CN115368321A - N-甲基吗啉-n-氧化物的纯化方法、***、检测方法及所得n-甲基吗啉-n-氧化物 - Google Patents

N-甲基吗啉-n-氧化物的纯化方法、***、检测方法及所得n-甲基吗啉-n-氧化物 Download PDF

Info

Publication number
CN115368321A
CN115368321A CN202110521394.5A CN202110521394A CN115368321A CN 115368321 A CN115368321 A CN 115368321A CN 202110521394 A CN202110521394 A CN 202110521394A CN 115368321 A CN115368321 A CN 115368321A
Authority
CN
China
Prior art keywords
methylmorpholine
oxide
crystallization
nmmo
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110521394.5A
Other languages
English (en)
Other versions
CN115368321B (zh
Inventor
路万里
马杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huamao Weiye Green Technology Co ltd
Original Assignee
Xi'an Speet Environmental Protection Technology Co ltd
Huamao Weiye Green Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Speet Environmental Protection Technology Co ltd, Huamao Weiye Green Technology Co ltd filed Critical Xi'an Speet Environmental Protection Technology Co ltd
Priority to CN202110521394.5A priority Critical patent/CN115368321B/zh
Priority to PCT/CN2022/088743 priority patent/WO2022242424A1/zh
Priority to EP22803748.7A priority patent/EP4335842A1/en
Publication of CN115368321A publication Critical patent/CN115368321A/zh
Application granted granted Critical
Publication of CN115368321B publication Critical patent/CN115368321B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/22Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms
    • C07D295/24Oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0018Evaporation of components of the mixture to be separated
    • B01D9/0022Evaporation of components of the mixture to be separated by reducing pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0018Evaporation of components of the mixture to be separated
    • B01D9/0031Evaporation of components of the mixture to be separated by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/004Fractional crystallisation; Fractionating or rectifying columns
    • B01D9/0045Washing of crystals, e.g. in wash columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0059General arrangements of crystallisation plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0063Control or regulation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • G01N30/8634Peak quality criteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种N‑甲基吗啉‑N‑氧化物的纯化方法、***、检测方法及得到的N‑甲基吗啉‑N‑氧化物,该N‑甲基吗啉‑N‑氧化物来源于N‑甲基吗啉与双氧水反应制备的N‑甲基吗啉‑N‑氧化物粗产物,所述N‑甲基吗啉‑N‑氧化物粗产物中N‑甲基吗啉‑N‑氧化物的质量浓度为50%~60%,该纯化方法包括:将所述N‑甲基吗啉‑N‑氧化物粗产物在‑20℃~78℃之间进行降温结晶,得到N‑甲基吗啉‑N‑氧化物晶体。本发明NMMO提纯方法成本低,所得NMMO产品纯度高,几乎无“三废”生成。与目前NMMO提纯工艺不同,本发明提纯方法不需要离子交换树脂,因此彻底解决了离子交换树脂再生所带来的大量高盐高COD废水和废离子交换树脂等环保问题。

Description

N-甲基吗啉-N-氧化物的纯化方法、***、检测方法及所得N- 甲基吗啉-N-氧化物
技术领域
本发明涉及N-甲基吗啉-N-氧化物的纯化方法、N-甲基吗啉-N-氧化物的纯化***、N-甲基吗啉-N-氧化物的检测方法及得到的N-甲基吗啉-N-氧化物。
背景技术
N-甲基吗啉-N-氧化物(氧化甲基吗啉,NMMO)是一种对纤维素有极强溶解性的优良溶剂。目前可溶解纤维素的溶剂中,可以真正实现工业化生产且前景可观的只有NMMO一种溶剂,NMMO能够很好溶解纤维素,可以得到成纤、成膜性能良好的纤维素溶液,这种溶液纺丝得到的天丝(Lyocell)纤维具有优异的纤维性能,而且Lyocell纤维生产过程中NMMO溶剂易回收,回收率达99.5%以上,Lyocell纤维在环保、能耗和纤维性能等各方面都具有很大的优势,发展前景十分广阔。
工业化NMMO是通过双氧水(H2O2)与N-甲基吗啉反应制备而成,反应得到的NMMO粗产物通常有较深颜色,根据申请人(华茂伟业绿色科技股份有限公司)工业化制备NMMO的实践,该反应的NMMO收率在99%以上,NMMO反应粗产物中总杂质质量含量不到1%,杂质中含有一定量未反应的N-甲基吗啉、吗啉、双氧水和一些副反应生成的杂质如强致癌物N-亚硝基吗啉、有机过氧化物以及一些不明杂质等,同时也含有一定量的金属阳离子如铜铁离子等和磷酸根、硝酸根等阴离子,NMMO粗产物电导率一般在500μs/cm以上。
目前可用于天丝生产的质量浓度为50%的NMMO水溶液产品的质量标准为:电导率小于10μs/cm,铜离子含量小于2ppm,铁离子含量小于2ppm,未反应的双氧水含量小于50ppm,N-甲基吗啉含量小于100ppm,吗啉含量小于200ppm,N-亚硝基吗啉含量小于50ppb,产品外观色度为无色透明溶液。对天丝生产而言,上述这些杂质在NMMO浓度50%水溶液产品中含量越低越好,但进一步降低这些杂质含量,需要比目前NMMO提纯工艺更加繁复苛刻的提纯步骤和提纯工艺条件,提纯成本会大幅上升。
另外,NMMO为胺基氧化物,在一定温度下会发生Cope消除反应,生成相应的双键在端基的烯烃化合物。由于NMMO制备过程中存在大量双氧水,双氧水会与烯烃反应,生成相应的有机过氧化氢、过氧化醚和有机过氧酸等有机过氧化物,因此NMMO粗产物中不可避免地含有一定量的有机过氧化物杂质。
天丝生产中纤维素分子链的断裂主要为NMMO的自由基分解反应产生的N-甲基吗啉自由基引发的(Adorjan I.,Potthast A.,Rosenau T.,Sixta H.and KosmaP.2005.Discoloration of cellulose solutions in N-methylmorpholine-N-oxide(Lyocell).Part 1:Studies on model compounds and pulps.Cellulose 12:51-57)(Rosenau T.,Potthast A.,Adorjan I.,Hofinger A.,Sixta H.,Firgo H.and KosmaP.2002.Cellulose solutions in N-methylmorpholime-N-oxide(NMMO)-Degradationprocesses and stabilizers.Cellulose 9:283-291)。过氧化物包括双氧水等无机过氧化物和有机过氧化物是一类优良的自由基引发剂,在一定温度下会分解产生自由基,从而诱导NMMO自由基分解反应的发生,造成纤维素分子链断裂,天丝纤维强度降低,同时NMMO自由基分解反应的最终产物是吗啉和甲醛,二者之间还有可能继续反应,生成亚甲基吗啉正碳离子,如果纤维素和NMMO形成的纺丝液中亚甲基吗啉正碳离子浓度过高,会大量诱发放热剧烈的NMMO自催化分解反应,导致不可控***(US5556452),因此过氧化物对天丝生产危害很大。目前越来越多的天丝厂家已经意识到NMMO产品中有机过氧化物对天丝生产可能带来的危害,对NMMO中除双氧水以外的有机过氧化物杂质含量开始进行规范,尽管目前还没有出台进一步相关标准,但要求其中NMMO中过氧化物含量越低越好。
NMMO在生产过程中接触金属设备、反应器、管道和容器等,导致NMMO含有一些金属离子如铜、铁等离子,另外双氧水中也带有一些金属和非金属离子,铜铁离子会催化NMMO分解反应,造成NMMO的损耗,天丝生产中NMMO纤维素溶液里面的铜铁离子还会与纤维素发生络合,导致纤维素降解(吴翠玲、李新平、秦胜利和王建勇《新型有机纤维素溶剂-NMMO的研究》,兰州理工大学学报,2005,31(2),73-76)。另外铜铁离子也会与天丝生产中加入的没食子酸丙酯络合,产生较深的颜色,影响最终天丝纤维的色度,同时铜铁离子还会催化NMMO中过氧化物氧化纤维素,加速纤维素分解,以及催化美拉德反应,产生颜色,甚至会催化NMMO自催化自由基分解反应,放出大量热,严重时有可能产生***(如CN 104801354B和US5556452),因此过高的铜铁离子对NMMO生产危害很大,故要求天丝级NMMO产品中铜铁离子含量越低越好。
目前工业化提纯NMMO的工艺都是多步提纯工艺,其中一步使用离子交换树脂法去除NMMO粗产物中的阴阳离子和包括色素在内的部分有机杂质(CN 104801354 B),同时采用其它提纯工艺(如X光照射和特种吸附树脂等)除去其中的N-亚硝基吗啉和其它有机杂质,为了得到更高品质的NMMO产品,还需要经过特殊催化还原处理,以便更深度除去其中的过氧化物(包括双氧水、有机过氧化氢、过氧化醚和有机过氧酸等),如果仅采用离子交换树脂纯化的NMMO,无法完全去除其中含有的包括过氧化物在内的非离子型有机杂质。
失效的离子交换树脂需要再生才能重复使用,阳离子交换树脂通常使用4-6倍树脂体积的4-5%盐酸水溶液连续冲洗再生,而阴离子交换树脂使用4-6倍树脂体积的4-5%NaOH水溶液连续冲洗再生。这些再生废液经过酸碱中和后,不仅含有5%左右的NaCl和其它少量金属、非金属离子盐,而且还含有树脂吸附的其它有机杂质以及吸附的少量NMMO,故COD含量通常在5000ppm-20000ppm。一般生产1吨50%NMMO水溶液产品,就要产生1-2吨高COD高盐废水,由于含盐量高,该废水无法通过催化氧化方法处理,因为钠离子和氯离子会导致催化剂Pt中毒,也不能通过有机废液焚烧炉(TO)直接焚烧,因为高盐不仅会严重腐蚀焚烧炉材质,而且大量残留在焚烧炉内的废盐还会严重影响焚烧炉的运行,故通常只能采用多效蒸发(MVR)浓缩得到半固体废盐,将含COD废水中的盐份分离出来。但该处理方式不仅能耗高,而且得到的废盐中含很高的COD,只能交给有资质的环保公司作为危废处理,费用非常高。MVR蒸发得到的水中COD含量通常也很高,必须经过催化氧化或直接焚烧处理。另外离子交换树脂和吸附有机杂质的特种吸附树脂不但售价高,寿命一般仅1-2年,而且报废的树脂按照国家危废分类名录被列为危险废物,必须交由有资质的环保公司处理,费用同样非常高。同时由于离子交换树脂和吸附有机杂质的特种树脂会吸附NMMO,造成NMMO收率的降低。因此目前工业化提纯制备天丝级NMMO的工艺,不仅存在严重的“三废”环保问题,而且能耗及提纯成本也非常高。
《新型有机纤维素溶剂-NMMO的研究》(吴翠玲、李新平、秦胜利和王建勇,兰州理工大学学报,2005,31(2),73-76)中公开,NMMO可以与水分子结合形成3种不同含水量的晶体,1个NMMO分子可以与1个水分子形成单水化合物晶体(NMMO·H2O),外观为白色晶体,熔点:76-78℃,晶体中NMMO浓度84.5%,密度1.28g/cm3;2个NMMO分子也可以与5个水分子形成2.5水化合物晶体(2NMMO·5H2O),外观为白色晶体,熔点36-39℃,晶体中NMMO浓度72.2%,密度1.33g/cm3;1个NMMO分子还可以与5个水分子(NMMO·5H2O)形成五水化合物晶体,熔点:-20℃,晶体中NMMO浓度56.5%。NMMO·H2O和NMMO·2.5H2O可通过NMMO水溶液脱水得到。其主要考察研究了NMMO不同水合物晶体对纤维素的溶解性,利用NMMO·H2O的低熔点特性以及较好地溶解纤维素的特性,将NMMO·H2O用于溶解纤维素。
发明内容
本发明的主要目的在于提供一种N-甲基吗啉-N-氧化物的纯化方法、***、检测方法及得到的N-甲基吗啉-N-氧化物,以克服现有技术中N-甲基吗啉-N-氧化物纯化过程能耗高,污染环境,收率低,以及所得N-甲基吗啉-N-氧化物纯度低的缺陷。
