極材料および電池
KR20220170627A (ko) 저온 작동이 가능한 무음극 전고체 전지 및 이의 제조방법
CN115882040A (zh) 固体电池和固体电池的制造方法
JP2022125899A (ja) 全固体二次電池およびその充電方法
KR20230167462A (ko) 상온 구동형 전고체 전지 및 이의 제조방법
JP2023100298A (ja) 固体二次電池用正極及び固体二次電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication