CN115836108A - 用于改性生物基聚合物和可生物降解聚合物的有机过氧化物配制品 - Google Patents

用于改性生物基聚合物和可生物降解聚合物的有机过氧化物配制品 Download PDF

Info

Publication number
CN115836108A
CN115836108A CN202180034383.2A CN202180034383A CN115836108A CN 115836108 A CN115836108 A CN 115836108A CN 202180034383 A CN202180034383 A CN 202180034383A CN 115836108 A CN115836108 A CN 115836108A
Authority
CN
China
Prior art keywords
bio
modified
polymer
peroxide
biodegradable polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180034383.2A
Other languages
English (en)
Inventor
L·H·帕莱斯
P·R·德鲁兹尼斯奇
M·B·阿布拉姆斯
M·德斯泊托泊罗
W·P·帕夫莱克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema Inc
Original Assignee
Arkema Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema Inc filed Critical Arkema Inc
Publication of CN115836108A publication Critical patent/CN115836108A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

用于生产改性生物基聚合物、尤其是生物基聚酯像PLA和/或可生物降解聚合物像PBAT的配制品,这些配制品包含至少一种有机过氧化物和至少一种生物基反应性添加剂。该至少一种有机过氧化物和/或该至少一种生物基反应添加剂能够与生物基聚合物和/或可生物降解聚合物反应以产生该改性生物基聚合物和/或改性可生物降解聚合物。该改性生物基聚合物和/或改性可生物降解聚合物与非改性的生物基和/或可生物降解聚合物相比具有改进的特性。这些改进的特性可与可加工性相关,尤其是改进的熔体强度,这使得在生产发泡聚合物,薄膜如吹塑膜、流延膜、拉幅膜等的同时更容易加工。这些改进的特性可与物理特性相关,如改进的刚度、韧度或拉伸强度。