为了达到上述目的,本发明提供了一种N-甲基吗啉-N-氧化物的纯化方法,该N-甲基吗啉-N-氧化物来源于N-甲基吗啉与双氧水反应制备的N-甲基吗啉-N-氧化物粗产物,所述N-甲基吗啉-N-氧化物粗产物中N-甲基吗啉-N-氧化物的质量浓度为50%~60%,该纯化方法包括:将所述N-甲基吗啉-N-氧化物粗产物在-20℃~78℃之间进行降温结晶,得到N-甲基吗啉-N-氧化物晶体。
本发明所述的N-甲基吗啉-N-氧化物的纯化方法,在一实施方式中,该纯化方法还包括将所述N-甲基吗啉-N-氧化物粗产物进行浓缩处理,使N-甲基吗啉-N-氧化物粗产物中N-甲基吗啉-N-氧化物的质量浓度为56.5%~84.5%,然后再进行降温结晶。
本发明所述的N-甲基吗啉-N-氧化物的纯化方法,在一实施方式中,在所述降温结晶的过程中加入晶种,所述晶种的加入量为所述N-甲基吗啉-N-氧化物粗产物重量的0.1%~1.0%。
本发明所述的N-甲基吗啉-N-氧化物的纯化方法,在一实施方式中,浓缩处理后,N-甲基吗啉-N-氧化物粗产物中N-甲基吗啉-N-氧化物的质量浓度为56.5%~72.2%时,所述降温结晶的温度为-20~39℃;浓缩处理后,N-甲基吗啉-N-氧化物粗产物中N-甲基吗啉-N-氧化物的质量浓度为大于72.2%且小于或等于84.5%时,所述降温结晶的温度为大于39℃且小于或等于78℃。
本发明所述的N-甲基吗啉-N-氧化物的纯化方法,在一实施方式中,浓缩处理后,N-甲基吗啉-N-氧化物粗产物中N-甲基吗啉-N-氧化物的质量浓度为66%~71%,所述降温结晶的温度为25℃~35℃。
本发明所述的N-甲基吗啉-N-氧化物的纯化方法,在一实施方式中,所述降温结晶过程中,在开始出现晶体至30℃,降温速率为1~2℃/小时;-20℃~30℃之间,降温速率为3~4℃/小时。
本发明所述的N-甲基吗啉-N-氧化物的纯化方法,在一实施方式中,所述降温结晶至少包括一级降温结晶和二级降温结晶,所述一级降温结晶得到N-甲基吗啉-N-氧化物晶体和结晶母液,所述结晶母液经浓缩后进行二级降温结晶处理。
为了达到上述目的,本发明还提供了上述N-甲基吗啉-N-氧化物的纯化方法得到的N-甲基吗啉-N-氧化物,N-甲基吗啉-N-氧化物的回收率为97%以上,N-甲基吗啉-N-氧化物的液相色谱检测结果为有机杂质含量为0,所得到的N-甲基吗啉-N-氧化物配成质量浓度为50%的水溶液,所述水溶液的电导率为0~10μs/cm,双氧水含量为0。
为了达到上述目的,本发明更提供了一种N-甲基吗啉-N-氧化物的纯化方法,该纯化方法不使用离子交换树脂。
为了达到上述目的,本发明又提供了一种N-甲基吗啉-N-氧化物的纯化***,该纯化***用于N-甲基吗啉与双氧水反应制备的N-甲基吗啉-N-氧化物粗产物中N-甲基吗啉-N-氧化物的纯化,该纯化***包括:
结晶装置,用于N-甲基吗啉-N-氧化物粗产物的结晶处理;
控制装置,与所述结晶装置连接,以控制结晶装置中的结晶条件。
本发明所述的N-甲基吗啉-N-氧化物的纯化***,在一实施方式中,该纯化***还包括浓缩装置,与所述结晶装置和所述控制装置连接,以使所述N-甲基吗啉-N-氧化物粗产物在所述浓缩装置中进行浓缩后,再输入所述结晶装置;所述控制装置控制所述浓缩装置的浓缩条件。
为了达到上述目的,本发明更又提供了一种N-甲基吗啉-N-氧化物的检测方法,所述N-甲基吗啉-N-氧化物是由N-甲基吗啉与双氧水反应制备的N-甲基吗啉-N-氧化物粗产物进行降温结晶得到的,所述检测方法包括N-甲基吗啉-N-氧化物的晶体杂质残留率的测定,所述N-甲基吗啉-N-氧化物的晶体杂质残留率的测定包括如下步骤:
步骤1,对N-甲基吗啉-N-氧化物粗产物进行液相色谱测定,测定波长为200nm-220nm,或者为200nm-210nm,对所得到的液相色谱谱图中所有杂质峰进行面积积分,得到所有杂质峰的面积积分总和,记为第一杂质峰面积积分总和;
步骤2,对所述N-甲基吗啉-N-氧化物进行液相色谱测定,测定条件与步骤1相同,对所得到的液相色谱谱图中所有杂质峰进行面积积分,得到所有杂质峰的面积积分总和,记为第二杂质峰面积积分总和;
第一晶体杂质残留率=第二杂质峰面积积分总和÷第一杂质峰面积积分总和。
本发明所述的N-甲基吗啉-N-氧化物的检测方法,在一实施方式中,所述N-甲基吗啉-N-氧化物的晶体杂质残留率的测定还包括如下步骤:
步骤3,对N-甲基吗啉-N-氧化物粗产物进行液相色谱测定,测定波长为230nm-240nm,对所得到的液相色谱谱图中所有杂质峰进行面积积分,得到所有杂质峰的面积积分总和,记为第三杂质峰面积积分总和;
步骤4,对所述N-甲基吗啉-N-氧化物进行液相色谱测定,测定条件与步骤3相同,对所得到的液相色谱谱图中所有杂质峰进行面积积分,得到所有杂质峰的面积积分总和,记为第四杂质峰面积积分总和;
第二晶体杂质残留率=第四杂质峰面积积分总和÷第三杂质峰面积积分总和。
本发明所述的N-甲基吗啉-N-氧化物的检测方法,在一实施方式中,所述检测方法还包括N-甲基吗啉和吗啉含量的测定;所述N-甲基吗啉和吗啉含量的测定方法为:对N-甲基吗啉-N-氧化物进行液相色谱测定,测定波长为200nm-210nm,测定时间为大于或等于30分钟。
本发明所述的N-甲基吗啉-N-氧化物的检测方法,在一实施方式中,所述检测方法还包括N-亚硝基吗啉含量的测定;所述N-亚硝基吗啉含量的测定方法为:对N-甲基吗啉-N-氧化物进行液相色谱测定,测定波长为230nm-240nm,测定时间为大于或等于30分钟。
本发明所述的N-甲基吗啉-N-氧化物的检测方法,在一实施方式中,所述检测方法还包括:双氧水含量、电导率、铁离子含量、铜离子含量中的至少一项的测定;所述双氧水含量的测定按照GB 5009.226-2016进行;所述铁离子含量或铜离子含量的测定采用电感耦合等离子体发射光谱仪进行测定。
本发明的有益效果:
本发明提供了一种高效、低成本、绿色提纯NMMO的方法,主要包括对粗产物进行结晶处理,结晶操作温度可以接近常温(25-35℃),能耗低;NMMO回收率在97%以上,将纯化后的NMMO配制成质量浓度为50%的NMMO水溶液,其电导率小于10μs/cm,甚至达到1μs/cm左右,铜铁离子含量均小于1ppb,HPLC无法检测到N-亚硝基吗啉等有机杂质的存在,具体例如,HPLC检测结果显示杂质总含量不超过2ppm(即NMMO纯度>99.999%),双氧水含量也低于国标GB 5009226-2016可检测下限,产品质量达到或超过天丝生产要求的NMMO产品质量标准;而且,本发明的NMMO提纯方法不使用离子交换树脂,彻底解决了目前采用离子交换树脂的提纯工艺面临的高盐高COD废水和废离子交换树脂污染环境的问题。
附图说明
图1为本发明一实施方式的N-甲基吗啉-N-氧化物的纯化***示意图。
其中,附图标记:
1 一级浓缩装置
10 N-甲基吗啉-N-氧化物粗产物
11 冷凝液
12 一级浓缩液
2 一级结晶装置
3 一级结晶分离装置
31 一级结晶晶体
32 一级结晶母液
4 二级浓缩装置
41 二级浓缩液
42 冷凝液
5 二级结晶装置
6 二级结晶分离装置
61 二级结晶晶体
62 二级结晶母液
7 溶解装置
71 水
72 晶体溶解液
8 重结晶装置
9 重结晶分离装置
91 重结晶晶体
92 重结晶母液
具体实施方式
以下对本发明的实施方式作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施过程,但本发明的保护范围不限于下述的实施方式,下列实施方式中未注明具体条件的实验方法,通常按照常规条件。如未特殊说明,本发明中含量是指质量含量,%是指质量%。
本发明公开了一种N-甲基吗啉-N-氧化物的纯化方法,主要用于N-甲基吗啉与双氧水反应制备的N-甲基吗啉-N-氧化物粗产物中N-甲基吗啉-N-氧化物的纯化,本发明纯化方法不包括离子交换树脂处理步骤,因此可以克服使用离子交换树脂纯化时造成的污染环境、能耗高的问题,本发明纯化方法具有高效、低能耗、低成本、绿色环保、收率高,且N-甲基吗啉-N-氧化物纯度高的特点。
在一实施方式中,本发明提供了一种N-甲基吗啉-N-氧化物的纯化方法,该N-甲基吗啉-N-氧化物来源于N-甲基吗啉与双氧水反应制备的N-甲基吗啉-N-氧化物粗产物,N-甲基吗啉-N-氧化物粗产物中N-甲基吗啉-N-氧化物的质量浓度为50%~60%,该纯化方法包括:将N-甲基吗啉-N-氧化物粗产物在-20℃~78℃之间进行降温结晶,得到N-甲基吗啉-N-氧化物晶体。