Description

用于改性生物基聚合物和可生物降解聚合物的有机过氧化物 配制品
技术领域
本披露涉及用于生产生物基聚合物、尤其是生物基聚酯的有机过氧化物配制品。这些生物基聚合物与非改性生物基聚合物相比具有改进的特性,包括改进的可加工性、和改进的熔体强度,这使得在生产薄膜如吹塑膜、流延膜、拉幅膜等以及发泡产品的同时更容易加工。这些改进的特性还可与物理特性相关,包括改进的熔体强度、刚度、韧度或拉伸强度。
背景技术
生物塑料(也称为生物聚合物)是一类包含生物基聚酯的普通塑料。生物聚酯包括聚乳酸(PLA)、聚乙醇酸(PGA)、聚-£-己内酯(PCL)、聚羟基丁酸酯(PHB)、和聚(3-羟基戊酸酯)。
PLA是可降解的,熔点为160℃,这提供了使用现有的聚合物加工设备代替石油基聚合物,例如聚(苯乙烯)或聚(甲基丙烯酸甲酯)的可能性。然而,聚(乳酸)的流变学在较高的加工温度和剪切速率下差异较大。由于PLA膜熔体强度低,其生产可能更困难。
本发明的一个方面是增加PLA的熔体强度和/或其拉伸强度和粘度,尤其是在较高温度下。本发明的另一个方面是保持改进的PLA聚合物的生物基性质。
WO 97/47670披露了一种用于使用有机过氧化物将衣康酸接枝到PLA上的方法。
WO 08081639 A1披露了一种用于聚乳酸的立构复合物形成的促进剂,该促进剂含有至少一种选自由脂肪族的环状环氧化合物和环氧化大豆油(ESO)组成的组的环氧化合物,至少一种选自由琥珀酸酐、马来酸酐、邻苯二甲酸酐和偏苯三甲酸酐组成的组的酸酐,以及至少一种选自由过氧化缩酮、氢过氧化物、过氧化二碳酸酯和过氧化酯组成的组的有机过氧化物。
US 5,359,026披露了包括环氧化大豆油的各种环氧化的动物和植物脂肪的用途。
US 5,518,730披露了可以封装各种药物、维生素等的可生物降解聚合物用于在生物聚合物降解时受控释放的用途。“生物有效的活性物”或药物被这些聚合物封装,但在其他方面不被聚合物改变。
发明内容
提供了一种用于生产改性生物基聚合物或改性可生物降解聚合物、或其混合物的有机过氧化物配制品。该配制品包含至少一种有机过氧化物和至少一种反应性生物基添加剂。该反应性生物基添加剂的量和该至少一种有机过氧化物的量被选择使得该配制品能够与生物基聚合物进行化学反应以产生该改性生物基聚合物,与可生物降解聚合物进行化学反应以产生改性可生物降解聚合物,或改性生物基聚合物和改性可生物降解聚合物的混合物。
诸位申请人已经发现选择的有机过氧化物可用于与生物基反应性添加剂组合以改进生物基聚合物如PLA的流变学(包括熔体强度)和/或最终特性。这些与PLA或其他生物基聚合物或其他可生物降解聚合物(如聚(己二酸丁二醇酯-共-对苯二甲酸丁二醇酯),也称为聚丁酸酯或PBAT)组合的有机过氧化物配制品可以是熔融共混的(例如,在挤出机中)或者其他类型的合适的聚合物熔融共混或聚合物加工设备以在聚(乳酸)或其他生物基聚合物和/或可生物降解聚合物中产生所希望的改进。其他改进包括比未改性的聚合物更高的熔体强度、改进的拉伸强度、更高的冲击强度,更多或更少的断裂伸长率(取决于所希望的最终用途)、更好的透明度、更高的热变形温度、更高或更低的聚合物表面自由能(取决于最终用途)、更高或更低的极性(取决于所希望的最终用途)、更高或更低的弹性(取决于所希望的最终用途)、更高(或更低)的玻璃化转变温度(取决于所希望的最终用途)、长链分支、以及与其他聚合物更好的相容性。
可以提供的其他改进包括聚合物改性工艺期间的工艺改进。某些生物基反应性添加剂可以充当防焦烧剂以提供与生物基聚合物和/或可生物降解聚合物的过氧化物反应的暂时延迟,从而提供了额外的时间,有时在升高的温度下再混合几秒钟,这导致所有反应性添加剂(例如在挤出机中)就在所希望的生物基聚合物和/可生物降解聚合物改性之前更均匀的熔融混合。在聚合物改性之前,将所有反应性添加剂更均匀或完全地共混到生物基和/或可生物降解聚合物熔体将导致更均匀改性的生物基和/或改性可生物降解聚合物,并且因此,最终的改性聚合物将具有更均匀的物理特性。
进一步设想到将本发明的选择的生物基反应性添加剂接枝到生物基聚合物上以为生物基聚合物赋予反应性官能团。
PLA倾向于与聚烯烃(聚丙烯和聚乙烯)、苯乙烯聚合物如聚苯乙烯、丙烯腈丁二烯苯乙烯(ABS)和高冲击聚苯乙烯(HIPS)、较高分子量聚环氧丙烷聚合物、和聚碳酸酯不相容。不相容聚合物的熔体共混物通常具有较差的物理特性,例如,较低的拉伸强度。根据本发明改性PLA还可以改进PLA与各种石油基聚合物的相容性。
对生物基聚合物的特性的改进可以使得能够经由吹塑膜生产、挤出、热成形、制造聚合物泡沫、吹塑模制、旋转模制、压缩模制和/或注射模制,由这些生物基和/或可生物降解材料单独地或以与其他聚合物的共混物制造各种商业产品。
附图说明
图1.(实例4).示出当使用
Figure GDA0004092828680000031
DTA和TAIC助剂的共混物时使用维生素K1加上维生素K2提供PLA改性的理想延迟的益处的流变图。
图2.(实例4).示出当使用
Figure GDA0004092828680000032
DTA和TAIC助剂的共混物时使用维生素K3提供PLA改性的理想延迟的益处的流变图。
图3.(实例5).示出当使用
Figure GDA0004092828680000033
TBEC有机过氧化物时如何可以使用ω3和柠檬烯提供PLA改性的理想延迟的流变图。
图4.(实例6).示出当与有机过氧化物
Figure GDA0004092828680000034
TBEC共混时桐油如何增加PLA的弹性模量的流变图。
图5.(实例6).示出当与有机过氧化物
Figure GDA0004092828680000041
TBEC共混时L-胱氨酸、乙酸丁酸纤维素(CAB)和桐油如何增加PLA的弹性模量的流变图。
图6.(实例7).示出当与有机过氧化物
Figure GDA0004092828680000042
101共混时L-胱氨酸氨基酸如何增加PLA的弹性模量的流变图。
图7.(实例7).示出当与有机过氧化物
Figure GDA0004092828680000043
101共混时L-半胱氨酸氨基酸如何增加PLA的弹性模量的流变图。
图8.(实例7).示出当与有机过氧化物
Figure GDA0004092828680000044
101共混时桐油如何增加PLA的弹性模量的流变图。
图9.(实例8).示出当与有机过氧化物
Figure GDA0004092828680000045
101共混时月桂烯如何提供PLA改性反应的理想延迟同时还增加PLA的PLA弹性模量的流变图。
图10.(实例9).示出当与SR350(TMPTA)和有机过氧化物
Figure GDA0004092828680000046
101共混时月桂烯与单一使用1.0wt%
Figure GDA0004092828680000047
101过氧化物相比如何提供PLA弹性模量的理想增加同时还提供PLA改性反应的理想延迟的流变图。
图11.(实例10).示出当与TAIC(异氰脲酸三烯丙酯)、
Figure GDA0004092828680000048
101和维生素K3共混时月桂烯与使用
Figure GDA0004092828680000049
101过氧化物和TAIC助剂相比如何提供PLA弹性模量的理想增加同时还提供PLA改性反应的理想延迟的流变图。
图12.(实例11).示出当与或没有与维生素K3共混时桐油如何可以在与
Figure GDA00040928286800000410
101共混时提供PLA弹性模量的理想增加的流变图。维生素K3的添加相比于使用单独使用的桐油和过氧化物提供了PLA改性的理想延迟。
图13.(实例12).示出当与
Figure GDA00040928286800000411
DTA过氧化物和TAIC(异氰脲酸三烯丙酯)助剂共混时橄榄苦苷、ω3和维生素K3如何提供PLA弹性模量的增加的理想延迟的流变图。
图14.(实例13).示出当与
Figure GDA00040928286800000412
DTA过氧化物和TAIC(异氰脲酸三烯丙酯)助剂共混时CBD分离物如何提供理想延迟以及控制PLA的弹性模量增加的方法的流变图。
图15.(实例14).
Figure GDA00040928286800000413
101在二氧化硅上增量以形成自由流动的粉末,与粉状维生素K3共混形成在使用反应性三丙烯酸酯型助剂SR351H(TMPTA)时为PLA改性提供理想延迟的过氧化物组合物的流变图。
图16.(实例15).示出使用
Figure GDA0004092828680000051
101如何使用桐油来提供PLA:PBAT生物基聚合物和可生物降解聚合物共混物的弹性模量的理想增加的流变图。
具体实施方式
除非另外指明,否则本文中的所有百分比均是重量百分比。
如本文所用的“聚合物”意指包括具有如通过凝胶渗透色谱法测量的高于20,000g/mol、优选高于50,000g/mol的重均分子量的有机均聚物和共聚物。
“一种或多种生物基聚合物”或“一种或多种生物塑料”在本文中可互换使用并且意指包括其中单体中的至少一种是来自生物来源的聚合物,或者可以由生物来源、尤其是植物来源获得。可替代地或另外,生物基聚合物可以被认为包括其中至少10wt%、或至少20wt%或至少30wt%或至少40wt%、或至少50wt%或至少60wt%或至少70wt%或至少80wt%、优选至少85wt%、更优选至少90%、并且甚至更优选100%的单体是来自生物来源和/或可以由生物来源、尤其是植物来源获得的聚合物。剩余的单体可以是来自非生物来源,例如它们可以是合成产生的单体如由石油或化石燃料产生的单体。
可生物降解聚合物通过细菌分解过程分解以产生至少一种或多种天然副产物如气体、水、生物质,和/或无机盐。除非另有说明,否则可生物降解聚合物/可生物降解共聚酯可以天然地找到或者已经由聚合物和/或衍生自化石燃料的单体合成产生,并且落入本发明范围内。这些化石燃料聚合物可以在工业堆肥厂中在适当条件下由微生物及其相应的酶进行生物降解。非限制性实例是聚(己二酸丁二醇酯-共-对苯二甲酸丁二醇酯)(PBAT),也称为聚丁酸酯。PBAT是可生物降解的脂肪族-芳香族共聚酯,其基于全都衍生自化石燃料的单体1,4-丁二醇、己二酸和对苯二甲酸。PBAT聚合物可以与可再生生物基聚合物如PLA熔融共混。
生物基聚合物或生物塑料通常由可再生生物质来源生产,这些生物质来源如植物脂肪和油、玉米淀粉、稻草、木屑、锯屑和回收的食物废弃物。生物基聚合物可以由农业生产的植物及其副产品制成,并且还可以由使用过或回收的塑料制成。生物基塑料进一步包括衍生自酶过程和/或微生物过程的材料,包括但不限于基因改性的微生物。
聚丙交酯或聚(乳酸)(PLA)是由单体乳酸和/或其丙交酯产生的脂肪族生物聚酯。乳酸在植物中作为植物代谢的副产物或中间产物被发现。乳酸可以由许多含淀粉或含糖的农产品,如谷物和甘蔗工业生产。
存在若干种不同类型的聚(乳酸),包括外消旋聚-(L-乳酸)(PLLA)、常规聚-(L-乳酸)(PLLA)、聚-D-乳酸(PDLA)、和聚-DL-乳酸(PDLLA)。与衍生自不可再生的石油的传统塑料不同,它们由可再生资源(乳酸:C3H6O3)产生。
如本文所用的“改性生物基聚合物”意指为生物基聚合物与本发明的至少一种有机过氧化物配制品之间的化学反应的产物的生物基聚合物。
如本文所用的“改性可生物降解聚合物”意指为可生物降解聚合物与本发明的至少一种有机过氧化物配制品之间的化学反应的产物的可生物降解聚合物。
如本文所用的“生物基反应性添加剂”意指能够与有机过氧化物和/或生物基聚合物和/或可生物降解聚合物反应的生物基添加剂,这些可生物降解聚合物包含用于生产改性生物基聚合物或改性可生物降解聚合物的配制品。生物基反应性添加剂被理解为包括这样的添加剂,其中用于生产反应性添加剂的至少一种反应物、或反应性添加剂本身衍生自或可衍生自至少一种生物来源、尤其是植物来源。应理解,本发明中披露的“生物基反应性添加剂”是有机化合物,虽然其可从天然来源获得,但也可以是可由石油基/化石燃料化学品合成的有机化合物。因此,所有由非生物基化学品合成但可以以其他方式从生物来源或过程中获得、提取或衍生的“生物基反应性添加剂”也被认为是“生物基添加剂”并且是本发明的一部分,尽管不太优选。
本发明进一步涉及有机过氧化物配制品用于生产改性生物基聚合物或改性可生物降解聚合物、或其混合物的用途,这些有机过氧化物配制品包含至少一种有机过氧化物和至少一种反应性生物基添加剂、由其组成或基本上由其组成。反应性生物基添加剂的量和至少一种有机过氧化物的量被选择使得配制品能够与生物基聚合物进行化学反应以产生改性生物基聚合物或与可生物降解聚合物进行化学反应以产生改性可生物降解聚合物。用于生产改性生物基聚合物或改性可生物降解聚合物的配制品在从20℃-30℃的环境温度下可以是液体或固体。根据所使用的设备类型,在环境条件下为自由流动固体(粉末、颗粒或压缩粒料)的配制品可以是优选的。
有机过氧化物
适合在本发明的实践中使用的有机过氧化物可以选自室温稳定的有机过氧化物或官能化的有机过氧化物,以改进PLA或其他生物基聚合物的流变学同时维持其生物基性质。适合于本发明的实践的有机过氧化物在本文中应能够在暴露于热源(例如在挤出机中)时分解并形成反应性自由基。由过氧化物形成的有机反应性自由基应能够与生物基聚合物和/或可生物降解聚合物和生物基添加剂中的一者或两者反应以产生改性生物基聚合物和/或可生物降解聚合物。
适合在用于生产改性生物基聚合物和/或可生物降解聚合物的配制品的某些实施例中使用的有机过氧化物可以选自那些具有能够进行自由基反应的碳碳双键、羧酸、甲氧基或羟基官能团的室温稳定的过氧化物。在本披露的上下文中室温稳定的意指没有分解到显著程度的有机过氧化物,即,在20℃下在至少三个月后保留按重量计>98%的其初始含量。本披露的上下文中的室温稳定的有机过氧化物可以被定义为在98℃下具有至少1小时的半衰期。
合适的有机过氧化物的非限制性实例是二酰基过氧化物、过氧化酯、单过氧化碳酸酯、过氧化缩酮、半过氧化缩酮、在环境温度(20℃-25℃)下为固体的过氧化物、固体过氧化二碳酸酯、二烷基过氧化物类、叔丁基过氧基类、和叔戊基过氧基类。另外,使用环状过氧化物如来自诺力昂公司(Nouryon)的
Figure GDA0004092828680000071
301和
Figure GDA0004092828680000072
311过氧化物是合适的。合适的过氧化物可以在Jose Sanchez和Terry N.Myers的“Organic Peroxides[有机过氧化物]”;Kirk Othmer Encyclopedia of Chemical Technology[化工技术百科全书],第四版,第18卷,(1996)中找到,出于所有目的将该文献的披露内容通过援引以其全文并入本文。室温热稳定的用羧酸、羟基官能化的和/或具有自由基反应性不饱和基团的过氧化物也是合适的。有机过氧化物可以含有少量的稀释剂,包括矿物溶剂、矿物油、或白矿油。有机过氧化物还可以在惰性填充剂(例如,伯格斯(Burgess)粘土、碳酸钙、硅酸钙、二氧化硅和乙酸丁酸纤维素)上增量或者以粉末或粒料形式在以下项上用作过氧化物母料:PLA、聚羟基丁酸酯(PHB)、乙烯-乙酸乙烯酯共聚物(EVA)、乙烯丙稀二烯橡胶(EPDM)、乙烯丙烯橡胶(EPM)、聚乙烯(PE)、聚丙烯(PP)、聚酰胺、聚(甲基丙烯酸甲酯)(PMMA)、微晶蜡或聚己内酯。根据商业应用,过氧化物浓度可以从过氧化物和增量剂的总重量的1wt%至80wt%、优选从1wt%至60wt%、更优选从1wt%至40wt%变化。可替代地,过氧化物浓度可以从10wt%至80wt%、或从20wt%至80wt%、或从30wt%至80wt%变化。
合适的二烷基有机过氧化物的非限制性实例是:二-叔丁基过氧化物;叔丁基枯基过氧化物;叔丁基叔戊基过氧化物;二枯基过氧化物;2,5-二(枯基过氧基)-2,5-二甲基己烷;2,5-二(枯基过氧基)-2,5-二甲基己炔-3;4-甲基-4-(叔丁基过氧基)-2-戊醇;4-甲基-4-(叔戊基过氧基)-2-戊醇;4-甲基-4-(枯基过氧基)-2-戊醇;4-甲基-4-(叔丁基过氧基)-2-戊酮;4-甲基-4-(叔戊基过氧基)-2-戊酮;4-甲基-4-(枯基过氧基)-2-戊酮;2,5-二甲基-2,5-二(叔丁基过氧基)己烷;2,5-二甲基-2,5-二(叔戊基过氧基)己烷;2,5-二甲基-2,5-二(叔丁基过氧基)己炔-3;2,5-二甲基-2,5-二(叔戊基过氧基)己炔-3;2,5-二甲基-2-叔丁基过氧基-5-氢过氧基己烷;2,5-二甲基-2-枯基过氧基-5-氢过氧基己烷;2,5-二甲基-2-叔戊基过氧基-5-氢过氧基己烷;间/对-α,α-二(叔丁基过氧基)-二异丙基苯;1,3,5-三(叔丁基过氧基异丙基)苯;1,3,5-三(叔戊基过氧基异丙基)苯;1,3,5-三(枯基过氧基异丙基)苯;二[1,3-二甲基-3-(叔丁基过氧基)丁基]碳酸酯;二[1,3-二甲基-3-(叔戊基过氧基)丁基]碳酸酯;二[1,3-二甲基-3-(枯基过氧基)丁基]碳酸酯;二-叔戊基过氧化物;叔戊基枯基过氧化物;叔丁基过氧基-异丙烯基枯基过氧化物;叔戊基过氧基-异丙烯基枯基过氧化物;2,4,6-三(丁基过氧基)-s-三嗪;1,3,5-三[1-(叔丁基过氧基)-1-甲基乙基]苯;1,3,5-三-[(叔丁基过氧基)-异丙基苯;1,3-二甲基-3-(叔丁基过氧基)丁醇;1,3-二甲基-3-(叔戊基过氧基)丁醇;及其混合物。其他可以单独地或与其他的由本披露所设想的自由基引发剂组合使用的二烷基型过氧化物是选自由以下式所表示的组的那些:
Figure GDA0004092828680000091
其中,R4和R5可以独立地处于间或对位上并且是相同或不同的并且选自氢或具有1至6个碳原子的直链或支链的烷基。二枯基过氧化物和异丙基枯基枯基过氧化物是示例性的。
官能化的二烷基型过氧化物可以包括但不限于:3-枯基过氧基-1,3-二甲基丁基甲基丙烯酸酯;3-叔丁基过氧基-1,3-二甲基丁基甲基丙烯酸酯;3-叔戊基过氧基-1,3-二甲基丁基甲基丙烯酸酯;三(1,3-二甲基-3-叔丁基过氧基丁氧基)乙烯基硅烷;1,3-二甲基-3-(叔丁基过氧基)丁基N-[1-{3-(1-甲基乙烯基)-苯基}1-甲基乙基]氨基甲酸酯;1,3-二甲基-3-(叔戊基过氧基)丁基N-[1-{3-(1-甲基乙烯基)-苯基}-1-甲基乙基]氨基甲酸酯;1,3-二甲基-3-(枯基过氧基)丁基N-[1-{3-(1-甲基乙烯基)-苯基}-1-甲基乙基]氨基甲酸酯。
含有两种不同类型的具有不同的化学和/或热反应性的过氧化物基团的双官能的二烷基型过氧化物:2,5-二甲基-(2-氢过氧基-5-叔丁基过氧基)己烷;叔丁基叔戊基过氧化物和2,5-二甲基-(2-氢过氧基-5-叔戊基过氧基)己烷。
在二过氧化缩酮型有机过氧化物的组中,合适的化合物可以包括:1,1-二(叔丁基过氧基)-3,3,5-三甲基环己烷;1,1-二(叔戊基过氧基)-3,3,5-三甲基环己烷;1,1-二(叔丁基过氧基)环己烷;1,1-二(叔戊基过氧基)环己烷;4,4-二(叔戊基过氧基)戊酸正丁酯;3,3-二(叔丁基过氧基)丁酸乙酯;2,2-二(叔戊基过氧基)丙烷;3,6,6,9,9-五甲基-3-乙氧基羰基甲基-1,2,4,5-四氧杂环壬烷;4,4-双(叔丁基过氧基)戊酸正丁酯;3,3-二(叔戊基过氧基)丁酸乙酯;及其混合物。
示例性的环酮过氧化物是具有以下通式(I)、(II)和/或(III)的化合物。
Figure GDA0004092828680000101
其中,R1至R10独立地选自由以下组成的组:氢、C1至C20烷基、C3至C20环烷基、C6至C20芳基、C7至C20芳烷基以及C7至C20烷芳基,这些基团可以包括直链或支链烷基特性并且R1至R10各自可以被一个或多个选自以下的基团取代:羟基、C1至C20烷氧基、直链或支链的C1至C20烷基、C6至C20芳氧基、卤素、酯、羧基、氮化物和酰胺基。
合适的环酮过氧化物的一些非限制性实例包括但不限于:3,6,9三乙基-3,6,9-三甲基-1,4,7-三过氧基壬烷(或甲基乙基酮过氧化物环状三聚物)、甲基乙基酮过氧化物环状二聚物、以及3,3,6,6,9,9-六甲基-1,2,4,5-四氧杂环壬烷。
过氧化酯的非限制性的示例性实例包括:2,5-二甲基-2,5-二(苯甲酰基过氧基)己烷;叔丁基过苯甲酸酯;叔丁基过氧化乙酸酯;叔丁基过氧基-2-乙基己酸酯;叔戊基过苯甲酸酯;叔戊基过氧基乙酸酯;叔丁基过氧基异丁酸酯;3-羟基-1,1-二甲基叔丁基过氧基-2-乙基己酸酯;OO-叔戊基-O-氢-单过氧基琥珀酸酯;OO-叔丁基-O-氢-单过氧基琥珀酸酯;二-叔丁基二过氧基邻苯二甲酸酯;叔丁基过氧基(3,3,5-三甲基己酸酯);1,4-双(叔丁基过氧基羰基)环己烷;叔丁基过氧基-3,5,5-三甲基己酸酯;叔丁基-过氧基-(顺-3-羧基)丙酸酯;烯丙基3-甲基-3-叔丁基过氧基丁酸酯。示例性单过氧基碳酸酯包括:OO-叔丁基-O-异丙基单过氧基碳酸酯;OO-叔戊基-O-异丙基单过氧基碳酸酯;OO-叔丁基-O-(2-乙基己基)单过氧基碳酸酯;OO-叔戊基-O-(2-乙基己基)单过氧基碳酸酯;1,1,1-三[2-(叔丁基过氧基-羰基氧基)乙氧基甲基]丙烷;1,1,1-三[2-(叔戊基过氧基-羰基氧基)乙氧基甲基]丙烷;1,1,1-三[2-(枯基过氧基-羰基氧基)乙氧基甲基]丙烷。例如,
Figure GDA0004092828680000114
JWEBTM是四官能的聚醚四(叔丁基过氧基单过氧基碳酸酯)和
Figure GDA0004092828680000115
V10(其化学名称为1-甲氧基-1-叔戊基过氧基己烷)(均来自阿科玛公司(Arkema))适合于此应用。
可以根据本披露的至少一个实施例使用的其他过氧化物包括官能化的过氧化酯型过氧化物:OO-叔丁基-O-氢-单过氧基-琥珀酸酯;OO-叔戊基-O-氢-单过氧基琥珀酸酯;OO-叔戊基过氧基马来酸和OO-叔丁基过氧基马来酸。
另外适合于本发明的实践中的是包含至少三个过氧化物基团的有机过氧化物支链低聚物,其包含由以下结构表示的化合物:
Figure GDA0004092828680000111
在上述结构中,W、X、Y和Z的总和是6或7。这种类型的独特的支链有机过氧化物的一个实例是被称为
Figure GDA0004092828680000112
JWEB50(阿科玛公司)的四官能的聚醚四(叔丁基过氧基单过氧基碳酸酯)。
示例性的半过氧化缩酮类的有机过氧化物包括:1-甲氧基-1-叔戊基过氧基环己烷(
Figure GDA0004092828680000113
V10);1-甲氧基-1-叔丁基过氧基环己烷;1-甲氧基-1-叔戊基过氧基-3,3,5三甲基环己烷;1-甲氧基-1-叔丁基过氧基-3,3,5三甲基环己烷。
示例性的二酰基有机过氧化物包括但不限于:二(4-甲基苯甲酰基)过氧化物;二(3-甲基苯甲酰基)过氧化物;二(2-甲基苯甲酰基)过氧化物;过氧化二癸酰;过氧化二月桂酰;2,4-二溴-苯甲酰基过氧化物;琥珀酸过氧化物;过氧化二苯甲酰;二(2,4-二氯-苯甲酰基)过氧化物。在PCT申请公开WO 9703961 A1中所描述的类型的酰亚胺基过氧化物同样设想为适合于使用并且出于所有目的通过援引并入本文。
官能化的有机过氧化物适合在用于生产改性生物基聚合物的配制品中使用。官能化的过氧化物的非限制性实例是叔丁基过氧基马来酸和叔丁基过氧基-异丙烯基枯基过氧化物。二者都含有不饱和度,并且前者还具有羧酸官能团。
示例性的固体的、室温稳定的过氧化二碳酸酯包括但不限于:二(2-苯氧基乙基)过氧化二碳酸酯;二(4-叔丁基-环己基)过氧化二碳酸酯;二肉豆蔻基过氧化二碳酸酯;二苄基过氧化二碳酸酯;以及二(异冰片基)过氧化二碳酸酯。固体过氧化二碳酸酯的实例是诺力昂公司的
Figure GDA0004092828680000121
16,其化学名称为二(4-叔丁基环己基)过氧化二碳酸酯。
优选的有机过氧化物的非限制性实例包括二月桂基过氧化物;2,5-二-甲基-2,5-二(叔丁基过氧基)己烷;2,5-二-甲基-2-叔丁基过氧基-5-氢过氧基己烷;二-叔丁基过氧化物;二-叔戊基过氧化物;1,1-二(叔丁基过氧基)-3,3,5-三甲基环己烷;1,1-二(叔丁基过氧基)环己烷;1,1-二(叔戊基过氧基)环己烷;OO-叔丁基-O-异丙基单过氧基碳酸酯;OO-叔戊基-O-异丙基单过氧基碳酸酯;OO-叔丁基-O-(2-乙基己基)单过氧基碳酸酯;OO-叔戊基-O-(2-乙基己基)单过氧基碳酸酯;叔丁基过氧基马来酸;叔丁基过氧基-异丙烯基枯基过氧化物;1-甲氧基-1-叔戊基过氧基环己烷;聚醚四(叔丁基过氧基单过氧基碳酸酯);间/对-二(叔丁基过氧基)二异丙基-苯;叔丁基枯基过氧化物;3,6,9,三乙基-3,6,9-三甲基-1,4,7-三过氧基壬烷(或甲基乙基酮过氧化物环状三聚物)或来自诺力昂公司的
Figure GDA0004092828680000122
301;以及3,3,5,7,7-五甲基-1,2,4-三氧杂环庚烷或来自诺力昂公司的
Figure GDA0004092828680000123
311;及其共混物。
反应性生物基添加剂:
合适的反应性生物基添加剂的非限制性实例包括能够与生物基聚合物和/或可生物降解聚合物直接反应的那些、或能够与有机过氧化物反应以产生能够与生物基聚合物和/或可生物降解聚合物反应的化合物或残余物的那些。另外合适的是可以能够与生物基聚合物和/或可生物降解聚合物和有机过氧化物二者反应的添加剂,其包含用于生产改性生物基聚合物和/或可生物降解聚合物的有机过氧化物配制品。
在某些实施例中合适的生物基添加剂包括包含至少一个双键(即,不饱和天然脂肪酸)的天然脂肪酸、饱和天然脂肪酸、或其组合。可用作生物基添加剂的植物或动物来源的油或生物基不饱和油的非限制性实例包括月桂烯、桐油、奥蒂油(oiticica oil)、和橄榄叶油(橄榄苦苷)。包含至少一个碳碳双键的植物或动物来源的脂肪酸烷基酯适合用于如在此披露的本发明的实施例中。此类脂肪酸酯可以包括C8-C22脂肪酸的C1至C8烷基酯。在一个实施例中,使用了植物油的脂肪酸烷基酯,如橄榄油、花生油、玉米油、棉花籽油、大豆油、亚麻籽油、和/或椰子油的脂肪酸烷基酯。在一个实施例中,使用了大豆油酸甲酯。在其他实施例中,脂肪酸烷基酯可以选自由以下组成的组:生物柴油和生物柴油的衍生物。在另一个实施例中,脂肪酸烷基酯是蓖麻油基脂肪酸烷基酯。脂肪酸烷基酯中存在的烷基可以是例如C1-C6直链、支链或环状脂肪族基团,如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、环己基等。脂肪酸烷基酯可以包括含有不同烷基的酯的混合物。生物基反应性添加剂可以选自脂肪酸或其衍生物、甘油单酯、甘油二酯、甘油三酯、动物脂肪、动物油、植物脂肪、或植物油或其组合。此类生物基反应性添加剂的实例包括但不限于亚麻籽油、大豆油、棉花籽油、落花生油、向日葵油、油菜籽油、芥花油、芝麻籽油、橄榄油、玉米油、红花油、花生油、芝麻油、汉麻油(hemp oil)、牛脚油、鲸油、鱼油、蓖麻油、或妥尔油、或其组合。另外合适的是:藻油、牛油果油、蓖麻油、亚麻油、鱼油、葡萄籽油、汉麻油、***二醇(cannabidiol)(CBD)、百里酚、麻疯果油、荷荷巴油、芥子油、脱水蓖麻油、棕榈油、棕榈硬脂、油菜籽油、红花油、妥尔油、橄榄油、牛脂、猪脂、鸡脂、亚麻籽油、亚麻油、椰子油及其混合物。前述天然油中的任一种的环氧化变体还可以在用于生产改性生物聚合物的配制品中使用。在这些之中,优选的生物基添加剂包括橄榄油、橄榄叶油(橄榄苦苷)、汉麻油、月桂烯、***二醇(CBD);桐油、百里酚、柠檬烯、和奥蒂油。更优选的生物基化合物是汉麻油、月桂烯、***二醇(CBD分离物,不含精神活性THC的CBD的纯化固体形式)、桐油、橄榄苦苷和柠檬烯。甚至更优选的是桐油。
饱和或高度饱和的脂肪酸酯或油的非限制性实例是天然存在的或者生物基或生物衍生的丁酸脂肪酸及其酯、月桂酸及其酯、肉豆蔻酸及其酯、棕榈酸及其酯、棕榈仁油、棕榈油及其酯、硬脂酸及其酯。在这些之中,优选的是月桂酸、肉豆蔻酸和棕榈酸以及它们的酯。
其他合适的生物基反应性添加剂是天然脂肪胺,优选包含至少一个双键的伯胺。这些添加剂的非限制性实例包括以下优选的:油胺;油酸胺(elaidylamine);椰子胺;和大豆胺。也可以使用饱和脂肪胺并且非限制性实例包括十五烷基胺;硬脂胺;和月桂胺。
由日本油脂株式会社(NOF Corporation)以商品名
Figure GDA0004092828680000141
供应的各种商业脂肪族伯胺包括月桂胺、椰子烷基胺、肉豆蔻胺、棕榈胺、和硬脂胺,而且硬化牛脂烷基胺、油胺、和大豆烷基胺是适合于本发明的实践的反应性生物基添加剂的非限制性实例。
天然存在的或者生物基或生物衍生的萜烯及其衍生物也适合在用于生产改性生物基聚合物的配制品中用作生物基反应性添加剂。单萜烯、类单萜烯、改性单萜烯、二萜烯、改性二萜烯、三萜烯、改性三萜烯、类三萜烯(triterpenoid)、二倍半萜烯、改性二倍半萜烯、类二倍半萜烯、三倍半萜烯(sesquarterpene)、改性的三倍半萜烯、类三倍半萜烯(sesquarterpenoid)、和半萜烯的含氧衍生物也是合适的可以包含在用于生产改性生物基聚合物的配制品中的生物基反应性添加剂的非限制性实例。此类反应性生物基添加剂的非限制性具体实例是柠檬烯、月桂烯、香芹酮、葎草烯(humulene)、紫杉二烯(taxadiene)、角鲨烯、金合欢烯、金合欢醇、咖啡醇(cafestol)、咖啡豆醇、松柏烯、紫杉二烯、视黄醇、视黄醛、叶绿醇、香叶基金合欢醇、鲨鱼肝油、茄玉红(licopene)、铁锈二醇(ferrugicadiol)、和四异戊二烯基姜黄烯(tetraprenylcurcumene)、γ-胡萝卜素、α-胡萝卜素、和β-胡萝卜素。这些萜烯的环氧化变体也是合适的。优选的萜烯包括柠檬烯和月桂烯。
具有至少一个碳碳双键的维生素或其衍生物可以在用于生产改性生物基聚合物的配制品的实施例中用作生物基反应性添加剂。非限制性实例是维生素B复合型化合物及其衍生物,特别是叶酸、维生素B12、维生素B1(硫胺素)、以及维生素K及其形式和其衍生物;例如维生素K1(植物甲萘醌)、维生素K2(甲基萘醌,甲基萘醌-4和甲基萘醌-7)和维生素K3(甲萘醌)。
可用于所披露的用于生产改性生物基和/或可生物降解聚合物的配制品的其他生物基反应性添加剂包括生蜂蜜、蜂蜜、葡萄糖、果糖、蔗糖(sucrose)、半乳糖、***糖、果糖、岩藻糖、半乳糖、肌醇(inositol)、麦芽糊精、蔗糖(saccharose)、右旋糖、乳糖、麦芽糖、核糖、甘露糖、鼠李糖、木糖、甘油和脲。
某些氨基酸也可以在用于生产改性生物基聚合物和/或改性可生物降解聚合物的配制品中用作生物基反应性添加剂。这些可以是特别有效的,因为这些化合物上的一个或多个氨基可以与例如聚(乳酸)直接反应。这些包含至少两个氨基的氨基酸是优选的。合适的优选氨基酸的非限制性实例是精氨酸、赖氨酸、谷氨酰胺、组氨酸、半胱氨酸、胱氨酸、血清素、天冬酰胺、谷氨酸、甘氨酸、天冬氨酸、丝氨酸、苏氨酸和色氨酸。更优选的氨基酸是含硫氨基酸,例如半胱氨酸、高半胱氨酸和胱氨酸。
可以包含在配制品中以产生改性生物基聚合物和/或改性可生物降解聚合物的其他生物基反应性添加剂是例如环氧化的生物基油和生物来源的衣康酸或酸酐的共混物。可以使用未环氧化的生物基油代替环氧化的生物基油。设想了环氧化的大豆油和生物基衣康酸的共混物。还可以使用其他生物基酸,例如天然酸如松香酸或丙醇二酸,包括它们相应的酸酐形式。另外包括的是松香酸的甲基酯,其是松香酸甲酯。
可以使用环氧化的生物基油和二-或三-官能的丙烯酸酯和/或甲基丙烯酸酯助剂的共混物,如可从沙多玛公司(Sartomer)以商品名
Figure GDA0004092828680000151
Figure GDA0004092828680000152
获得的那些。后者是尤其优选的,因为它们是生物基的。
可以使用有和没有有机过氧化物的季戊四醇。
糖醇可以用作反应性生物基添加剂。非限制性实例包括赤藓糖醇、山梨糖醇、甘露糖醇、麦芽糖醇、乳糖醇、异麦芽酮糖醇(isomalt)、木糖醇或其他糖醇。氧化锌、氧化镁和/或氧化钙与生物基衣康酸或酸酐和本文所披露的有机过氧化物的共混物可以用作用于生产改性生物基聚合物的配制品。二(衣康酸)锌盐可以包含生物基反应性添加剂。与至少一种上述氨基酸共混的氧化锌也可以用作某些实施例中的生物基反应性添加剂。
用于生产改性生物基聚合物的有机过氧化物配制品中生物基反应性添加剂和有 机过氧化物的量:
用于生产改性生物基聚合物的配制品可以包含按该配制品的总重量计从0.1%至99.9%的有机过氧化物和按重量计从99.9%至0.1%的生物基反应性添加剂。
根据具体的实施例,至少一种有机过氧化物(对于这些计算范围,基于至少一种有机过氧化物的纯wt%基础,即,不包括填充剂和除生物基反应性添加剂之外的其他添加剂)可以以以下量包含在用于生产改性生物基和/或改性可生物降解聚合物的配制品中:基于用于生产改性生物基聚合物和/或改性可生物降解聚合物的配制品的总重量从0.0001wt%至95wt%、或从0.0010wt%至90wt%、或从0.005wt%至80wt%、或从0.01wt%至70wt%或从0.01wt%至60wt%、或从0.01wt%至50wt%、或从0.01wt%至40wt%、或从0.01wt%至30wt%、或从0.01wt%至20wt%、或从0.01wt%至10wt%、或从0.01wt%至8.0wt%或从0.01wt%至4.0wt%或从0.01wt%至2.0wt%或从0.01wt%至1.5wt%、或从0.01wt%至1.0wt%、或从0.005wt%至1.0wt%。优选的范围是0.01wt%至25wt%,更优选的是0.01wt%至20wt%,更优选的是从0.1wt%至15wt%,甚至更优选的是0.01wt%至10wt%,基于纯过氧化物wt%基础。在一些实施例中,至少0.01wt%、或至少0.1wt%、或至少0.5wt%、或至少1wt%、或至少5wt%、或至少10wt%、或至少20wt%的至少一种有机过氧化物是优选的。例如,在使用在惰性填充剂上增量的现有40%含量过氧化物的情况下,可能需要更高的实际重量范围,因为添加到配制品中的过氧化物不是100%含量(纯)。
根据具体的实施例,至少一种生物基反应性添加剂(对于这些范围,基于至少一种生物基添加剂的纯wt%基础,即,不包括填充剂和除有机过氧化物之外的其他添加剂)可以以以下量包含在用于生产改性生物基聚合物和/或改性可生物降解聚合物的配制品中:基于用于生产改性生物基聚合物的配制品的总重量从95wt%至0.001wt%、或从90wt%至0.01wt%、或从80wt%至0.10wt%、或从70wt%至0.1wt%或从60wt%至0.5wt%、或从50wt%至1.0wt%、或从40wt%至1.0wt%、或从30wt%至2.0wt%、或从25wt%至2.0wt%、或从20wt%至2.0wt%、或从15wt%至2.0wt%、或从10wt%至0.10wt%、或从8wt%至0.10wt%、或从8wt%至1wt%、或从5.0wt%至0.10wt%、从5.0wt%至1.0wt%。优选的范围可以是从95wt%至10wt%、优选从80wt%至10wt%、优选从60wt%至10wt%、更优选50wt%至10wt%、甚至更优选从45wt%至15wt%。在一些实施例中,至少一种生物基添加剂优选的范围可以是从0.01wt%至10wt%;更优选从0.1wt%至5wt%,甚至更优选从0.1wt%至2wt%。
有机过氧化物与生物基反应性添加剂的重量比可以是从1:8000至1000:1或1:6000至1000:1或从1:4000至100:1或从1:2000至100:1或从1:1000至100:1或从1:500至100:1或从1:400至100:1或从1:250至100:1或从1:100至100:1、或从1:100至10:1或从1:50至10:1或从1:25至10:1或从1:20至2:1或从1:15至2:1或从1:10至2:1或从1:5至2:1或从1:2至1:1。优选的范围是1:1000至1000:1;优选1:500至500:1;优选1:100至100:1;优选1:100;优选1:50、优选1:40;优选1:30、优选1:20;更优选1:10,取决于所选择的过氧化物和生物基反应性添加剂。
生物基聚合物
合适的生物基聚合物的非限制性实例是脂肪族生物聚酯,如聚乳酸(PLA)(也称作聚丙交酯)、聚羟基烷酸酯(PHA)、聚羟基丁酸酯(PHB)、聚(3-羟基戊酸酯)(PHV)、聚羟基己酸酯(PHH)、聚乙醇酸(PGA)、和聚-ε-己内酯(PCL)。聚酰胺11,即衍生自天然油(蓖麻子油)的生物聚合物,可以适合用于某些实施例中。它以商品名
Figure GDA0004092828680000171
B(阿科玛公司)被已知。在商品名
Figure GDA0004092828680000172
(帝斯曼公司(DSM))下的70%衍生自蓖麻油的聚酰胺410(PA 410)可用于某些实施例中。优选的生物基聚合物是聚乳酸型聚合物。
生物基聚酰胺可以包括但不限于脂肪族、半芳香族、芳香族、和/或脂肪族接枝的聚酰胺聚合物和/或共聚物和/或这些树脂的共混物,包括但不限于以下项:通常被称为PA4、PA6、PA66、PA46、PA9、PA11、PA12、PA610、PA612、PA1010、PA1012、PA6/66、PA66/610、PAmXD6、PA6I的聚酰胺的生物基变体;
Figure GDA0004092828680000181
聚酰胺、
Figure GDA0004092828680000182
聚酰胺、
Figure GDA0004092828680000183
聚醚嵌段聚酰胺、
Figure GDA0004092828680000184
共聚酰胺、
Figure GDA0004092828680000185
共聚酰胺,进一步包括但不限于
Figure GDA0004092828680000186
70、
Figure GDA0004092828680000187
90、
Figure GDA0004092828680000188
200、
Figure GDA0004092828680000189
400、
Figure GDA00040928286800001810
11、
Figure GDA00040928286800001811
211(全部可从阿科玛有限公司(Arkema,Inc.)获得)。合适的生物基聚酰胺还包括可从中国上海凯赛工业生物公司(Cathay Industrial Biotech)获得的TERRYL牌聚酰胺(PA46、PA6、PA66、PA610、PA512、PA612、PA514、PA1010、PA11、PA1012、PA 12、PA1212),可从新加坡帝斯曼公司获得的
Figure GDA00040928286800001812
聚酰胺,可从德国赢创公司(Evonik)获得的