结晶纯化方法是通过冷却降温,利用混合物中各个组分在溶剂中溶解度的不同,使得母液中所要结晶纯化的物质的浓度超过其饱和溶解度,形成过饱和溶液,所要结晶纯化的物质在过饱和溶液中形成晶体析出,而相对含量低的杂质组分则留在母液中,从而达到分离纯化的效果。影响晶体纯度的主要因素有母液在晶体表面的吸附和晶体内部对母液的包藏,本发明通过纯净的N-甲基吗啉-N-氧化物饱和溶液冲洗晶体以除去晶体表面吸附的母液,通过进一步改进结晶工艺条件或通过重结晶方法改善母液在晶体中的包藏问题。
工业中,由于纯净的N-甲基吗啉-N-氧化物存在运输上的问题,另外,使用N-甲基吗啉-N-氧化物的下游厂家通常也是以N-甲基吗啉-N-氧化物水溶液作为原料,因此,本领域通常制备的N-甲基吗啉-N-氧化物是以水溶液的状态存在。
本发明利用N-甲基吗啉-N-氧化物水合物晶体的特性,通过控制降温结晶条件,使N-甲基吗啉-N-氧化物和水以特定比例结合形成晶体,进而达到与水溶液中杂质分离的目的。换言之,本发明通过结晶得到N-甲基吗啉-N-氧化物水合物固体,达到了纯化N-甲基吗啉-N-氧化物的目的,然后再将N-甲基吗啉-N-氧化物水合物固体配制成所需浓度的水溶液,以供应给下游厂商。
工业上,N-甲基吗啉与双氧水反应制备的NMMO粗产物,颜色一般为棕黄色,根据所用双氧水浓度的不同,反应粗产物中NMMO质量浓度在50%-60%之间。本发明并不特别限定N-甲基吗啉与双氧水的反应过程,本领域常规反应条件即可。
在一实施方式中,本发明首先对N-甲基吗啉-N-氧化物粗产物进行浓缩处理,得到N-甲基吗啉-N-氧化物质量含量在56.5%-84.5%之间的浓缩液,然后再对浓缩液进行降温结晶,如此可以提高结晶效率。在另一实施方式中,浓缩处理方式为蒸发,例如真空蒸发、减压蒸发、常压蒸发等。
在一实施方式中,本发明对N-甲基吗啉-N-氧化物粗产物进行浓缩处理,得到的浓缩液中N-甲基吗啉-N-氧化物的质量含量在56.5%-72.2%时,浓缩液在-20-39℃之间进行降温结晶,如此得到的NMMO晶体为2NMMO·5H2O(即NMMO·2.5H2O);得到的浓缩液中N-甲基吗啉-N-氧化物的质量含量在72.2%-84.5%(不包括72.2%)时,浓缩液在39-78℃(不包括39℃)之间进行降温结晶,如此得到的NMMO晶体为NMMO·H2O。换言之,浓缩液中NMMO浓度不同,决定了结晶温度的不同,进而得到不同的NMMO晶体。
在一实施方式中,本发明考虑到工业化提纯成本和操作便利性,将N-甲基吗啉-N-氧化物粗产物浓缩至NMMO质量浓度为66%-71%,浓缩液在25-35℃常温范围进行降温结晶(结晶终温在25℃及以上)。在该最佳结晶条件下,经过一级结晶就可以得到纯度很高的2NMMO·5H2O晶体和50%以上的结晶收率。
在一实施方式中,在结晶的过程中可以加入晶种,晶种的加入量为N-甲基吗啉-N-氧化物粗产物重量的0.1%~1.0%,或者晶种的加入量为上述浓缩液重量的0.1%~1.0%。在另一实施方式中,晶种的加入量为N-甲基吗啉-N-氧化物粗产物重量的0.1%~0.3%,或者晶种的加入量为上述浓缩液重量的0.1%~0.3%。在降温结晶中,加晶种诱导结晶可以非常有效地降低NMMO在溶液中的过饱和度,得到NMMO纯度更高的晶体。
在一实施方式中,本发明加入的晶种为压碎的颗粒度尽量均匀的小颗粒高纯度碎晶,粒径例如为0.01-0.1mm,晶种加入量为NMMO粗产物重量的0.1-1.0%。晶种颗粒较大和加入量过少都会导致NMMO晶体纯度降低,并且最终得到的NMMO晶体颗粒大小分布不均;晶种过多会导致所得到的晶体颗粒偏小。另外,晶种加入不宜过早,否则溶液温度过高,溶液中NMMO水合物浓度低于其对应的溶解度,导致晶体溶解,失去加晶种的意义;而晶种加入过晚,溶液温度过低,此时溶液过饱和度已经过高,会降低加入晶种的实际效果。晶种的加入时机一般根据NMMO粗产物或浓缩液中NMMO含量以及初始降温温度决定,在一实施方式中,晶种于溶液降温至30-37℃之间时加入。
在一实施方式中,本发明晶种在加入结晶体系前,在高纯度的NMMO饱和水溶液中浸泡至少1小时,如此可以提高结晶效果,保证结晶体系中析出的晶体大小均一。
在一实施方式中,本发明降温结晶过程中,从结晶体系中开始出现结晶到结晶体系温度降到30℃,冷却速度控制在1-2℃/小时,结晶体系温度低于30℃后(如在-20-30℃),冷却速度可以控制在3-4℃/小时。如此,可以保证晶体纯度。这是因为,降温结晶中,冷却速度直接决定了结晶速度。在结晶体系处于较高温度范围时,NMMO水合物溶解度曲线变化很大,故起晶后在结晶初始阶段,溶液体系冷却速度不宜过快,应该限制晶体增长速度,否则会导致溶液过饱和度过高,影响晶体纯度。
在一实施方式中,降温结晶体系达到结晶终止温度后,将结晶溶液快速通过布氏漏斗真空抽滤,从滤瓶放出结晶母液,晶体分别用NMMO粗产物和浓度为59.5%高纯度NMMO水溶液冲洗,得到NMMO晶体,称重并分析含量。
本发明采用一级结晶即可以得到纯度非常高的NMMO晶体,将上述一级结晶得到的NMMO晶体加水配成质量浓度为50%的NMMO水溶液,颜色为无色透明,电导率可达4-10μs/cm。
为了得到更高纯度的NMMO,本发明降温结晶至少包括两次结晶,例如包括一次结晶和二次结晶。即经过一次结晶后得到晶体加水配制一定浓度NMMO水溶液,进行二次结晶(重结晶)。在一实施方式中,本发明降温结晶还包括三次结晶、四次结晶等。
本发明二次结晶得到的晶体进行液相色谱分析检测,已经检测不出有机杂质如N-亚硝基吗啉、N-甲基吗啉、吗啉、过氧化物等,加水配制成质量含量为50%的NMMO水溶液,其电导率为3-6μs/cm,甚至可达1μs/cm左右。
在另一实施方式中,将二次结晶得到的晶体加水配制成NMMO质量浓度为50%的水溶液,NMMO溶液(NMMO质量浓度50%)的电导率为1μs/cm左右;采用赛默飞ICP-OES检测,几乎检测不到铜离子和铁离子存在(由此说明铜离子和铁离子含量均小于0.001ppm);根据国标GB5009.226-2016,无法检测出双氧水存在。因此,经过上述处理后得到的晶体配制的NMMO质量浓度为50%的水溶液,已经完全能够满足天丝生产对NMMO的质量要求,且远远高于天丝生产对NMMO的质量要求。
在一实施方式中,为了提高NMMO的收率,本发明至少包括二级结晶,即将N-甲基吗啉-N-氧化物粗产物进行一级结晶,得到晶体和结晶母液,将一级结晶产生的结晶母液通过真空加热蒸发至NMMO质量浓度为69-71%或者69-70.5%,然后降温结晶(二级结晶),结晶条件与上述一级结晶一致,结晶率在80-85%左右,所得晶体可以循环溶解于NMMO粗产物中,回收作为一级结晶原料液,进一步提高晶体纯度。为了进一步提高NMMO的收率,二级结晶所得的结晶母液可以继续浓缩结晶,此时二级结晶所得的结晶母液量很少,一般不到初始NMMO粗产物质量的3%。
在一具体实施方式中,本发明N-甲基吗啉-N-氧化物的纯化方法包括:通过减压加热蒸发浓缩,将N-甲基吗啉与双氧水反应生成的NMMO粗产物浓缩至NMMO质量含量为56.5-84.5%,通过降温结晶,得到高纯度的NMMO水合物晶体,无需离子交换树脂就能够得到天丝级NMMO产品。其中,降温结晶操作温度为-20-78℃,考虑到工业化提纯的成本和操作适宜性,粗产物中NMMO质量浓度最好控制在66-71%,如此可以在25-35℃下进行降温结晶,并且可以得到纯度很高的晶体产物和50%以上的结晶收率。
在一具体实施方式中,本发明降温结晶方法为:将温度40℃左右的NMMO质量浓度在66.5-70%的NMMO粗产物,冷却降温到晶种加入后不会溶解,然后加入少量晶种,晶种最好是先浸渍在高纯NMMO饱和溶液中的小颗粒NMMO·2.5H2O碎晶,这些小颗粒碎晶在NMMO饱和溶液中至少浸泡1小时,晶种加入量为NMMO粗产物质量的0-1%,最好为0.1-0.3%。加入晶种后通过冷却处理使NMMO粗产物缓慢降温,在起晶温度到30℃之间,降温速率控制在1-2℃/小时,当温度降到30℃以下,降温速度可以适当加快到3-4℃/小时,结晶终止温度25℃,得到颗粒较大,粒度分布均一的晶体。晶体溶液迅速抽滤,过滤后母液收集称重,晶体先用NMMO粗产物冲洗,粗产物冲洗液量为所得晶体质量的30%左右,再用质量浓度为59.5%的高纯度NMMO水溶液继续冲洗,冲洗液量为晶体质量的30%左右,得到一次结晶晶体,收集一次结晶晶体称重并分析晶体纯度。一次结晶晶体加水配制成NMMO质量浓度为50%的水溶液,检测溶液中各种杂质含量、双氧水含量、电导率和金属离子含量。
然后进行二次结晶,二次结晶与一次结晶工艺条件相似,在40℃下将一次结晶晶体加水溶解,配制成NMMO质量浓度为66-70%水溶液,按同样结晶工艺条件进行二次结晶,收集二次结晶晶体称重并分析晶体纯度。