Figure GDA00040928286800001813
聚酰胺,半芳香族聚酰胺(例如,PA6T,聚(对苯二甲酰己二胺),如可从赢创公司获得的
Figure GDA00040928286800001814
聚酰胺和可从乔治亚州阿法乐特市索尔维公司(Solvay)获得的
Figure GDA00040928286800001815
聚酰胺)或包括来自上海金发科技有限公司(Kingfa Sci.&Tech Co)的PA10T、PA9T以及
Figure GDA00040928286800001816
RS和“PLS”产品系列(例如,RSLC、LC,包括玻璃增强等级和冲击改性等级)的
Figure GDA00040928286800001817
聚酰胺,来自特拉华州威明顿市杜邦公司(DuPont)的
Figure GDA00040928286800001818
多聚合物聚酰胺、
Figure GDA00040928286800001819
LCPA、
Figure GDA00040928286800001820
PLUS聚酰胺,以及芳香族型聚酰胺(例如,聚(对苯二甲酰对苯二胺),如来自杜邦公司的
Figure GDA00040928286800001821
Figure GDA00040928286800001822
聚酰胺,来自荷兰和日本的帝人公司(Teijin)的
Figure GDA00040928286800001823
Figure GDA00040928286800001824
聚酰胺,和来自瑞士凯美尔Swicofil公司(Kermel,Swicofil AG)的
Figure GDA00040928286800001825
聚酰胺)。另外合适的是使用YXY构建嵌段单体如衍生自糖(例如,5-羟甲基糠醛)的2,5-呋喃二甲酸单体和/或2,5-羟甲基四氢呋喃单体衍生的“生物聚酰胺”聚酰胺(来自索尔维公司/埃万提姆公司(Avantium)),包括来自罗地亚公司(Rhodia)/埃万提姆公司的生物基聚酰胺,来自索尔维公司/罗地亚公司的
Figure GDA00040928286800001826
共聚酰胺例如
Figure GDA00040928286800001827
66/6,来自赢创公司的热熔性胶粘剂
Figure GDA00040928286800001828
聚酰胺,来自上海天洋热熔胶有限公司(Farsseing Hotmelt Adhesive Co.)的H1001w聚酰胺,Lanxess
Figure GDA00040928286800001829
聚酰胺例如
Figure GDA00040928286800001830
C131F PA6/6I共聚酰胺,由禾大涂料和聚合物公司(Croda Coatings&Polymers)的
Figure GDA0004092828680000191
改性共聚酰胺弹性体,由罗克韦尔有限公司(Rowak AG)的
Figure GDA0004092828680000192
聚酰胺,来自上海新浩化工有限公司(Xinhao Chemical Co.)的
Figure GDA0004092828680000193
Figure GDA0004092828680000194
聚酰胺,来自巴斯夫公司(BASF)的
Figure GDA0004092828680000195
聚酰胺等级,由EMS-Griltech公司的
Figure GDA0004092828680000196
共聚酰胺,以及来自亨茨曼公司(Huntsman)的
Figure GDA0004092828680000197
共聚酰胺。可以使用这些材料的共混物。
如本文所用的术语“聚(乳酸)”(PLA)是指含有至少10mol%的乳酸单体单元的聚合物或共聚物。聚(乳酸)的实例包括但不限于(a)乳酸均聚物,(b)乳酸与除乳酸之外的一种或多种脂肪族羟基羧酸的共聚物,(c)乳酸与脂肪族多羟基醇和脂肪族多元羧酸的共聚物,(d)乳酸与脂肪族多元羧酸的共聚物,(e)乳酸与脂肪族多羟基醇的共聚物以及(f)以上(a)-(e)中两种或更多种的混合物。乳酸的实例包括L-乳酸、D-乳酸、DL-乳酸、其环状二聚物(即,L-丙交酯、D-丙交酯或DL-丙交酯)及其混合物。例如可用于上述共聚物(b)和(f)中的羟基羧酸的实例包括但不限于乙醇酸、羟基丁酸、羟基戊酸、羟基己酸和羟基庚酸、及其组合。例如可用于上述共聚物(c)、(e)、或(f)中的脂肪族多羟基醇单体的实例包括但不限于乙二醇、1,4-丁二醇、1,6-己二醇、1,4-环己烷二甲醇、新戊二醇、癸二醇、甘油、三羟甲基丙烷和季戊四醇及其组合。例如可用于上述共聚物(c)、(d)、或(f)中的脂肪族多元羧酸单体的实例包括但不限于琥珀酸、己二酸、辛二酸、癸二酸、十二烷二羧酸、琥珀酸酐、己二酸酐、均苯三甲酸、丙烷三羧酸、均苯四甲酸和均苯四甲酸酐及其组合。
可生物降解聚合物
合适的可生物降解聚合物的非限制性实例是聚丁二酸丁二醇酯、聚己二酸丁二醇酯、聚丁二酸己二酸丁二醇酯、聚(己二酸丁二醇酯-共-对苯二甲酸丁二醇酯)(PBAT)、聚丁二酸对苯二甲酸丁二醇酯。一种优选的可生物降解聚合物是:聚(己二酸丁二醇酯-共-对苯二甲酸丁二醇酯)(PBAT)。
改性生物基聚合物和改性可生物降解聚合物
提供了一种改性生物基聚合物,其包含以下项的反应产物、由其组成或基本上由其组成:至少一种有机过氧化物;至少一种反应性生物基添加剂;和至少一种生物基聚合物。
提供了一种改性可生物降解聚合物,其包含以下项的反应产物、由其组成或基本上由其组成:至少一种有机过氧化物;至少一种反应性生物基添加剂;和至少一种可生物降解聚合物。
提供了一种改性生物基聚合物和改性可生物降解聚合物的混合物,其包含以下项的反应产物、由其组成、基本上由其组成:至少一种有机过氧化物;至少一种反应性生物基添加剂;以及至少一种生物基添加剂和至少一种可生物降解聚合物。
尽管不希望受理论束缚,但生物基聚合物和/或可生物降解聚合物可以通过与如本文披露的生物基反应性添加剂或有机过氧化物中的至少一种反应以产生改性生物基聚合物和/或改性可生物降解聚合物来化学改性,以在其与本文所披露的配制品反应之前产生与生物基聚合物和/或可生物降解聚合物相比具有改进的或不同的化学或物理特性的改性生物基聚合物和/或改性可生物降解聚合物。此类改性的非限制性实例可以是聚合物的额外长链支化、生物基反应性添加剂接枝到生物基聚合物和/或可生物降解聚合物、生物基添加剂与生物基聚合物和/或可生物降解聚合物的直接反应、生物基反应性添加剂和有机过氧化物的反应产物与生物基聚合物和/或可生物降解聚合物的反应。
改进的特性
生物基聚合物和/或可生物降解聚合物的可由于用于生产改性生物基聚合物和/或改性可生物降解聚合物的配制品而改进或改变的特性包括但不限于:熔体强度、刚度、耐冲击性、透明度、拉伸强度、与其他聚合物尤其是非极性聚合物(无论是否是生物基的)的相容性、与填充剂尤其是生物基填充剂的相容性。
例如,如本文所披露的改性生物基聚合物和/或可生物降解聚合物可以与其他聚合物尤其是非极性聚合物更相容,使得可以由改性生物基聚合物和另一种聚合物生产聚合物合金或共混物(无论均匀或不均匀)。此类非极性聚合物的非限制性实例是聚烯烃如聚乙烯和聚丙烯、来自陶氏化学公司(Dow)的
Figure GDA0004092828680000201
聚乙烯共聚物例如聚(乙烯辛烯)和聚(乙烯己烯)共聚物、聚(乙烯丙烯);聚(丙烯乙烯)及其其他的非极性共聚物。在某些实施例中,另外合适的是这些材料中的任何的回收变体以及回收的和原始的非极性聚合物的共混物。还设想了与以下项的合金或共混物(无论均匀或不均匀):聚苯乙烯、HIPS、ABS、聚苯醚(PPO)/HIPS共混物(例如来自通用电器公司(GE)的NorylTM)或氟聚合物如聚(偏二氟乙烯)例如
Figure GDA0004092828680000211
(阿科玛公司)或聚(四氟乙烯)或者已经被丙烯酸酯或甲基丙烯酸酯型官能团改性的氟聚合物。硅酮聚合物和氟硅酮聚合物/弹性体也被设想为与如本文所披露的改性生物聚合物的共混物。与未改性的生物聚合物相比,本文所披露的改性生物基聚合物和/或可生物降解聚合物可以与填充剂或增量剂或增强剂、或非橡胶冲击改性剂更相容。伯格斯粘土、气相二氧化硅(非结晶型)、沉淀碳酸钙、硅酸钙和硅藻土是非橡胶冲击改性剂的非限制性实例。
在一些实施例中,改性生物基聚合物和/或改性可生物降解聚合物的流变学可以相对于未改性的生物基聚合物进行改变,以影响熔体中的流动特性(即,增加的熔体强度)。不受理论的限制,改性的PLA可以变得极性更小并且与聚烯烃更相容。在其他实施例中,不受理论的限制,可能的是生物基聚合物和/或可生物降解聚合物可以部分地交联,使得它仍将流动但高度缠结。在其他实施例中,不受理论的限制,生物基聚合物和/或可生物降解聚合物可以完全交联。
其他添加剂
生物基填充剂、非生物基填充剂、和/或用于过氧化物的稳定剂(无论是否是生物基)也可以包含在用于生产改性生物基聚合物的配制品中。可以使用例如碳酸钙、滑石、二氧化硅、气相二氧化硅、沉淀二氧化硅、碳酸钙、粘土、伯格斯粘土、高岭土、飞灰、粉状聚乙烯、或乙酸丁酸纤维素、纤维素、硅酸钙、硅藻土。
用于生产改性生物基聚合物和/或改性可生物降解聚合物的配制品可以呈固体或液体的形式,这取决于有机过氧化物和反应性生物基添加剂的形式。用于生产改性生物基聚合物和/或改性可生物降解聚合物的配制品可以包含惰性载体,例如二氧化硅、气相二氧化硅、沉淀二氧化硅、滑石、碳酸钙、粘土、伯格斯粘土、高岭土、飞灰、粉状聚乙烯、多孔聚丙烯、聚(乙烯乙酸乙烯酯)、聚(丙烯酸甲酯)、聚(甲基丙烯酸甲酯)、乙烯丙烯橡胶(EPM)、乙烯丙烯二烯橡胶(EPDM)、聚乙烯蜡、微晶蜡、丙烯酸酯共聚物、乙酸丁酸纤维素、纤维素、硅酸钙、硅藻土,或者可以呈母料的形式,以便于在配混步骤期间处理或用以将用于生产改性生物基聚合物的配制品与未改性生物基聚合物的组合。
用于生产改性生物基聚合物和/或改性可生物降解聚合物的配制品可以包含用于有机过氧化物的稳定剂,例如至少一种醌型化合物。出于此目的,在一些实施例中,可以使用至少一种维生素K化合物或其衍生物(即,含有2-甲基-1,4-萘醌的环的叶绿醌族)。非限制性实例包括:K1(叶绿醌)、K2(甲基萘醌)或K3(甲萘醌),其可以用作自由基稳定剂并且还可以用于焦烧防护,其中焦烧被定义为在配混操作期间与聚合物的过早的(不想要的)自由基相互作用。在一些实施例中,如果至少一种醌化合物用作有机过氧化物的稳定剂,则至少一种烯丙基化合物、优选三烯丙基化合物也可以与有机过氧化物一起被包含。在一些情况下,至少一种含硫化合物、特别是至少一种含二硫化物的化合物可以作为至少一种有机过氧化物的稳定剂存在。优选的含硫化合物的实例是来自MLPC阿科玛公司(MLPC Arkema)的
Figure GDA0004092828680000221
5;2-巯基苯并噻唑(MBTS)或二烷基二硫代磷酸锌(ZDDP)。在一些实施例中,还可以设想元素硫。
根据具体的实施例,本发明的有机过氧化物配制品可以进一步包含至少一种交联助剂。根据具体的实施例,交联助剂的实例包括甲基丙烯酸烯丙酯、氰尿酸三烯丙酯、异氰脲酸三烯丙酯、三羟甲基丙烷三甲基丙烯酸酯
Figure GDA0004092828680000222
三羟甲基丙烷三丙烯酸酯
Figure GDA0004092828680000223
二丙烯酸锌、以及二甲基丙烯酸锌。
非限制性的优选助剂包括:二甲基丙烯酸二甘醇酯;环烷烃二丙烯酸酯;三羟甲基丙烷三丙烯酸酯;三羟甲基丙烷三甲基丙烯酸酯;丙氧基化的3三羟甲基丙烷三丙烯酸酯;三丙烯酸季戊四醇酯;三甲基丙烯酸季戊四醇酯、聚丁二烯二甲基丙烯酸酯和聚丁二烯二丙烯酸酯。
交联助剂的额外的非限制性实例包括:
沙多玛公司制造的甲基丙烯酸酯型助剂,如:SR205H二甲基丙烯酸三甘醇酯(TiEGDMA)、SR206H二甲基丙烯酸乙二醇酯(EGDMA)、SR209二甲基丙烯酸四甘醇酯(TTEGDMA)、SR210HH聚乙二醇(200)二甲基丙烯酸酯(PEG200DMA)、SR214二甲基丙烯酸1,4-丁二醇酯(BDDMA)、SR231二甲基丙烯酸二甘醇酯(DEGDMA)、SR239A二甲基丙烯酸1,6-己二醇酯(HDDMA)、SR252聚乙二醇(600)二甲基丙烯酸酯(PEG600DMA)、SR262二甲基丙烯酸1,12-十二烷二醇酯(DDDDMA)、SR297J二甲基丙烯酸1,3-丁二醇酯(BGDMA)、SR348C乙氧基化的3双酚A二甲基丙烯酸酯(BPA3EODMA)、SR348L乙氧基化的2双酚A二甲基丙烯酸酯(BPA2EODMA)、SR350D三羟甲基丙烷三甲基丙烯酸酯(TMPTMA)、SR480乙氧基化的10双酚A二甲基丙烯酸酯(BPA10EODMA)、SR540乙氧基化的4双酚A二甲基丙烯酸酯(BPA4EODMA)、SR596烷氧基化的四甲基丙烯酸季戊四醇酯(PETTMA)、SR604聚丙二醇单甲基丙烯酸酯(PPGMA)、SR834三环癸烷二甲醇二甲基丙烯酸酯(TCDDMDMA)、以及SR9054酸性双官能粘附促进剂。
沙多玛公司制造的丙烯酸酯型助剂,如:SR238二丙烯酸1,6-己二醇酯(HDDA)、SR259聚乙二醇(200)二丙烯酸酯(PEG200DA)、SR268G二丙烯酸四甘醇酯(TTEGDA)、SR272二丙烯酸三甘醇酯(TIEGDA)、SR295四丙烯酸季戊四醇酯(PETTA)、SR306二丙烯酸三丙二醇酯(TPGDA)、SR307聚丁二烯二丙烯酸酯(PBDDA)、SR341二丙烯酸3-甲基1,5-戊二醇酯(MPDA)、SR344聚乙二醇(400)二丙烯酸酯(PEG400DA)、SR345高性能高官能单体、SR349乙氧基化的3双酚A二丙烯酸酯(BPA3EODA)、SR351三羟甲基丙烷三丙烯酸酯(TMPTA)、SR355二-三羟甲基丙烷四丙烯酸酯(Di TMPTTA)、SR368三(2-羟乙基)异氰脲酸酯三丙烯酸酯(THEICTA)、SR399五丙烯酸二季戊四醇酯(Di PEPA)、SR415乙氧基化的(20)三羟甲基丙烷三丙烯酸酯(TMP20EOTA)、SR444改性的三丙烯酸季戊四醇酯、SR444D三丙烯酸季戊四醇酯(PETIA)、SR454乙氧基化的3三羟甲基丙烷三丙烯酸酯(TMP3EOTA)、SR492丙氧基化的3三羟甲基丙烷三丙烯酸酯(TMP3POTA)、SR494乙氧基化的4季戊四醇四丙烯酸酯(PETTA)、SR499乙氧基化的6三羟甲基丙烷三丙烯酸酯(TMP6EOTA)、SR502乙氧基化的9三羟甲基丙烷三丙烯酸酯(TMP9EOTA)、SR508二丙烯酸二丙二醇酯(DPGDA)、
Figure GDA0004092828680000241
SR522D环烷烃二丙烯酸酯的干液体浓缩物、SR534D多官能丙烯酸酯、SR595二丙烯酸1,10癸二醇酯(DDDA)、SR601E乙氧基化的4双酚A二丙烯酸酯(BPA4EODA)、SR602乙氧基化的10双酚A二丙烯酸酯(BPA10EODA)、SR606A二丙烯酸酯二醇酯(EDDA)、SR610聚乙二醇600二丙烯酸酯(PEG600DA)、SR802烷氧基化的二丙烯酸酯、SR833S三环癸烷二甲醇二丙烯酸酯(TCDDMDA)、SR9003丙氧基化的二丙烯酸2新戊二醇酯(PONPGDA)、SR9020丙氧基化的三丙烯酸3甘油酯(GPTA)、SR9035乙氧基化的15三羟甲基丙烷三丙烯酸酯(TMP15EOTA)、和SR9046乙氧基化的三丙烯酸12甘油酯(G12EOTA)。
沙多玛公司制造的特殊的烧焦防护型助剂,如:
Figure GDA0004092828680000242
297F液体烧焦防护甲基丙烯酸酯、
Figure GDA0004092828680000243
350S液体烧焦防护甲基丙烯酸酯、
Figure GDA0004092828680000244
350W液体烧焦防护甲基丙烯酸酯、
Figure GDA0004092828680000245
500液体烧焦防护甲基丙烯酸酯、
Figure GDA0004092828680000246
517R三羟甲基丙烷三丙烯酸酯液体烧焦防护甲基丙烯酸酯、
Figure GDA0004092828680000247
521二甲基丙烯酸二甘醇酯(液体烧焦防护甲基丙烯酸酯)和
Figure GDA0004092828680000248
PRO13769;
烯丙基型助剂,如:SR507A氰尿酸三烯丙酯(TAC)、SR533异氰脲酸三烯丙酯(TAIC)、磷酸三烯丙酯(TAP)、硼酸三烯丙酯(TAB)、异氰脲酸三甲代烯丙酯(TMAIC)、对苯二甲酸二烯丙酯(diallylterephthalate)(DATP)(亦称苯二甲酸二烯丙酯(diallylphthalate))、碳酸二烯丙酯、马来酸二烯丙酯、富马酸二烯丙酯、亚磷酸二烯丙酯、三羟甲基丙烷二烯丙基醚、聚(间苯二甲酸二烯丙酯)、和乙二醛双(二烯丙基乙缩醛)(1,1,2,2-四烯丙氧基乙烷)。
混合型助剂,如:甲基丙烯酸烯丙酯、丙烯酸烯丙酯、甲基丙烯酸烯丙酯低聚物、丙烯酸烯丙酯低聚物,和Sartomer SR523:双官能助剂(甲基丙烯酸烯丙酯或丙烯酸烯丙酯衍生物);2,4-二苯基-4-甲基-1-戊烯,也称为
Figure GDA0004092828680000249
MSD(α-甲基苯乙烯二聚物)(可从日本油脂株式会社(Nippon Oil&Fat Co.)获得,特别是用于电线和电缆应用);以及各种其他交联助剂,如:
N,N’-间亚苯基二马来酰亚胺,也称为HVA-2(可从杜邦公司获得),
N,N’-对亚苯基二马来酰亚胺,顺式-1,2-聚丁二烯(1,2-BR),
二乙烯基苯(DVB)、和4,4’-(双马来酰亚胺)二苯基二硫化物。
用于在本发明的有机过氧化物配制品中使用的任选的惰性填充剂的非限制性实例包括水洗粘土(例如,伯格斯粘土)、沉淀二氧化硅、沉淀碳酸钙、合成硅酸钙、及其组合。本领域的技术人员可以使用这些填充剂的不同组合以实现自由流动的、不结块的最终过氧化物配制品。
根据一些实施例,本发明的有机过氧化物配制品可以进一步包含至少一种天然的或可天然衍生的防烧焦添加剂。一些天然的或可天然衍生的防烧焦添加剂如维生素K族的化合物,可能能够充当防焦烧剂和生物基反应性添加剂二者。如本文所用的术语“天然的”意指可以在自然界中找到的化合物。术语“天然的”还包括在自然界中找到的、但随后纯化的、化学改变的(例如以某种方式衍生化或加工的)化合物。术语“天然衍生自”或“可天然衍生的”意指此类化合物可以是可以在自然界中找到以提供等效的防焦烧添加剂的此类化合物的化学产生的等效物。关于某些化合物的术语“可提取的”并不意指该化合物实际上从所述来源(通常是植物)中提取的,而是该化合物天然存在于此种植物中,但是该化合物可以是合成产生的。
在某些实施例中,至少一种天然的或可天然衍生的防烧焦添加剂是可从由以下组成的组中的至少一种中提取的:羽衣甘蓝、芥蓝菜、菠菜、大黄、中国大黄、地衣、芦荟、橄榄树叶、冬青、黑种草籽或油(nigella sativa L.seeds or oil)、指甲花叶(henna plantleaves)、红三叶、苜蓿、金鸡纳木树皮、紫锥菊根或百里香。在某些实施例中,至少一种天然的或可天然衍生的防烧焦添加剂可以包含至少一种氨基酸。
在一些实施例中,至少一种天然的或可天然衍生的防烧焦添加剂可以选自由以下组成的组:维生素K1(植物甲萘醌或叶绿醌)、维生素K2(甲基萘醌)、维生素K3(甲萘醌)、维生素K2 MK-4(四烯甲萘醌)、维生素K2 MK-7(甲基萘醌-7)、维生素K2 MK-14(甲基萘醌14)、维生素K2四烯甲萘醌环氧化物、大黄素(6-甲基-1,3,8-三羟基蒽醌)、朱砂莲乙素(parietin)或大黄素甲醚(1,8-二羟基-3-甲氧基-6-甲基-蒽-9,10-二酮)、大黄酸(4,5-二羟基-9,10-二氧代蒽-2-甲酸)、芦荟大黄素(1,8-二羟基-3-(羟甲基)蒽醌)、大黄酚(1,8-二羟基-3-甲基-9,10-蒽醌)、梅笠草素(chimaphilin)(2,7-二甲基-1,4-萘醌)、百里醌、二百里醌、百里氢醌(thymolhydroquinone)、2-羟基-2,4-萘醌、咖啡醌(caffeoquinone)(咖啡酸醌)、绿原酸醌、橄榄叶油(橄榄苦苷)、奎宁、咖啡酸、绿原酸、***二醇、百里酚(也称为2-异丙基-5-甲酚,IPMP)、半胱氨酸、高半胱氨酸、甲硫氨酸、牛磺酸、N-甲酰甲硫氨酸、及其混合物。
在一些实施例中,至少一种天然的或可天然衍生的防烧焦添加剂可以优选地选自由以下组成的组:维生素K及其衍生物,如维生素K1(植物甲萘醌或叶绿醌)、维生素K2(甲基萘醌)、维生素K3(甲萘醌)、维生素K2 MK-4(四烯甲萘醌)、维生素K2 MK-7(甲基萘醌-7)、维生素K2 MK-14(甲基萘醌14)、维生素K2四烯甲萘醌环氧化物、及其混合物。
根据某些实施例,这些烧焦防护性添加剂在有机过氧化物(对于计算,纯基础)配制品中的重量百分比可以是:35wt%或更少、优选20wt%或更少、更优选15wt%或更少、更优选10wt%或更少、优选8wt%或更少的添加到纯过氧化物中的烧焦防护性添加剂;这取决于烧焦防护的需要。
有机过氧化物配制品的非限制性实施例是以下项的共混物:2,5-二甲基-2,5-二(叔丁基过氧基)己烷;三丙烯酸季戊四醇酯;和维生素K3和/或橄榄苦苷。
有机过氧化物配制品的非限制性实施例是以下项的共混物:3,6,9,三乙基-3,6,9-三甲基-1,4,7-三过氧基壬烷(或甲基乙基酮过氧化物环状三聚物)或来自诺力昂公司的
Figure GDA0004092828680000261
301;精氨酸;三羟甲基丙烷三丙烯酸酯;[橄榄叶油(橄榄苦苷)和/或;***二醇(CBD)]。
有机过氧化物配制品的非限制性实施例是以下项的共混物:二叔丁基过氧化物;桐油;百里酚和/或维生素K3;和环烷烃二丙烯酸酯。
有机过氧化物组合物的非限制性实施例是以下项的共混物:叔丁基过氧基异丙烯基枯基过氧化物;聚丁二烯二丙烯酸酯;和维生素K2四烯甲萘醌环氧化物。
有机过氧化物配制品的非限制性实施例是以下项的共混物:叔丁基过氧基马来酸;二甲基丙烯酸二甘醇酯;和百里醌。
有机过氧化物组合物的非限制性实施例是以下项的共混物:间/对-二(叔丁基过氧基)二异丙基苯;丙氧基化的3三羟甲基丙烷三丙烯酸酯;和2-羟基-2,4-萘醌。
有机过氧化物组合物的非限制性实施例是以下项的共混物:叔丁基枯基过氧化物;三甲基丙烯酸季戊四醇酯;百里醌;和赖氨酸。
有机过氧化物组合物的非限制性实施例是以下项的共混物:2,5-二甲基-2,5-二(叔丁基过氧基)己烷;三甲基丙烯酸季戊四醇酯;和橄榄苦苷。
生产改性生物基聚合物的方法
对生物基聚合物和/或可生物降解聚合物进行改性的方法包括以下项、由以下项组成或基本上由以下项组成:i)将至少一种有机过氧化物、至少一种反应性生物基添加剂、和至少一种生物基聚合物和/或可生物降解聚合物组合以形成反应混合物的步骤;以及ii)使该反应混合物反应以形成改性生物基聚合物和/或改性可生物降解聚合物的步骤。
至少一种有机过氧化物可以选自如上所述的那些或其混合物。至少一种生物基反应性添加剂可以选自以上所述的那些或其组合。至少一种生物基聚合物、可生物降解聚合物、或其混合物可以选自以上所述的那些。
组合步骤可以是熔融共混,例如,在单螺杆挤出、双螺杆挤出、ZSK混合器、班伯里(Banbury)混合器、布斯(Buss)捏合机、双辊磨机、或叶轮混合、或其他类型的合适的聚合物熔融共混设备中,以产生反应混合物。组合步骤可以是生产成品制品的工艺的一部分,例如吹塑膜工艺、流延膜工艺、注射模制、注射吹塑模制、热成型、或例如真空成形。
通过将组分组合形成反应混合物不受限于单个步骤。例如,可以将至少一种有机过氧化物和至少一种生物基反应性添加剂组合并混合在一起以形成用于生产改性生物基聚合物和/或改性可生物降解聚合物的配制品。然后可将用于生产改性生物基聚合物的配制品与生物基聚合物组合以形成反应混合物。组合步骤可以以任何顺序进行。在替代性实施例中,可以首先将生物基聚合物和/或可生物降解聚合物与反应性生物基添加剂共混或组合以形成生物基聚合物和/或可生物降解聚合物和生物基反应性添加剂的配制品。在随后的步骤中,可以将此配制品与过氧化物共混或组合,经受合适的反应条件(在组合步骤期间或之后)以形成改性生物基聚合物和/或改性可生物降解聚合物。在又另一个替代性实施例中,可以将生物基聚合物和/或可生物降解聚合物、和有机过氧化物组合或共混以形成生物基和/或可生物降解聚合物-有机过氧化物配制品。在随后的步骤中,可以将生物基和/或可生物降解聚合物-有机过氧化物配制品与生物基反应性添加剂组合并经受合适的反应条件以形成改性生物基聚合物和/或改性可生物降解聚合物。组合和反应步骤可以同时进行。
使反应混合物反应的步骤可以包括在一个或多个组合步骤中的至少一个期间加热反应混合物的步骤,由其组成或基本上由其组成。合适的温度是例如,有效熔化生物基聚合物并分解有机过氧化物的温度。例如,反应混合物可以被加热至至少160℃或至少175℃或至少200℃或至少230℃或至少250℃。
组合步骤和/或反应步骤可以包括将反应混合物挤出以形成改性生物基聚合物和/或改性可生物降解聚合物的步骤。生物基和/或可生物降解聚合物、和有机过氧化物和生物基反应性添加剂可以在挤出反应混合物之前共混以形成反应混合物,或可以在挤出或其他熔融加工步骤期间共混以形成反应混合物。该方法可以包括使改性生物基和/或改性可生物降解聚合物形成包装(如食品包装)或其他类型的膜的另外的步骤。改性生物基聚合物和/或改性可生物降解聚合物可以使用任何已知的聚合物加工方法进行加工,包括但不限于膜发泡、膜吹塑、注射模制、挤出、压延、吹塑模制、发泡、和热成型。可以使用本发明的改性生物基聚合物制成的有用制品包括但不限于包装材料和膜。基于本披露,可以设想各种其他有用的制品和用于形成这些制品的方法。
如本文所述,本发明不包括以下过氧化物:无机过氧化物(例如过氧化氢)、过硫酸铵和/或过硫酸钾;氢过氧化物、和甲基乙基酮(MEK)型过氧化物。另外不包括的是:甲醇;水乳液(water emulsion);硅酮流体;硅烷偶联剂;异氰酸酯;马来酸、琥珀酸、邻苯二甲酸、偏苯三甲酸的酸酐和酸;聚乙二醇聚合物和由聚乙二醇制备的嵌段聚合物;和淀粉(例如,玉米淀粉)。这些化合物中的任何或全部可以以以下水平存在于用于生产改性生物基聚合物的配制品中:基于有机过氧化物、生物基反应性添加剂和生物基聚合物的总重量,最高达约5重量百分比、最高达约4重量百分比、最高达约3重量百分比、最高达约2重量百分比、最高达约1重量百分比、最高达约0.5重量百分比、最高达约1000ppm重量。优选地,这些化合物都不存在于配制品中。
在本发明的实践中使用的标准测试方法和设备
ASTM D4440-15塑料的标准测试方法:动态力学特性熔体流变学;此测试方法需要使用阿尔法技术公司(Alpha Technologies)的
Figure GDA0004092828680000291
2000仪器(RPA代表橡胶塑料分析仪),该仪器实质上是动态力学分析仪。
ASTM D4440-15:塑料的标准测试方法:动态力学特性熔体流变学。这是截至2020年2月24日的现行方法。
此测试方法概述了动态力学仪器在确定和报告热塑性树脂和其他类型的熔融聚合物的流变特性方面的使用。它可以作为这样的方法使用,用于确定此类材料的复数粘度和其他重要的粘弹性特征随频率、应变幅度、温度和时间的变化。此类特性可能受填充剂和其他添加剂的影响。
它结合了这样的实验室测试方法,用于确定在通常称为机械或动态光谱仪的类型的仪器上经受各种振荡变形的聚合物熔体的相关流变特性。
此测试方法旨在提供这样的方法,通过非共振强迫振动技术在一定的温度范围内确定熔融聚合物(如热塑性塑料和热塑性弹性体)的流变特性。模量、粘度和tanδ随动态振荡(频率)、应变幅度、温度和时间变化的图表明了熔融聚合物的粘弹性特性。
熔体拉伸流变仪器(Rheotens instrument)测试:被设计用于测量聚合物熔体强度的装置。测量聚合物熔体伸长所需的拉力,测量为拉伸比(draw ratio)的函数。
本发明的商业重要性和新颖性对于那些开发基于聚(乳酸)的各种医疗和间接食品接触消费品和包装的人来说将进一步显而易见。
本发明的各个非限制性方面总结如下:
实例
实例1(预测)
使用低剪切
Figure GDA0004092828680000301
带式共混器制备含有各种成分的母料(MB1至MB32)。以下母料在带式共混器中产生,使用维尔纳和普弗莱德勒公司(Werner&Pfleiderer)的同向旋转双螺杆挤出机进行熔融共混并与聚(乳酸)反应,如实例2中所述。
母料1(MB1):60千克
Figure GDA0004092828680000302
ABS二氧化硅(PPG工业公司(PPG Industries));35千克桐油;4.75千克叔丁基过氧基-异丙烯基枯基过氧化物;和0.25千克维生素K3。
母料2(MB2):60千克
Figure GDA0004092828680000303
ABS二氧化硅;30千克奥蒂油;9.75千克
Figure GDA0004092828680000304
101SIL;和0.25千克维生素K2。
母料3(MB3):30千克
Figure GDA0004092828680000305
ABS二氧化硅;20千克沉淀碳酸钙;10千克乙酸丁酸纤维素(“CAB”,伊士曼化工公司(Eastman Chemical));10千克精氨酸;10千克油胺;10千克十五烷基胺;1千克氧化锌;以及9千克
Figure GDA0004092828680000306
301(诺力昂公司)。
母料4(MB4):60千克
Figure GDA0004092828680000307
ABS二氧化硅;29千克柠檬烯;10.5千克
Figure GDA0004092828680000308
40KE;和0.5千克维生素K1。
母料5(MB5):60千克
Figure GDA0004092828680000309
ABS二氧化硅;10千克赖氨酸;10千克半胱氨酸;10千克衣康酸酐;1千克维生素K3;和9千克
Figure GDA00040928286800003010
231XL40。
PLA-过氧化物母料6(MB6):95千克聚(乳酸)粒料或粉末;5千克1-甲氧基-1-叔戊基过氧基环己烷。将液体过氧化物
Figure GDA00040928286800003011
V10(半过氧化缩酮过氧化物)喷雾在PLA粉末或粒料上以产生过氧化物母料。
PLA-过氧化物母料7(MB7):95千克聚(乳酸)粒料或粉末;5千克
Figure GDA00040928286800003012
Figure GDA00040928286800003013
50(阿科玛公司)。这是喷雾在PLA粉末或粒料上以产生过氧化物母料的四官能过氧化物液体。
PLA-过氧化物母料8(MB8):95千克聚(乳酸)粒料或粉末;5千克叔丁基过氧基-异丙烯基枯基过氧化物。将液体过氧化物喷雾在PLA粉末或粒料上以产生过氧化物母料。这是单体官能化过氧化物。
母料9(MB9):60千克
Figure GDA00040928286800003014
ABS;10千克硅酸钙;20千克精氨酸;8千克
Figure GDA0004092828680000311
40KE(阿科玛公司);0.4千克二硫化巯基苯并噻唑(MBTS);和1.6千克
Figure GDA0004092828680000312
5(MLPC阿科玛公司)。
母料10(MB10):60千克
Figure GDA0004092828680000313
ABS;10千克硅酸钙;20千克衣康酸;8千克
Figure GDA0004092828680000314
101XL45(阿科玛公司);0.5千克二硫化巯基苯并噻唑(MBTS);和1.6千克二硫代磷酸锌(ZDDP)。
母料11(MB11):74.5千克
Figure GDA0004092828680000315
ABS二氧化硅;10千克柠檬烯;10千克卵磷脂;5千克
Figure GDA0004092828680000316
301(诺力昂公司);和0.5千克橄榄苦苷(橄榄叶油)。
母料12(MB12):74.5千克
Figure GDA0004092828680000317
ABS二氧化硅;10千克柠檬烯;10千克卵磷脂;5千克2,5-二甲基-2,5-二(叔丁基过氧基)己炔-3;和0.5千克橄榄苦苷(橄榄叶油)。
实例2(预测)
在实例1中使用低剪切
Figure GDA0004092828680000318
带式共混器制备母料(MB1至MB12)。然后使用维尔纳和普弗莱德勒公司的同向旋转双螺杆挤出机将这些母料熔融共混并与聚(乳酸)反应。该挤出机具有8个筒段和5个加热区。选择温度设置以熔化PLA并使添加剂充分反应。
实例1的各种母料的用量(phr):母料MB3以2、4、6、8和10 phr使用,其中phr是每100重量份的聚(乳酸)中母料的重量份。实例1的其他剩余的母料以4、6、8、10、12、14、16、18和20 phr使用。
以下母料在实例1中产生:MB5;MB6和MB7在使用160℃、160℃、170℃、170℃、180℃的挤出机筒设置时进行熔融反应。剩余的母料对五个单独的区域使用160℃、170℃、180℃、190℃、200℃的温度设置,其中160℃区域离料斗最近并且200℃是在出口模具处。
实例3(预测)
然后使用双螺杆挤出机将来自实例2的改性PLA树脂与聚乙烯、聚丙烯、和聚酰胺熔融共混。对五个单独的区域,温度设置是160℃、170℃、180℃、190℃、200℃。对拉伸条进行模制。
实例4-15
在以下实例中,所使用的PLA聚合物等级是IngeoTM生物聚合物2003D(奈琪沃克公司(NatureWorks))。IngeoTM生物聚合物2003D是透明的高分子量挤出等级生物聚合物,其适合用于乳制品容器、食品服务器皿、透明食品容器、铰链器皿(hinged-ware)和冷饮杯。所使用的PBAT聚合物是
Figure GDA0004092828680000321
(巴斯夫公司)。
Figure GDA0004092828680000322
聚合物是由化石燃料产品制成的可生物降解且可分解的聚合物,其可以与生物基聚合物共混。
在改性前,没有注意预干燥或除去PLA或PBAT聚合物中的水分,即使这些聚合物储存在敞开的储存箱中。
为了研究本发明的生物基聚合物和可生物降解聚合物的改性,使用了
Figure GDA0004092828680000323
2000流变仪(阿尔法技术公司)。根据所使用的过氧化物的半衰期,在170℃或180℃的
Figure GDA0004092828680000324
2000流变仪(使用1°弧度应变和100cpm(周期/分钟)频率)上测试聚合物组合物,其中弹性模量S’以dN-m测量。弹性模量是剪切模量的一种类型,它随改性聚合物熔体的变化而变化。弹性模量与杨氏拉伸模量在数学上成正比。改性聚合物熔体的弹性模量(以dN-m计)越高意味着聚合物熔体强度越大(越高)。
实例4
以1.0wt%使用包含33.4wt%
Figure GDA0004092828680000325
DTA(二-叔戊基过氧化物)和66.6wt%TAIC(异氰脲酸三烯丙酯)的过氧化物共混物以在180℃下改性PLA生物基聚合物,并且使用
Figure GDA0004092828680000326
2000流变仪评价以研究弹性模量的增加。
制造包含33.36wt%
Figure GDA0004092828680000327
DTA(二-叔戊基过氧化物)、66.55wt%TAIC(异氰脲酸三烯丙酯)和0.08wt%(维生素K1和维生素K2)的第二过氧化物共混物并将其以1.3wt%用于PLA中。所使用的(维生素K1和维生素K2)共混物具有以下组成:维生素K1为1500mcg的植物甲萘醌,维生素K2为1000mcg的甲基萘醌-4,以及维生素K2为100mcg的反式甲基萘醌-7。
制造包含32.1wt%
Figure GDA0004092828680000328
DTA(二-叔戊基过氧化物)、64wt%TAIC(异氰脲酸三烯丙酯)和3.9wt%维生素K3的第三过氧化物共混物;然后将第三过氧化物共混物以2.0wt%浓度添加到PLA中。
图1和图2的流变图示出当纯PLA与
Figure GDA0004092828680000329
DTA过氧化物和TAIC助剂共混物反应时弹性模量(dN-m)的增加。图1和图2还示出将维生素K(K1、K2或K3)与
Figure GDA0004092828680000331
DTA和助剂TAIC共混物组合使用的益处。这些维生素在PLA熔体强度或弹性模量的改性过程中提供了理想延迟(充当防焦烧剂)。当有机过氧化物或有机过氧化物的共混物与含有烯丙基、马来酰亚胺、甲基丙酸烯或丙烯酸官能团的反应性多个碳碳双键的化合物在挤出机中熔融混合时,重要的是在实际改性发生之前在PLA或PBAT聚合物中使这些反应性组分良好地熔融混合。在所希望的聚合物改性反应之前,在升高的挤出机温度下,改性过程中甚至几秒的延迟都可能有利于增加反应组分在聚合物熔体中的掺入。聚合物改性反应中的这一理想的短暂延迟提供了更均匀改性的聚合物。反应性添加剂的改进掺入避免了在连续挤出期间添加剂在聚合物中的不均匀共混产生过多或过少的聚合物改性(或二者的组合)的情况。
Figure GDA0004092828680000332
DTA(也称为二-叔戊基过氧化物)不产生任何叔丁醇,这对于最终的改性聚合物而言可能是所希望的属性。图1和图2示出使用维生素K型添加剂可以延迟PLA改性的开始。在图2中,当使用维生素K3时,不仅有延迟,而且可以接近纯PLA的未改性弹性模量(最初),以更好地混合生物聚合物。与没有维生素K添加剂的过氧化物和助剂相比,带有方形标记的线最初接近纯PLA性能。图2中所示的含有维生素K3的过氧化物配制品短暂地表现得像没有反应性物质一样(在改性之前的短暂延迟最初覆盖了纯PLA的曲线),随后弹性模量显著增加。
所使用的过氧化物配制品的量可以调节得更低或更高,以获得所希望的PLA熔体强度改性量。因此,如果希望少量的改性,则可以使用较少量的过氧化物加上助剂和维生素K。此类过氧化物负载量的调节可以根据所希望的物理特性性能和具体的最终用途应用(膜、涂层、纤维、泡沫等)来进行。
实例5
图3描绘了在170℃下产生的流变图并且示出用在本发明的实践中与有机过氧化物组合使用的选择的添加剂实现的弹性模量改进(更高的熔体强度)的延迟。将
Figure GDA0004092828680000333
TBEC(95wt%含量的过氧化物,也称为叔丁基过氧基-2-乙基己基单过氧基碳酸酯)以0.5wt%的浓度添加到PLA(IngeoTM生物聚合物2003D)中。当在
Figure GDA0004092828680000341
2000流变仪中在170℃下与熔融PLA反应时,使用0.5wt%
Figure GDA0004092828680000342
TBEC与没有任何其他添加剂的纯PLA相比增加了弹性模量(PLA熔体强度)。将0.5wt%的ω3(鱼油)连同0.5wt%
Figure GDA0004092828680000343