在一具体实施方式中,本发明NMMO的纯化方法为:将N-甲基吗啉与双氧水反应制备的NMMO粗产物,通过真空加热浓缩至NMMO质量浓度为56.5-84.5%,通过降温结晶,得到高纯度的NMMO水合物晶体,将该晶体加水配制成NMMO质量浓度为50%的水溶液,电导率甚至为1μs/cm左右、铜铁离子均小于0.001ppm、高纯度质量浓度为50%的NMMO水溶液产品。结晶剩余的结晶母液进行二级或更多级结晶,可以最大程度回收其中的NMMO,结晶母液的二级结晶可以回收97%以上的NMMO粗产物中的NMMO,更多级的结晶会进一步提高NMMO的回收率。
由此,本发明提供了一种通过结晶方法从氧化甲基吗啉(NMMO)反应粗产物中提纯制备满足天丝(Lyocell)生产质量要求的NMMO的方法。与现有NMMO提纯方法不同,本发明不使用离子交换树脂去除金属离子和非金属离子以及包括色素在内的一些有机杂质,不存在离子交换树脂再生时产生的大量高盐高COD废水以及废离子交换树脂危险废物等污染环境的物质;按本发明方法生产的NMMO水溶液产品,不仅能够达到甚至超过目前天丝行业对NMMO产品的质量要求,而且提纯工艺简单,提纯成本低,NMMO收率高,本发明是一种高效简单低成本的绿色提纯NMMO方法。
在一实施方式中,本发明还提供了一种N-甲基吗啉-N-氧化物的纯化***,该纯化***用于N-甲基吗啉与双氧水反应制备的N-甲基吗啉-N-氧化物粗产物中N-甲基吗啉-N-氧化物的纯化,该纯化***可以用于工业生产中N-甲基吗啉-N-氧化物的纯化,即可实现大型自动化控制,该纯化***包括:
结晶装置,用于N-甲基吗啉-N-氧化物粗产物的结晶处理;
控制装置,与所述结晶装置连接,以控制结晶装置中的结晶条件。
在另一实施方式中,该纯化***还包括浓缩装置,与所述结晶装置和所述控制装置连接,以使所述N-甲基吗啉-N-氧化物粗产物在所述浓缩装置中进行浓缩后,再输入所述结晶装置;所述控制装置控制所述浓缩装置的浓缩条件。
在一实施方式中,本发明N-甲基吗啉-N-氧化物的纯化***如图1所示,一级浓缩装置1与一级结晶装置2连通,N-甲基吗啉-N-氧化物粗产物10通入一级浓缩装置1中进行浓缩处理,一级浓缩装置1例如为蒸发装置。冷凝液11从一级浓缩装置1顶部流出,得到的一级浓缩液12通入一级结晶装置2进行结晶处理,结晶条件如上述已进行详细阐述,在此不再赘述。
一级结晶装置2与一级结晶分离装置3连通,一级结晶装置2结晶后得到的混合物通入一级结晶分离装置3中进行固液分离,得到一级结晶晶体31和一级结晶母液32。
在另一实施方式中,一级结晶分离装置3与二级浓缩装置4连通,以将一级结晶母液32通入二级浓缩装置4中进行浓缩处理,得到二级浓缩液41和冷凝液42;二级浓缩装置4与二级结晶装置5连通,二级浓缩液41通入二级结晶装置5中进行二级结晶处理。如此可以提高NMMO的收率。
二级结晶装置5与二级结晶分离装置6连通,二级结晶装置5结晶后得到的混合物通入二级结晶分离装置6中进行固液分离,得到二级结晶晶体61和二级结晶母液62。在一实施方式中,二级结晶分离装置6还与二级浓缩装置4连通,如此使得二级结晶母液62能够循环回二级浓缩装置4进行浓缩处理,进而再次参与结晶过程,以进一步提高NMMO的收率。鉴于二级结晶母液62中所含的NMMO量较少,因此也可以将二级结晶母液62直接外排处理。
在一实施方式中,本发明N-甲基吗啉-N-氧化物的纯化***还包括溶解装置7,与一级结晶分离装置3和二级结晶分离装置6分别连通,以将一级结晶晶体31和二级结晶晶体61输送至溶解装置7中,与输入的水71混合,得到晶体溶解液72。
溶解装置7与重结晶装置8连通,重结晶装置8还连通有重结晶分离装置9,晶体溶解液72输送至重结晶装置8中进行重结晶处理,如此可以进一步提高NMMO的纯度。重结晶装置8结晶后得到的混合物输送至重结晶分离装置9中,得到重结晶晶体91和重结晶母液92。对重结晶晶体91进行液相色谱分析检测,结果显示已经无法检测出NMMO粗产物中存在的各种有机杂质如N-亚硝基吗啉、N-甲基吗啉、吗啉、过氧化物等,将重结晶晶体91加水配制成质量含量为50%的NMMO水溶液,其电导率为3-6μs/cm。
在一实施方式中,重结晶分离装置9还与一级结晶分离装置3和二级结晶分离装置6分别连通,以将重结晶母液92用于一级结晶晶体31和二级结晶晶体61的洗涤,减少一级结晶晶体31和二级结晶晶体61表面吸附的母液,以进一步除去一级结晶晶体31和二级结晶晶体61夹杂的杂质。
在一实施方式中,本发明N-甲基吗啉-N-氧化物的纯化***用于工业化生产,该纯化***还包括控制装置(图未示),分别与一级浓缩装置1、一级结晶装置2、一级结晶分离装置3、二级浓缩装置4、二级结晶装置5、二级结晶分离装置6、熔融装置7、重结晶装置8、重结晶分离装置9中的一个或几个电性连接,以控制结晶过程的工艺参数。
在一实施方式中,本发明提供了一种N-甲基吗啉-N-氧化物的检测方法,所述N-甲基吗啉-N-氧化物是由N-甲基吗啉与双氧水反应制备的N-甲基吗啉-N-氧化物粗产物进行结晶得到的,所述检测方法包括N-甲基吗啉-N-氧化物的晶体杂质残留率的测定,所述N-甲基吗啉-N-氧化物的晶体杂质残留率的测定包括如下步骤:
步骤1,对N-甲基吗啉-N-氧化物粗产物进行液相色谱测定,测定波长为200nm-220nm,例如200nm-210nm,对所得到的液相色谱谱图中所有杂质峰进行面积积分,得到所有杂质峰的面积积分总和,记为第一杂质峰面积积分总和;
步骤2,对所述N-甲基吗啉-N-氧化物进行液相色谱测定,测定条件与步骤1相同,对所得到的液相色谱谱图中所有杂质峰进行面积积分,得到所有杂质峰的面积积分总和,记为第二杂质峰面积积分总和;
第一晶体杂质残留率=第二杂质峰面积积分总和÷第一杂质峰面积积分总和。
在一实施方式中,N-甲基吗啉-N-氧化物的晶体杂质残留率的测定还包括如下步骤:
步骤3,对N-甲基吗啉-N-氧化物粗产物进行液相色谱测定,测定波长为230nm-240nm,对所得到的液相色谱谱图中所有杂质峰进行面积积分,得到所有杂质峰的面积积分总和,记为第三杂质峰面积积分总和;
步骤4,对所述N-甲基吗啉-N-氧化物进行液相色谱测定,测定条件与步骤3相同,对所得到的液相色谱谱图中所有杂质峰进行面积积分,得到所有杂质峰的面积积分总和,记为第四杂质峰面积积分总和;
第二晶体杂质残留率=第四杂质峰面积积分总和÷第三杂质峰面积积分总和。
如此,本发明通过第一晶体杂质残留率和第二晶体杂质残留率的测定,可以从不同方面检测所得晶体的杂质残留率。
在一实施方式中,本发明N-甲基吗啉-N-氧化物的检测方法还包括N-甲基吗啉和吗啉含量的测定、N-亚硝基吗啉含量的测定、双氧水含量、电导率、铁离子含量、铜离子含量中的至少一项的测定。
其中,N-甲基吗啉和吗啉含量的测定方法为:对N-甲基吗啉-N-氧化物进行液相色谱测定,测定波长为200nm-210nm,测定时间为大于或等于30分钟。N-亚硝基吗啉含量的测定方法为:对N-甲基吗啉-N-氧化物进行液相色谱测定,测定波长为230nm-240nm,测定时间为大于或等于30分钟。如此,根据所得液相色谱谱图即可得到N-甲基吗啉和吗啉含量。双氧水含量的测定按照GB 5009.226-2016进行;铁离子含量或铜离子含量的测定采用电感耦合等离子体发射光谱仪进行测定。电导率测定按本领域常规方法进行即可,本发明不作特别限定。
在一具体实施方式中,N-甲基吗啉和吗啉含量检测方法:液相色谱,色谱柱:AichromBond-1,C18,5μm 4.6x150mm;流动相:0.2%磷酸缓冲液;流动相流速:1ml/min;柱温:35℃;UV检测波长:200nm;进样量:20μl,检测时间:30分钟。
N-亚硝基吗啉含量检测方法:液相色谱,色谱柱:AichromBond-1,C18,5μm4.6x150mm;流动相:0.2%磷酸缓冲液;流动相流速:1ml/min;柱温:35℃;UV检测波长:235nm;进样量:20μl,检测时间:30分钟。
本发明利用杂质残余率表示所得NMMO晶体的纯度,在一具体实施方式中,杂质残余率检测方法为:将NMMO粗产物和晶体分别加水,配制成NMMO质量浓度为50%的水溶液,液相色谱测定配制好的NMMO水溶液,UV检测波长分别为200nm、220nm和235nm(在三个波长下分别测定)。
本发明利用上述检测方法,对以下实施例中所使用的N-甲基吗啉与双氧水反应制备的NMMO粗产物进行测定,所得结果如下:
N-甲基吗啉含量:1130ppm;
吗啉含量:133ppm;
双氧水含量:634ppm;
N-亚硝基吗啉:655ppb,
电导率:732μs/cm;
铁离子含量:11.8ppm;
铜离子含量:4.2ppm;
另外液相色谱分析显示NMMO粗产物中还含有包括大量有机过氧化物在内的其它有机杂质。
以下通过具体实施例对本发明技术方案进一步进行说明。
实施例1
本实施例主要分析NMMO不同结晶率对NMMO结晶纯度的影响。
NMMO粗产物真空加热蒸发,分别浓缩至NMMO质量浓度为63.5%、65.2%、66.5%、67.9%和69.2%,然后分别进行降温结晶,各浓度的NMMO粗产物浓缩液在37℃开始降温,NMMO质量浓度为63.5%、65.2%、66.5%、67.9%和69.2%的溶液温度分别降到31.2℃、32.1℃、33.2℃、34.2℃、35.1℃,加入预先泡在NMMO饱和溶液中的晶种,加入量为NMMO粗产物质量的0.15%,加入晶种后,控制降温速率在1-2℃/小时,直至溶液温度降到30℃,然后加快降温速率至3-4℃/小时,溶液温度降至25℃,停止结晶,快速抽滤,将母液与晶体分开,母液收集,晶体先用NMMO质量浓度为58.2%的粗产物冲洗,冲洗量大约为晶体质量的30%,然后再用高纯度NMMO质量浓度为59%水溶液冲洗,冲洗量大约为晶体质量的30%,收集晶体称重计算结晶率,并分析检测晶体纯度(杂质残余率)。
将NMMO粗产物和所得到的晶体分别加水,配制成NMMO质量浓度为50%的水溶液,进行分析检测,检测结果如表1所示。
表1.不同结晶率对结晶纯度的影响
Figure BDA0003071100950000181
由表1所示,结晶能够有效去除NMMO粗产物中的各种杂质,得到的晶体中杂质含量和电导率大幅降低,结晶率小于或等于65%时,随结晶率升高NMMO晶体纯度基本不变,但结晶率大于65%,随结晶率升高晶体纯度略有下降。
实施例2
本实施例主要分析不同结晶速率对NMMO晶体纯度的影响,将NMMO粗产物真空加热蒸发,浓缩至NMMO质量浓度为67.9%,NMMO粗产物温度降至34.2℃时加入预先泡在NMMO饱和溶液中的NMMO晶种,晶种加入量为NMMO粗产物质量的0.15%,将NMMO粗产物分成4份,分别按以下不同的冷却降温速率进行结晶,结晶溶液降至25℃,趁热抽滤,按实施例1方式处理晶体。
冷却降温速率:
降温速率1:34.2℃到30℃,降温速率控制在1℃/小时,30-25℃,降温速率控制在4℃/小时。
降温速率2:34.2℃到30℃,降温速率控制在2℃/小时,30-25℃,降温速率控制在4℃/小时。
降温速率3:34.2℃到30℃,降温速率控制在2℃/小时,30-25℃,降温速率控制在2℃/小时。
降温速率4:34.2℃到30℃,降温速率控制在4℃/小时,30-25℃,降温速率控制在4℃/小时。
将NMMO晶体加水配制成质量浓度为50%的NMMO水溶液,然后进行分析检测,检测结果如表2所示。
表2.不同降温速率对NMMO晶体纯度的影响
Figure BDA0003071100950000191
由表2所示,初始结晶阶段(起晶温度到30℃区间),降温速率不宜过快,控制在1-2/小时为佳,否则晶体纯度会有明显下降;在降温结晶后期,降温速率可以适当加快。分析原因主要为NMMO晶体溶解度在高温区随温度变化较大,故过快降温会导致溶液过饱和度过高,从而使晶体包藏更多的母液,降低了晶体纯度;在结晶后期结晶温度较低,NMMO晶体溶解度随温度变化趋势减缓,故可以适当加快降温速率。
实施例3
本实施例主要分析晶种加入量对晶体颗粒度和晶体纯度的影响。将NMMO粗产物真空加热蒸发,浓缩至NMMO质量浓度为67.9%,将浓缩后的NMMO粗产物分成6份,NMMO粗产物温度降至34.2℃时分别加入预先泡在NMMO饱和溶液中的NMMO晶种,晶种加入量分别为:0(不加晶种)、0.05%、0.1%、0.2%、0.3%和0.6%(为NMMO粗产物质量的百分比),然后按实施例1的方式结晶和处理晶体。
将NMMO晶体加水配制成NMMO质量浓度为50%的水溶液,然后进行检测分析,分析结果如表3所示。
表3.不同晶种加入量对晶体纯度和颗粒度的影响
Figure BDA0003071100950000201
由表3所示,不加晶种对结晶过程有很大影响,温度降至25℃,仍然没有明显晶体生成;当晶种加入量偏少(0.05%)时,晶粒大小分布不均,说明晶种加入量少,溶液体系过饱和度较大,有小晶核自发析出,所得到的晶体纯度也略低;加大晶种加入量,晶体颗粒分布变得均一,晶体纯度提高,晶种加入量越大,颗粒越小;加入过多晶种(0.6%),最终所得晶体颗粒过小,颗粒表面有可能沾污更多的母液杂质,造成晶体纯度下降,同时晶体颗粒度太小,也会影响晶体过滤速度,最佳晶体加入量为NMMO粗产物质量的0.1-0.3%。
实施例4.
本实施例主要分析两次结晶对NMMO晶体纯度的影响。
NMMO反应粗产物真空加热蒸发,分别浓缩至NMMO质量浓度为69.2%,在35.1℃时加入预先泡在NMMO饱和溶液中的晶种,加入量为NMMO粗产物质量的0.15%,加入晶种后,控制降温速率在1-2℃/小时,直至温度降到30℃,然后加快降温速率至4℃/小时,温度降至25℃,停止结晶,趁热快速抽滤,将母液与晶体分开,收集母液作为实施例5结晶实验原料,晶体先用质量浓度为60%的NMMO粗产物冲洗,冲洗量大约为晶体质量的30%,然后再用高纯度的质量浓度为59.5%的NMMO水溶液冲洗,冲洗量大约为晶体质量的30%,收集晶体(一次结晶)称重计算结晶率,并分析检测晶体纯度(杂质残余率)。
将上述一次结晶得到的晶体加水配制成质量浓度为68.1%的NMMO水溶液,按上述结晶工艺进行二次结晶,在34.3℃加入晶种,所得晶体用高纯度的质量浓度为59.5%的NMMO水溶液冲洗,用量为晶体质量为30%,收集晶体(二次结晶)称重计算结晶率,并分析检测晶体纯度(杂质残余率)。
将一次和二次结晶得到的NMMO晶体分别加水,配制成NMMO质量浓度为50%的水溶液,然后进行分析检测,检测结果如表4所示。
表4.两次结晶处理对结晶纯度的影响
Figure BDA0003071100950000221
注:上述“检测不出”“未检测出”或“无明显杂质峰”表示上述欲检测物质含量已经低于仪器可检测最低值。
由表4所示,二次结晶能够进一步纯化NMMO,各种有机杂质含量进一步大幅降低,NMMO晶体加水配制的浓度50%水溶液,电导率降至0.9μs/cm,铜铁离子均小于1ppb,pH值为11.4。
由于结晶所用的NMMO粗产物中的杂质含量不到1%,表4结果显示两次结晶得到的晶体经HPLC检测,其中杂质含量为NMMO粗产物中杂质含量的0.02%(UV检测波长:200nm、220nm和235nm),故两次结晶所得晶体中杂质总含量不超过2ppm。
实施例5.
本实施例主要分析一次结晶剩余母液,通过多级结晶回收NMMO的结果。将实施例4的一次结晶分离出来的母液,减压加热蒸发浓缩至NMMO质量浓度为70.1%,按实施例4中结晶工艺条件进行结晶(在母液温度35.2℃时加入晶种),将所得到的晶体加水,配制成NMMO质量浓度为50%的水溶液,然后进行分析检测,检测结果如表5所示。
表5.一次结晶母液再次进行结晶的结果
Figure BDA0003071100950000231
由表5所示,一次结晶母液再次浓缩后进行结晶,在结晶率达84%时,所得晶体的纯度仍然非常高,二级结晶相当于将NMMO粗产物中NMMO质量的96%回收成为NMMO晶体,如果希望进一步提高NNMO结晶收率,还可以再次对二级结晶母液进行浓缩结晶,或者进一步提高二级结晶的总结晶率。母液多级结晶得到的晶体可以返回溶解到NMMO粗产物中,作为一次结晶的原料。
综上所述,本发明提供了一种高效、低成本、绿色提纯制备高纯度NMMO水溶液的方法,包括降温结晶处理,结晶操作温度接近常温(25-35℃),NMMO反应粗产物采用本发明提纯方法提纯,NMMO回收率在96%以上;得到的质量浓度为50%的NMMO水溶液的电导率在1μs/cm左右,铜铁离子含量均小于1ppb,HPLC检测结果显示有机杂质总含量不超过2ppm(即NMMO纯度>99.999%),HPLC几乎无法检测到N-亚硝基吗啉的存在,双氧水含量也低于国标GB 5009226-2016可检测下限,产品质量达到或超过天丝生产要求的NMMO产品质量标准,同时本发明的NMMO提纯方法不使用离子交换树脂,故彻底解决了目前采用离子交换树脂的提纯工艺面临的高盐高COD废水和废离子交换树脂等环保问题。
本发明提供的NMMO提纯方法,也适用于其它涉及使用并需要提纯NMMO的领域,如天丝(lyocell)生产中凝固浴NMMO提纯工艺、半导体芯片含NMMO蚀刻剂废液、含NMMO电子清洗液废液回收提纯工艺等。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明权利要求的保护范围。

Claims (20)

1.一种N-甲基吗啉-N-氧化物的纯化方法,用于一包含N-甲基吗啉-N-氧化物的混合物,该纯化方法包括:将所述混合物在-20℃~78℃之间进行降温结晶,得到N-甲基吗啉-N-氧化物晶体。
2.根据权利要求1所述的N-甲基吗啉-N-氧化物的纯化方法,其特征在于,该混合物为N-甲基吗啉与双氧水反应制备的N-甲基吗啉-N-氧化物粗产物,所述N-甲基吗啉-N-氧化物粗产物中N-甲基吗啉-N-氧化物的质量浓度为50%~60%。
3.根据权利要求2所述的N-甲基吗啉-N-氧化物的纯化方法,其特征在于,该纯化方法还包括将所述N-甲基吗啉-N-氧化物粗产物进行浓缩处理,使N-甲基吗啉-N-氧化物粗产物中N-甲基吗啉-N-氧化物的质量浓度为56.5%~84.5%,然后再进行降温结晶。
4.根据权利要求2所述的N-甲基吗啉-N-氧化物的纯化方法,其特征在于,在所述降温结晶的过程中加入晶种,所述晶种的加入量为所述N-甲基吗啉-N-氧化物粗产物重量的0.1%~1.0%。
5.根据权利要求3所述的N-甲基吗啉-N-氧化物的纯化方法,其特征在于,浓缩处理后,N-甲基吗啉-N-氧化物粗产物中N-甲基吗啉-N-氧化物的质量浓度为56.5%~72.2%时,所述降温结晶的温度为-20~39℃;浓缩处理后,N-甲基吗啉-N-氧化物粗产物中N-甲基吗啉-N-氧化物的质量浓度为大于72.2%且小于或等于84.5%时,所述降温结晶的温度为大于39℃且小于或等于78℃。
6.根据权利要求5所述的N-甲基吗啉-N-氧化物的纯化方法,其特征在于,浓缩处理后,N-甲基吗啉-N-氧化物粗产物中N-甲基吗啉-N-氧化物的质量浓度为66%~71%,所述降温结晶的温度为25℃~35℃。
7.根据权利要求1所述的N-甲基吗啉-N-氧化物的纯化方法,其特征在于,所述降温结晶过程中,在开始出现晶体至30℃,降温速率为1~2℃/小时;-20℃~30℃之间,降温速率为3~4℃/小时。
8.根据权利要求1所述的N-甲基吗啉-N-氧化物的纯化方法,其特征在于,所述降温结晶至少包括一级降温结晶和二级降温结晶,所述一级降温结晶得到N-甲基吗啉-N-氧化物晶体和结晶母液,所述结晶母液经浓缩后进行二级降温结晶处理。
9.权利要求1-8任一项所述的N-甲基吗啉-N-氧化物的纯化方法得到的N-甲基吗啉-N-氧化物,其特征在于,所得到的N-甲基吗啉-N-氧化物的液相色谱检测结果为有机杂质含量为0;所得到的N-甲基吗啉-N-氧化物配成质量浓度为50%的水溶液,所述水溶液的电导率为0~10μs/cm,双氧水含量为0。
10.权利要求9所述的N-甲基吗啉-N-氧化物在纤维素中的应用。
11.一种N-甲基吗啉-N-氧化物的纯化方法,其特征在于,该纯化方法不含离子交换树脂处理步骤。
12.一种N-甲基吗啉-N-氧化物的制备方法,包括如下步骤:
步骤1,N-甲基吗啉与双氧水反应制得N-甲基吗啉-N-氧化物粗产物;
步骤2,将N-甲基吗啉-N-氧化物粗产物在-20℃~78℃之间进行降温结晶,得到N-甲基吗啉-N-氧化物晶体。
13.一种N-甲基吗啉-N-氧化物的纯化***,其特征在于,该纯化***用于一包含N-甲基吗啉-N-氧化物的混合物中N-甲基吗啉-N-氧化物的纯化,该纯化***包括:
结晶装置,用于所述混合物的结晶处理;
控制装置,与所述结晶装置连接,以控制结晶装置中的结晶条件。
14.根据权利要求13所述的N-甲基吗啉-N-氧化物的纯化***,其特征在于,该纯化***还包括浓缩装置,与所述结晶装置和所述控制装置连接,以使所述混合物在所述浓缩装置中进行浓缩后,再输入所述结晶装置;所述控制装置控制所述浓缩装置的浓缩条件。
15.根据权利要求13所述的N-甲基吗啉-N-氧化物的纯化***,其特征在于,所述混合物为N-甲基吗啉与双氧水反应制备的N-甲基吗啉-N-氧化物粗产物;所述纯化***用于工业生产中N-甲基吗啉-N-氧化物的纯化。
16.一种N-甲基吗啉-N-氧化物的检测方法,其特征在于,所述N-甲基吗啉-N-氧化物是由N-甲基吗啉与双氧水反应制备的N-甲基吗啉-N-氧化物粗产物进行降温结晶得到的,所述检测方法包括N-甲基吗啉-N-氧化物的晶体杂质残留率的测定,所述N-甲基吗啉-N-氧化物的晶体杂质残留率的测定包括如下步骤:
步骤1,对N-甲基吗啉-N-氧化物粗产物进行液相色谱测定,测定波长为200nm-220nm,对所得到的液相色谱谱图中所有杂质峰进行面积积分,得到所有杂质峰的面积积分总和,记为第一杂质峰面积积分总和;
步骤2,对所述N-甲基吗啉-N-氧化物进行液相色谱测定,测定条件与步骤1相同,对所得到的液相色谱谱图中所有杂质峰进行面积积分,得到所有杂质峰的面积积分总和,记为第二杂质峰面积积分总和;
第一晶体杂质残留率=第二杂质峰面积积分总和÷第一杂质峰面积积分总和。
17.根据权利要求16所述的N-甲基吗啉-N-氧化物的检测方法,其特征在于,所述N-甲基吗啉-N-氧化物的晶体杂质残留率的测定还包括如下步骤:
步骤3,对N-甲基吗啉-N-氧化物粗产物进行液相色谱测定,测定波长为230nm-240nm,对所得到的液相色谱谱图中所有杂质峰进行面积积分,得到所有杂质峰的面积积分总和,记为第三杂质峰面积积分总和;
步骤4,对所述N-甲基吗啉-N-氧化物进行液相色谱测定,测定条件与步骤3相同,对所得到的液相色谱谱图中所有杂质峰进行面积积分,得到所有杂质峰的面积积分总和,记为第四杂质峰面积积分总和;
第二晶体杂质残留率=第四杂质峰面积积分总和÷第三杂质峰面积积分总和。
18.根据权利要求16所述的N-甲基吗啉-N-氧化物的检测方法,其特征在于,所述检测方法还包括N-甲基吗啉和吗啉含量的测定;所述N-甲基吗啉和吗啉含量的测定方法为:对N-甲基吗啉-N-氧化物进行液相色谱测定,测定波长为200nm-210nm,测定时间为大于或等于30分钟。
19.根据权利要求16所述的N-甲基吗啉-N-氧化物的检测方法,其特征在于,所述检测方法还包括N-亚硝基吗啉含量的测定;所述N-亚硝基吗啉含量的测定方法为:对N-甲基吗啉-N-氧化物进行液相色谱测定,测定波长为230nm-240nm,测定时间为大于或等于30分钟。
20.根据权利要求16所述的N-甲基吗啉-N-氧化物的检测方法,其特征在于,所述检测方法还包括:双氧水含量、电导率、铁离子含量、铜离子含量中的至少一项的测定;所述双氧水含量的测定按照GB 5009.226-2016进行;所述铁离子含量或铜离子含量的测定采用电感耦合等离子体发射光谱仪进行测定。
CN202110521394.5A 2021-05-18 2021-05-18 N-甲基吗啉-n-氧化物的纯化方法、***、检测方法及所得n-甲基吗啉-n-氧化物 Active CN115368321B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110521394.5A CN115368321B (zh) 2021-05-18 2021-05-18 N-甲基吗啉-n-氧化物的纯化方法、***、检测方法及所得n-甲基吗啉-n-氧化物
PCT/CN2022/088743 WO2022242424A1 (zh) 2021-05-18 2022-04-24 N-甲基吗啉-n-氧化物的纯化方法、***、检测方法及所得n-甲基吗啉-n-氧化物
EP22803748.7A EP4335842A1 (en) 2021-05-18 2022-04-24 Purification method, system and detection method for n-methylmorpholine n-oxide and obtained n-methylmorpholine-n-oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110521394.5A CN115368321B (zh) 2021-05-18 2021-05-18 N-甲基吗啉-n-氧化物的纯化方法、***、检测方法及所得n-甲基吗啉-n-氧化物

Publications (2)

Publication Number Publication Date
CN115368321A true CN115368321A (zh) 2022-11-22
CN115368321B CN115368321B (zh) 2024-06-04

Family

ID=84059510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110521394.5A Active CN115368321B (zh) 2021-05-18 2021-05-18 N-甲基吗啉-n-氧化物的纯化方法、***、检测方法及所得n-甲基吗啉-n-氧化物

Country Status (3)

Country Link
EP (1) EP4335842A1 (zh)
CN (1) CN115368321B (zh)
WO (1) WO2022242424A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116145449A (zh) * 2022-12-29 2023-05-23 唐山三友集团兴达化纤有限公司 一种莱赛尔纤维浆粕疏解液及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1493567A (zh) * 2002-11-03 2004-05-05 炯 许 氧化甲基吗啉稀溶液活性炭吸附浓缩提纯方法
CN110563669A (zh) * 2019-10-09 2019-12-13 四川鸿鹏新材料有限公司 一种提高吗啉纯度的方法及装置
CN110760948A (zh) * 2019-10-24 2020-02-07 山东英利实业有限公司 一种lyocell纤维生产过程中溶剂NMMO净化回收的方法
CN112480035A (zh) * 2020-10-28 2021-03-12 华茂伟业绿色科技股份有限公司 N-甲基吗啉及其纯化方法、氧化甲基吗啉及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT399519B (de) 1993-09-14 1995-05-26 Chemiefaser Lenzing Ag Form- bzw. spinnmasse enthaltend cellulose und verfahren zur herstellung cellulosischer formkörper
CN101088993B (zh) * 2006-06-13 2012-02-22 上海里奥纤维企业发展有限公司 Nmmo的蒸发方法
CN103046167B (zh) * 2012-11-28 2014-12-24 上海聚友化工有限公司 溶剂法纤维素纤维生产中n-甲基吗啉-n-氧化物溶剂蒸发脱水的方法
CN104801354B (zh) * 2015-04-09 2017-10-03 中国纺织科学研究院 氢氧型氧化叔胺阴离子交换树脂、其制备方法及nmmo水溶液的纯化方法
CN112939281A (zh) * 2021-01-19 2021-06-11 华茂伟业绿色科技股份有限公司 N-甲基吗啉-n-氧化物的回收方法和回收***
CN112876429A (zh) * 2021-01-19 2021-06-01 华茂伟业绿色科技股份有限公司 一种n-甲基吗啉-n-氧化物的回收方法和回收***
CN115557917B (zh) * 2021-07-02 2024-04-19 华茂伟业绿色科技股份有限公司 N-甲基吗啉-n-氧化物的纯化方法、***及得到的n-甲基吗啉-n-氧化物
CN113651773A (zh) * 2021-09-23 2021-11-16 上海昶法新材料有限公司 一种氧化甲基吗啉的合成和提纯方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1493567A (zh) * 2002-11-03 2004-05-05 炯 许 氧化甲基吗啉稀溶液活性炭吸附浓缩提纯方法
CN110563669A (zh) * 2019-10-09 2019-12-13 四川鸿鹏新材料有限公司 一种提高吗啉纯度的方法及装置
CN110760948A (zh) * 2019-10-24 2020-02-07 山东英利实业有限公司 一种lyocell纤维生产过程中溶剂NMMO净化回收的方法
CN112480035A (zh) * 2020-10-28 2021-03-12 华茂伟业绿色科技股份有限公司 N-甲基吗啉及其纯化方法、氧化甲基吗啉及其制备方法

Also Published As

Publication number Publication date
WO2022242424A1 (zh) 2022-11-24
EP4335842A1 (en) 2024-03-13
CN115368321B (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
US3607029A (en) Continuous process for solvent purification of phosphoric acid
CN111410242B (zh) 一种从铑渣中回收氯化铑的方法
WO2020258542A1 (en) Method for producing taurine and method for removing impurity from reaction system for producing taurine
CN113045089B (zh) 一种蚀刻废液精制纯化的方法
CN113955801A (zh) 晶种分解法制备高纯偏钒酸铵的方法
CN110228889A (zh) 一种退锡废液的处理方法及流水处理线
CN115368321A (zh) N-甲基吗啉-n-氧化物的纯化方法、***、检测方法及所得n-甲基吗啉-n-氧化物
WO2023274038A1 (zh) N-甲基吗啉-n-氧化物的纯化方法、***及得到的n-甲基吗啉-n-氧化物
CN115947486A (zh) 一种脱硫废液资源化处理工艺及***
CN103274448A (zh) 一种硝酸银的提纯方法
CN113443639B (zh) 一种电子级氢氧化钾的制备工艺
CN113336260B (zh) 一种回收酸性硫酸铜废液中硫酸铜的方法
CN114890889A (zh) 一种电子级柠檬酸的提纯方法
JP3867871B2 (ja) 硫酸ニッケルの溶媒抽出方法
KR20120024771A (ko) 아디프산의 결정의 제조 방법
CN112142068A (zh) 一种工业级氯化铵生产高纯氯化铵的方法
CN110776182B (zh) 一种稀土碱法浸出工艺中稀土氨氮废水综合处理的方法
US3761474A (en) Purification of crude cyanuric acid
CN101016171A (zh) 硫酸亚铁—碳酸铵法高纯α-Fe2O3生产技术
CN114956126A (zh) 一种钠法磷酸铁生产过程中母液的回收利用方法
CN113801041A (zh) 一种羟乙基磺酸钠的制备方法
CN112744971A (zh) 混合废水中回收bt的装置
US3423411A (en) Purification of melamine solutions
CN213708025U (zh) 一种含杂质的氯化铵废水的综合利用及资源化处理的装置
SU1726381A1 (ru) Способ очистки сульфата меди

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20231024

Address after: 061100 South Chemical Avenue, Lingang Development Zone, Cangzhou, Hebei

Applicant after: Huamao Weiye Green Technology Co.,Ltd.

Address before: 061100 South Chemical Avenue, Lingang Development Zone, Cangzhou, Hebei

Applicant before: Huamao Weiye Green Technology Co.,Ltd.

Applicant before: Xi'an Speet Environmental Protection Technology Co.,Ltd.

GR01 Patent grant
GR01 Patent grant