TBEC一起单独地添加到PLA中;并且连同0.5wt%
Figure GDA0004092828680000344
TBEC一起添加到PLA中的0.5wt%柠檬烯(柑橘果皮的油)有利地延迟了PLA改性反应。由本发明的ω3和柠檬烯生物基反应性添加剂提供的延迟在熔融共混/挤出过程中为生物聚合物PLA提供了更受控的熔融改性。图3示出了在进行过氧化物反应和改性PLA弹性模量或熔体强度之前,这些添加剂的使用提供了过氧化物改性反应的约30秒延迟的益处,以更好地促进双螺杆挤出机的多次混合转动,从而更好地将反应性过氧化物掺入到PLA熔体中。因此,当与有机过氧化物
Figure GDA0004092828680000345
TBEC组合使用时,这些生物基反应性添加剂ω3和柠檬烯的使用提供了更受控的PLA改性。
实例6
这提供了使用桐油用有机过氧化物改性PLA的出乎意料的益处的实例。桐油是天然衍生的油。图4的流变图示出了0.5wt%桐油与0.5wt%
Figure GDA0004092828680000346
TBEC组合,在170℃下在
Figure GDA0004092828680000347
2000中与PLA(IngeoTM生物聚合物2003D)反应。当桐油以与过氧化物相等的重量比使用时,与使用0.5wt%
Figure GDA0004092828680000348
TBEC而不使用桐油相比,所得PLA熔体强度显著增加,如通过弹性模量(以dN-m计)的增加所示。
桐油出乎意料地提供了提高的PLA熔体强度(更高的弹性模量),同时使所需要的过氧化物量最小化。基于这些结果,可以看出用桐油获得的改性介于对于0.5wt%
Figure GDA0004092828680000349
TBEC所获得的结果与使用1.0wt%
Figure GDA00040928286800003410
TBEC所获得的结果之间。在这种情况下,桐油可以出乎意料地用于代替约0.25wt%的过氧化物。不带任何标记的实线是没有添加剂的纯(原始)PLA。
Figure GDA00040928286800003411
TBEC是95wt%含量的过氧化物,也称为OO-叔丁基过氧基-2-乙基己基单过氧基化碳酸酯。
以类似的方式,图5示出了当使用0.5wt%
Figure GDA00040928286800003412
TBEC(95wt%含量的过氧化物,也称为叔丁基过氧基-2-乙基己基单过氧基碳酸酯)时,使用L-胱氨酸(氨基酸)和CAB(乙酸丁酸纤维素)的出乎意料的益处。出人意料地,当将0.5wt%的L-胱氨酸连同0.5wt%
Figure GDA0004092828680000351
TBEC一起添加到PLA中时,与单一使用0.5wt%
Figure GDA0004092828680000352
TBEC相比,获得了PLA弹性模量的出乎意料的增加(熔体强度的增加)。
此外,将1wt%CAB 171-15(乙酸丁酸纤维素,伊士曼化工公司)连同0.5wt%
Figure GDA0004092828680000353
TBEC一起添加到PLA中,当在170℃下反应时与在单独使用0.5wt%
Figure GDA0004092828680000354
TBEC有机过氧化物而没有任何添加剂时获得的弹性模量相比,提供了弹性模量的出乎意料的增加。这一发现提供了使用CAB粉末制造增量的过氧化物配制品的方法,该方法可以以更有效的方式增加PLA熔体强度。
Figure GDA0004092828680000355
TBEC在室温下是液体有机过氧化物。根据工厂中的可用计量设备,可能希望呈固体形式的过氧化物配制品;然而,在其他情况下,可能希望液体过氧化物形式。如果希望液体过氧化物配制品,则可以以50:50wt%比率使用
Figure GDA0004092828680000356
TBEC和桐油的共混物,以更有效地增加PLA弹性模量(熔体强度),如以图5中提供的0.5wt%
Figure GDA0004092828680000357
TBEC和0.5wt%桐油的组合所示。
实例7
图6中的流变图数据说明了氨基酸L-胱氨酸的有效性及其在与有机过氧化物组合使用时增加PLA弹性模量的出乎意料的能力。在有或没有1.0wt%L-胱氨酸的情况下,将0.5wt%
Figure GDA0004092828680000358
101(也称为2,5-二甲基-2,5-二(叔丁基过氧基)己烷)添加到PLA中。氨基酸L-胱氨酸的使用导致弹性模量的出乎意料的增加,这与PLA熔体强度的增加相关。如图6可以看出,使用1.0wt%L-胱氨酸而不使用过氧化物并没有提供PLA弹性模量(dN-m)的任何增加。这进一步证明了根据本发明的实践,当将我们的反应性添加剂与选择的有机过氧化物组合使用时获得的出乎意料的协同作用。
图7中的流变图数据说明了使用另一种氨基酸L-半胱氨酸来增加PLA的熔体强度。出乎意料地发现,当在PLA中以1.0wt%连同0.5wt%
Figure GDA0004092828680000359
101一起使用时,与单一使用0.5wt%
Figure GDA00040928286800003510
101相比,氨基酸L-半胱氨酸在180℃下提供了PLA弹性模量的增加,如图7的流变图结果所示。
图8(实施例7)提供了更多数据,其示出当与不同的有机过氧化物
Figure GDA0004092828680000361
101一起使用并在180℃下与PLA反应时,桐油增加PLA弹性模量(熔体强度)的有效性。当与有机过氧化物组合使用时,桐油继续出乎意料地提供进一步增加生物基聚合物PLA的熔体强度的有效手段。在图8的流变图中,在180℃下在PLA中,在有和没有0.5wt%桐油的情况下使用0.5wt%
Figure GDA0004092828680000362
101(2,5-二甲基-2,5-二(叔丁基过氧基)己烷)。与单独使用0.5wt%
Figure GDA0004092828680000363
101相比,过氧化物和桐油的这种组合提供了更大的弹性模量。没有过氧化物或添加剂的纯PLA有助于示出熔体强度的相对改善。
实例8
制备了包含1:2wt比率的
Figure GDA0004092828680000364
101与月桂烯的液体过氧化物组合物。也就是说,将0.5份
Figure GDA0004092828680000365
101与1.0份月桂烯基于重量进行共混以形成液体过氧化物组合物,因为这两种化合物在室温下都是液体。请参考图9。将此种液体过氧化物组合物以1.5wt%添加到PLA中,使得0.5wt%
Figure GDA0004092828680000366
101连同PLA中的1wt%的月桂烯一起添加到PLA中。月桂烯是天然萜烯。所使用的PLA是IngeoTM生物聚合物2003D,如前文。
参照图9(实例8),出乎意料地发现将月桂烯与
Figure GDA0004092828680000367
101有机过氧化物组合使用,与在PLA中单独使用0.5wt%
Figure GDA0004092828680000368
101相比,在180℃下提供了PLA改性的显著延迟。
图9中的流变图数据示出在180℃下PLA改性的显著延迟,以在例如挤出机或熔融混合器中完成反应之前允许反应性组分在180℃下更均匀地熔融共混。与单独使用过氧化物相比,这种用于改性PLA的过氧化物和月桂烯的共混物提供了熔体强度的所希望的增加(增加了弹性模量(以dN-m计)),同时提供了改性的显著延迟以促进熔融混合。这种新颖的液体过氧化物组合物提供的初始弹性模量在最初的约45-50秒内非常类似于不含过氧化物的纯PLA的性能,为PLA改性提供了所希望的延迟以改进熔融混合,然后接着是PLA熔体强度的理想增加,如由测量的弹性模量S’(dN-m)的增加所证实。
实例9
在此实例中,示出了将月桂烯与助剂和有机过氧化物组合使用以改性PLA的益处。参照图10,用0.5wt%月桂烯、0.5wt%SR350助剂(来自沙多玛公司的三羟甲基丙烷三甲基丙烯酸酯)和0.5wt%
Figure GDA0004092828680000371
101有机过氧化物的共混物对PLA进行改性。月桂烯出乎意料地增加了PLA的弹性模量,超过了仅使用0.5wt%SR350与0.5wt%
Figure GDA0004092828680000372
101有机过氧化物时获得的弹性模量。与单独使用1wt%
Figure GDA0004092828680000373
101过氧化物而没有其他添加剂相比,月桂烯、SR350助剂和
Figure GDA0004092828680000374
101过氧化物的共混物提供了更高的弹性模量。然而,尽管月桂烯在与
Figure GDA0004092828680000375
101和SR350共混时提供了最高的弹性模量,但在与单一使用1wt%
Figure GDA0004092828680000376
101过氧化物相比时,它也提供了改性的延迟。因此,总之,与单一使用较高负载量的有机过氧化物,即单独使用的1.0wt%
Figure GDA0004092828680000377
101相比,天然萜烯月桂烯提供了PLA熔体强度(弹性模量)的进一步增加,同时还提供了改性过程的延迟。
实例10
请参考图11(实例10)。PLA的弹性模量可以通过使用助剂如TAIC来增加。如图11可以看出,当0.5wt%
Figure GDA0004092828680000378
101与0.5wt%TAIC(异氰脲酸三烯丙酯)助剂组合使用时,这种PLA改性在180℃下发生得相当快。在图11中,示出了它如何可以例如通过使用本发明的生物基反应性添加剂来延迟这种改性,以增加在挤出机中在180℃下的熔融混合时间。在图11中,将0.5wt%
Figure GDA0004092828680000379
101、0.027wt%维生素K3、0.5wt%TAIC助剂和0.5wt%月桂烯混合到PLA中并使用
Figure GDA00040928286800003710
2000流变仪在180℃下进行反应。这种使用月桂烯和维生素K3的包含异氰脲酸三烯丙酯助剂的
Figure GDA00040928286800003711
101过氧化物组合物提供了改性过程的理想延迟,以允许例如在挤出机中的更多的熔融混合时间。另外,这些添加剂的使用还提供了这样的改性PLA聚合物,其与使用0.5wt%
Figure GDA00040928286800003712
101和0.5wt%TAIC助剂而没有生物基添加剂相比具有显著更大的弹性模量(dN-m)或聚合物熔体强度。可以由本领域普通技术人员通过减少或增加这种新颖的过氧化物配制品在生物基聚合物(PLA)中的量来优化所需的PLA改性(或聚合物熔体强度)的量,同时还获得改性过程的理想延迟为所有反应物在聚合物中提供更好的掺入。这种新颖的过氧化物组合物可用于对本发明中传授的生物基聚合物和/或可生物降解聚合物进行改性。
实例11
请参考图12(实例11)。在此实例中,将0.5wt%
Figure GDA0004092828680000381
101有机过氧化物与0.5wt%桐油(生物基油)组合以改性PLA,导致在180℃下进行的PLA改性的弹性模量的增加。将此天然生物基油与
Figure GDA0004092828680000382
101组合使用,显著增加了PLA聚合物的弹性模量或熔体强度。为了提供这一过程的理想延迟同时改变PLA的改性程度,将0.05wt%维生素K3添加到这种过氧化物和桐油配制品中,如图12所示。总之,
Figure GDA0004092828680000383
101过氧化物和桐油的共混物、或
Figure GDA0004092828680000384
101过氧化物、桐油和维生素K3的共混物可以用于改性PLA以提高其物理特性。
实例12
请参考图13(实例12)。将含有33.4wt%
Figure GDA0004092828680000385
DTA和66.6wt%TAIC(异氰脲酸三烯丙酯)助剂的1.0wt%过氧化物组合物添加到PLA中并在180℃下在RPA流变仪中进行反应。为了提供PLA改性的理想延迟,使用了如本发明中传授的不同添加剂,如橄榄苦苷、ω3和维生素K3。因此,将0.15wt%纯橄榄苦苷连同含有33.4wt%
Figure GDA0004092828680000386
DTA和66.6wt%TAIC助剂的1.0wt%过氧化物组合物一起添加到PLA中。橄榄苦苷的使用提供了PLA改性反应的理想延迟,如图13所示。此实例中使用了橄榄苦苷橄榄叶提取物胶囊(Roex公司),其含有20%纯橄榄苦苷(橄榄叶提取物中的活性成分)。因此,要向PLA中添加0.15wt%纯橄榄苦苷,必须将0.75wt%的来自Roex公司的胶囊的实际橄榄叶提取物掺入PLA树脂中。在另一个实验中,将0.10wt%ω3油连同含有33.4wt%
Figure GDA0004092828680000387
DTA和66.6wt%TAIC助剂的1.0wt%过氧化物组合物一起添加到PLA中。出乎意料地,观察到PLA改性的显著延迟。本发明中传授的过氧化物配制品负载量可以容易调节以获得所希望的PLA改性量。因此,例如,如果用含有33.4wt%
Figure GDA0004092828680000388
DTA和66.6wt%TAIC助剂的1.0wt%过氧化物组合物获得的类似改性需要显著更长的焦烧时间(安全混合时间),则当使用含有32.1wt%
Figure GDA0004092828680000389
DTA和64wt%TAIC助剂和3.9wt%维生素K3的2wt%过氧化物组合物时是可能的。当用于对PLA聚合物熔体强度进行改性时,
Figure GDA00040928286800003810
DTA,其化学名称为二-叔戊基过氧化物的有机过氧化物,在分解过程期间不会产生叔丁醇。
实例13
请参考图14(实例13)。将***二醇(CBD)与
Figure GDA0004092828680000391
DTA(二-叔戊基过氧化物)和TAIC(氰尿酸三烯丙酯)一起使用以在180℃下对PLA的熔体强度进行改性。具体地,将1.7wt%过氧化物组合物(63.7wt%TAIC、32wt%
Figure GDA0004092828680000392
DTA和4.3wt%CBD分离物)用于改性PLA。这与在PLA中使用1.7wt%过氧化物组合物(66.6wt%TAIC和33.4wt%
Figure GDA0004092828680000393
DTA)相比较。基于在弹性模量S’(dN-m)对比时间的增加方面示出所希望的延迟的流变图结果,CBD的使用提供了在180℃下PLA改性过程的理想减缓,如图14所示。本领域普通技术人员可以通过调节图14中提供的过氧化物配制品浓度来调节最终PLA熔体强度改性的量。与其他CBD产物不同,CBD分离物是白色固体,不是不纯的CBD油,并且不含有任何THC四氢***醇。总之,CBD分离物在本发明的实践中用作新颖的添加剂时,提供了在使用反应性过氧化物和助剂组合例如
Figure GDA0004092828680000394
DTA和TAIC(异氰脲酸三烯丙酯)时控制对PLA聚合物的改性的速率和程度二者的方法。
实例14
请参考图15(实例14)。在一些商业过程中,使用填充剂增量的有机过氧化物可能是有用的。在此实例中,使用了
Figure GDA0004092828680000395
101SIL45,其在二氧化硅填充剂上具有报告的47wt%过氧化物含量。它是自由流动的粉状过氧化物配制品。使用粉末形式的过氧化物作为基础,通过向这种二氧化硅填充剂增量的有机过氧化物中添加不同量的粉状维生素K3来制造两种不同的填充剂增量的过氧化物配制品。维生素K3的添加降低了最终配制品中的过氧化物含量wt%,因为配制品中所有组分的总wt%必须总计达100%。在每种情况下,向PLA聚合物中添加反应性助剂。向PLA中以0.5wt%添加Sartomer SR351H(也称为“三羟甲基丙烷三丙烯酸酯”或“TMPTA”,其是三官能丙烯酸酯助剂)。
由此向PLA中添加1.0wt%(47wt%
Figure GDA0004092828680000396
101+53wt%二氧化硅)和0.5wt%SR351H。向PLA中添加1.0wt%的另一种过氧化物配制品(45wt%
Figure GDA0004092828680000401
101+50.8wt%二氧化硅+4.2wt%维生素K3)和0.5wt%SR351H。还向PLA中添加1.4wt%的另一种过氧化物配制品(44.9wt%
Figure GDA0004092828680000402
101+49.7wt%二氧化硅+5.4wt%维生素K3)和0.5wt%SR351H。
Figure GDA0004092828680000403
101SIL45过氧化物和Sartomer SR351H的使用是快速反应的固化剂组合,用于在180℃下改性PLA。如图15所示,将粉状维生素K3添加到粉末过氧化物配制品中得到自由流动的易于处理的组合物,该组合物提供了减缓PLA生物聚合物的初始改性反应的能力以允许在挤出机或熔融共混器中更好、更均匀地熔融混合。图15示出通过调节增量的过氧化物配制品中维生素K3的量和/或通过调节添加到PLA中的总过氧化物浓度,可以获得不同程度的PLA聚合物改性和不同程度的PLA弹性模量改性反应的延迟。
实例15
请参考图16(实例15)。在此实例中,证明了这样的出乎意料的益处,与单独使用的过氧化物相比,将桐油与有机过氧化物组合使用以提供生物聚合物(PLA)和可生物降解聚合物(PBAT)熔体混合物的熔体强度的显著增加。
在此实例中并且如图16的流变图所示,将PBAT和PLA组合、熔融共混并改性以增加弹性模量(熔体强度)。使用80:20wt%比率的PLA与PBAT制备生物基聚合物与可生物降解聚合物的共混物。因此,在此实例中,将以80:20wt%比率使用的两种聚合物(PLA和PBAT)连同各种添加剂一起在内部哈克(Haake)密闭式混合器中在150℃下熔融共混。使从哈克混合器中取出的熔融共混的组合物的样品在180℃下在
Figure GDA0004092828680000404
2000流变仪(使用1°弧度和100cpm频率)中进行反应和测试,其中弹性模量如前述以dN-m测量。
具体地,在有和没有0.50wt%桐油的情况下将0.50wt%
Figure GDA0004092828680000405
101过氧化物添加到PLA和PBAT(80:20)wt%共混物中并在150℃下使用哈克密闭式混合器以30rpm熔融混合持续两分钟。然后使这些预混合的PLA样品在180℃下在
Figure GDA0004092828680000406
2000流变仪(使用1°弧度应变和100cpm频率)中进行反应和测试。在180℃下在PLA-PBAT共混物中桐油与
Figure GDA0004092828680000407
101的反应导致PLA和PBAT弹性模量(以dN-m计)的出乎意料且显著的增加。同样,这种弹性模量的增加意味着聚合物熔体强度由于桐油与有机过氧化物的组合使用而增加。当使用桐油和过氧化物时,与仅使用0.5wt%
Figure GDA0004092828680000411
101过氧化物相比,弹性模量的增加量显著更大。
如果希望PLA和PBAT的这种桐油和过氧化物改性的延迟,则可以添加维生素K添加剂、月桂烯、CBD分离物、橄榄苦苷或这些添加剂的组合中的一种或多种以获得反应的所希望的延迟,以在聚合物改性之前促进增加的熔融混合。

Claims (27)

1.一种有机过氧化物配制品,其包含
至少一种有机过氧化物;和
至少一种反应性生物基添加剂。
2.根据权利要求1所述的有机过氧化物配制品,其中,所述反应性生物基添加剂的量和所述至少一种有机过氧化物的量被选择使得所述配制品能够与生物基聚合物进行化学反应以产生改性生物基聚合物,或与可生物降解聚合物进行化学反应以产生改性可生物降解聚合物,或者与生物基聚合物和可生物降解聚合物的混合物进行化学反应以产生改性生物基聚合物和改性可生物降解聚合物的混合物。
3.根据权利要求1-2中任一项所述的有机过氧化物配制品,其中,所述至少一种反应性生物基添加剂选自由以下组成的组:维生素K化合物、其衍生物、及其混合物。
4.根据权利要求1-3中任一项所述的有机过氧化物配制品,其中,所述至少一种反应性生物基添加剂选自由以下组成的组:包含至少一个碳碳双键的植物来源的油、包含至少一个碳碳双键的动物来源的油、包含至少一个碳碳双键的生物基油、包含至少一个碳碳双键的生物衍生的油、及其混合物。
5.根据权利要求1-4中任一项所述的有机过氧化物配制品,其中,所述至少一种有机过氧化物选自由以下组成的组:二酰基过氧化物(过氧化二苯甲酰除外);二烷基过氧化物;二过氧化缩酮过氧化物;半过氧缩酮过氧化物;单过氧化碳酸酯;环酮过氧化物;过氧化酯;过氧化二碳酸酯;及其混合物。
6.根据权利要求1-5中任一项所述的有机过氧化物配制品,其进一步包含至少一种交联助剂,所述交联助剂包含具有至少两个官能团的部分,
其中所述官能团可以相同或不同并且选自由以下组成的组:烯丙基、甲基丙酸烯、丙烯酸、马来酰亚胺、和乙烯基。
7.根据权利要求1-6中任一项所述的有机过氧化物配制品,其进一步包含至少一种天然的或可天然衍生的防烧焦添加剂,所述防烧焦添加剂选自由以下组成的组:维生素K1(植物甲萘醌或叶绿醌)、维生素K2(甲基萘醌)、维生素K3(甲萘醌)、维生素K2 MK-4(四烯甲萘醌)、维生素K2 MK-7(甲基萘醌-7)、维生素K2 MK-14(甲基萘醌14)、维生素K2四烯甲萘醌环氧化物、大黄素(6-甲基-1,3,8-三羟基蒽醌)、朱砂莲乙素或大黄素甲醚(1,8-二羟基-3-甲氧基-6-甲基-蒽-9,10-二酮)、大黄酸(4,5-二羟基-9,10-二氧代蒽-2-甲酸)、芦荟大黄素(1,8-二羟基-3-(羟甲基)蒽醌)、大黄酚(1,8-二羟基-3-甲基-9,10-蒽醌)、梅笠草素(2,7-二甲基-1,4-萘醌)、百里醌、二百里醌、百里氢醌、2-羟基-2,4-萘醌、咖啡醌(咖啡酸醌)、绿原酸醌、橄榄叶油(橄榄苦苷)、奎宁、咖啡酸、绿原酸、***二醇、百里酚、胱氨酸、半胱氨酸、高半胱氨酸、甲硫氨酸、牛磺酸、N-甲酰甲硫氨酸、及其混合物。
8.一种用于生产改性生物基聚合物、改性可生物降解聚合物、或其混合物的配制品,所述配制品包含至少一种有机过氧化物、至少一种生物基聚合物或至少一种可生物降解聚合物或其混合物,其中所述至少一种生物基聚合物、可生物降解聚合物、或其混合物的量以及所述至少一种有机过氧化物的量被选择使得所述配制品能够与反应性生物基添加剂进行化学反应以产生所述改性生物基聚合物、所述改性可生物降解聚合物、或其混合物。
9.根据权利要求8所述的用于生产改性生物基聚合物、可生物降解聚合物、或其混合物的配制品,其中,所述至少一种有机过氧化物选自由以下组成的组:二酰基过氧化物(过氧化二苯甲酰除外);二烷基过氧化物;二过氧化缩酮过氧化物;半过氧化缩酮过氧化物;单过氧化碳酸酯;环酮过氧化物;过氧化酯;过氧化二碳酸酯;及其混合物。
10.根据权利要求8-9中任一项所述的用于生产改性生物基聚合物、改性可生物降解聚合物、或其混合物的配制品,其中,所述至少一种生物基聚合物选自由以下组成的组:聚乳酸(PLA)及其共聚物、聚羟基烷酸酯(PHA)、聚羟基丁酸酯(PHB)、聚(3-羟基戊酸酯)(PHV)、聚羟基己酸酯(PHH)、聚乙醇酸(PGA)、以及聚-ε-己内酯(PCL)及其衍生物和其混合物,所述可生物降解聚合物是聚(己二酸丁二醇酯-共-对苯二甲酸丁二醇酯)(PBAT),包括其衍生物。
11.根据权利要求8-10中任一项所述的用于生产改性可生物降解聚合物的配制品,其中,所述配制品基本上由可生物降解聚合物聚(己二酸丁二醇酯-共-对苯二甲酸丁二醇酯)(PBAT)及其衍生物组成。
12.根据权利要求8-10中任一项所述的用于生产改性生物基聚合物的配制品,其中,所述至少一种生物基聚合物与可生物降解聚合物聚(己二酸丁二醇酯-共-对苯二甲酸丁二醇酯)(PBAT)组合。
13.根据权利要求8-12中任一项所述的用于生产改性生物基聚合物、改性可生物降解聚合物、或其混合物的配制品,其中,所述至少一种反应性生物基添加剂选自由以下组成的组:维生素K化合物、其衍生物、及其混合物。
14.根据权利要求8-13中任一项所述的用于生产改性生物基聚合物、改性可生物降解聚合物、或其混合物的配制品,其中,所述至少一种生物基添加剂选自由以下组成的组:包含至少一个碳碳双键的植物来源的油、包含至少一个碳碳双键的动物来源的油、包含至少一个碳碳双键的生物基油、包含至少一个碳碳双键的生物衍生的油、及其混合物。
15.根据权利要求8-14中任一项所述的用于生产改性生物基聚合物、改性可生物降解聚合物、或其混合物的配制品,所述配制品进一步包含至少一种交联助剂,所述交联助剂包含具有至少两个官能团的部分,其中所述官能团相同或不同并且选自由以下组成的组:烯丙基、甲基丙酸烯、丙烯酸、马来酰亚胺、和乙烯基。
16.一种改性生物基聚合物、改性可生物降解聚合物、或其混合物,其包含以下项的反应产物:至少一种有机过氧化物、至少一种反应性生物基添加剂,以及以下项的反应产物:至少一种生物基聚合物、或至少一种可生物降解聚合物、或所述生物基聚合物和可生物降解聚合物的混合物。
17.根据权利要求16所述的改性生物基聚合物、改性可生物降解聚合物、或其混合物,其中,所述至少一种有机过氧化物选自由以下组成的组:二酰基过氧化物(过氧化二苯甲酰除外)、二烷基过氧化物、二过氧化缩酮过氧化物、半过氧化缩酮过氧化物、单过氧化碳酸酯、环酮过氧化物、过氧化酯、过氧化二碳酸酯、及其混合物。
18.根据权利要求16-17中任一项所述的改性生物基聚合物、改性可生物降解聚合物、或其混合物,其中,所述至少一种反应性生物基添加剂选自由以下组成的组:维生素K化合物,包括其衍生物和其混合物。
19.根据权利要求16-18中任一项所述的改性生物基聚合物、改性可生物降解聚合物、或其混合物,其中,所述至少一种反应性生物基添加剂选自由以下组成的组:包含至少一个碳碳双键的植物来源的油、包含至少一个碳碳双键的动物来源的油、包含至少一个碳碳双键的生物基油、包含至少一个碳碳双键的生物衍生的油、及其混合物。
20.根据权利要求16-19中任一项所述的改性生物基聚合物、改性可生物降解聚合物、或其混合物,其中,所述至少一种生物基聚合物选自由以下组成的组:聚乳酸(PLA)及其共聚物、聚羟基烷酸酯(PHA)、聚羟基丁酸酯(PHB)、聚(3-羟基戊酸酯)(PHV)、聚羟基己酸酯(PHH)、聚乙醇酸(PGA)、以及聚-ε-己内酯(PCL)——包括其衍生物和其混合物,并且所述至少一种可生物降解聚合物是聚(己二酸丁二醇酯-共-对苯二甲酸丁二醇酯)(PBAT),包括其衍生物。
21.根据权利要求16-20中任一项所述的改性可生物降解聚合物,其中,所述至少一种生物基聚合物与聚(己二酸丁二醇酯-共-对苯二甲酸丁二醇酯)(PBAT)——包括其衍生物组合。
22.一种生产改性生物基聚合物、改性可生物降解聚合物、或其混合物的方法,所述方法包括:
使以下项组合:
至少一种有机过氧化物;
至少一种反应性生物基添加剂;和
至少一种生物基聚合物、或至少可生物降解聚合物、或生物基聚合物和可生物降解聚合物的混合物;
从而形成反应混合物;以及
使所述反应混合物反应以形成改性生物基聚合物。
23.根据权利要求22所述的方法,其中,所述组合步骤包括:
将所述至少一种有机过氧化物和所述至少一种反应性生物基添加剂组合以形成有机过氧化物-反应性生物基添加剂配制品的第一步骤;以及
将所述有机过氧化物-反应性生物基添加剂配制品与所述至少一种生物基聚合物、可生物降解聚合物、或生物基聚合物和可生物降解聚合物的混合物组合以形成所述反应混合物的第二步骤。
24.根据权利要求23所述的方法,其中,所述第二步骤和所述反应步骤同时进行。
25.根据权利要求22所述的方法,其中,所述组合步骤包括:
将所述至少一种有机过氧化物和所述至少一种生物基聚合物、可生物降解聚合物、或其混合物组合以形成有机过氧化物-生物基、可生物降解、或其混合物聚合物配制品的第一步骤;以及
将所述至少一种反应性生物基反应性添加剂组合以形成所述反应混合物的第二步骤。
26.根据权利要求25所述的方法,其中,所述第二步骤和所述反应步骤同时进行。
27.根据权利要求1-4或8-14中任一项所述的有机过氧化物配制品,其中,所述至少一种反应性生物基添加剂选自由以下组成的组:桐油、月桂烯、***二醇、柠檬烯和ω3。
CN202180034383.2A 2020-04-09 2021-04-08 用于改性生物基聚合物和可生物降解聚合物的有机过氧化物配制品 Pending CN115836108A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063007451P 2020-04-09 2020-04-09
US63/007,451 2020-04-09
PCT/US2021/026421 WO2021207520A1 (en) 2020-04-09 2021-04-08 Organic peroxide formulations for modification of bio-based and biodegradable polymers

Publications (1)

Publication Number Publication Date
CN115836108A true CN115836108A (zh) 2023-03-21

Family

ID=78023956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180034383.2A Pending CN115836108A (zh) 2020-04-09 2021-04-08 用于改性生物基聚合物和可生物降解聚合物的有机过氧化物配制品

Country Status (7)

Country Link
US (1) US20230113267A1 (zh)
EP (1) EP4133005A4 (zh)
JP (1) JP2023521746A (zh)
KR (1) KR20220166847A (zh)
CN (1) CN115836108A (zh)
CA (1) CA3174607A1 (zh)
WO (1) WO2021207520A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114456554B (zh) * 2022-04-13 2022-06-07 邢台富意顺生物降解科技有限公司 一种生物降解纳米微孔复合材料及其制备工艺

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014268A1 (en) * 1997-09-18 1999-03-25 Monsanto Company Modified polyhydroxyalkanoates for production of coatings and films
JP2001026696A (ja) * 1999-07-13 2001-01-30 Mitsui Chemicals Inc 脂肪族ポリエステル樹脂組成物及びその製造方法
ES2724497T3 (es) * 2010-05-17 2019-09-11 Cj Cheiljedang Corp Acido poliláctico para lograr tenacidad con polihidroxialcanoatos
US9505896B2 (en) * 2011-06-08 2016-11-29 Arkema Inc. Foaming of thermoplastic materials with organic peroxides
ES2879250T3 (es) * 2012-06-05 2021-11-22 Cj Cheiljedang Corp Mezclas poliméricas biodegradables
CN104755538B (zh) * 2012-08-17 2018-08-31 Cj 第一制糖株式会社 用于聚合物共混物的生物基橡胶改性剂
WO2016069536A1 (en) * 2014-10-29 2016-05-06 Arkema Inc. Peroxide vulcanization of rubber latexes
WO2016094161A1 (en) * 2014-12-09 2016-06-16 Arkema Inc. Compositions and methods for crosslinking polymers in the presence of atmospheric oxygen
JP6012837B1 (ja) * 2015-11-20 2016-10-25 サンユレック株式会社 ポリウレタン樹脂組成物
CA3045507C (en) * 2016-12-20 2023-11-07 Arkema Inc. Efficient curative for free radically-crosslinkable polymers
WO2019113713A1 (en) * 2017-12-15 2019-06-20 University Of Guelph Biodegradable nanostructured composites
CN110396283A (zh) * 2019-07-12 2019-11-01 上海昶法新材料有限公司 一种可生物降解制品及其制备方法

Also Published As

Publication number Publication date
CA3174607A1 (en) 2021-10-14
KR20220166847A (ko) 2022-12-19
EP4133005A4 (en) 2024-04-24
EP4133005A1 (en) 2023-02-15
JP2023521746A (ja) 2023-05-25
US20230113267A1 (en) 2023-04-13
WO2021207520A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US11118028B2 (en) Liquid and meltable solid grades of scorch protected peroxides
JP6646323B2 (ja) ポリ乳酸樹脂組成物およびその製造方法
CA2970291A1 (en) Compositions and methods for crosslinking polymers in the presence of atmospheric oxygen
CN101747476A (zh) 聚羟基烷酸酯接枝聚合物及其制备方法
CN115836108A (zh) 用于改性生物基聚合物和可生物降解聚合物的有机过氧化物配制品
KR20180127550A (ko) 가교 개시제와 촉진제의 프라이머 혼합물
CN113646363A (zh) 在宽的聚合物加工温度范围内有效的着色剂和添加剂浓缩物载体体系
KR102261508B1 (ko) 락테이트계 화합물이 첨가된 상온 복합분해 첨가제 조성물 및 이로부터 제조되는 사출용 펠렛
US20230110618A1 (en) Scorch protected oranic peroxide formulations
WO2023190184A1 (ja) 熱可塑性樹脂組成物
JP5459155B2 (ja) 防振ゴム組成物及び防振ゴム
WO2023190185A1 (ja) 熱可塑性樹脂組成物
JPWO2008081639A1 (ja) ポリ乳酸のステレオコンプレックス形成促進剤
JP2004292561A (ja) 変性ポリオレフィン樹脂の製造方法及び変性ポリオレフィン樹脂
US11859061B2 (en) Colorant and additive concentrate carrier system with efficacy over a wide range of polymeric processing temperatures
KR102152355B1 (ko) 상온 복합분해 첨가제 조성물 및 이로부터 제조되는 사출용 펠릿
WO2023145743A1 (ja) ポリ乳酸樹脂組成物
CN115584076A (zh) 在宽的聚合物加工温度范围内有效的非聚己内酯基着色剂和添加剂浓缩物载体体系

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination