CN114887655B - 纳米NiO-VOX/TiO2-分子筛复合催化剂及其制备方法与应用 - Google Patents

纳米NiO-VOX/TiO2-分子筛复合催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN114887655B
CN114887655B CN202210576780.9A CN202210576780A CN114887655B CN 114887655 B CN114887655 B CN 114887655B CN 202210576780 A CN202210576780 A CN 202210576780A CN 114887655 B CN114887655 B CN 114887655B
Authority
CN
China
Prior art keywords
tio
nio
molecular sieve
nano
composite catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210576780.9A
Other languages
English (en)
Other versions
CN114887655A (zh
Inventor
鞠剑峰
刘立忠
刘敬印
刘毓伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202210576780.9A priority Critical patent/CN114887655B/zh
Publication of CN114887655A publication Critical patent/CN114887655A/zh
Application granted granted Critical
Publication of CN114887655B publication Critical patent/CN114887655B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于属于环境处理技术领域,公开了一种纳米NiO‑VOX/TiO2‑分子筛复合催化剂及其制备方法与应用,该纳米NiO‑VOX/TiO2‑分子筛复合催化剂由中空介孔纳米TiO2复合Ni,V氧化物再与分子筛复合而成。纳米NiO‑VOX/TiO2具有介孔结构,比表面积较大,对VOCs具有较好的吸附性能和较高的催化降解性能。复合催化剂在吸附VOCs的同时实现对VOCs的有效降解,大大提高分子筛对VOCs的吸附效率和处理效果,实现吸附、降解一体化,简化VOCs处理的工艺流程。

Description

纳米NiO-VOX/TiO2-分子筛复合催化剂及其制备方法与应用
技术领域
本发明属于环境处理技术领域,具体涉及一种纳米NiO-VOX/TiO2-分子筛复合催化剂及其制备方法与应用。
背景技术
挥发性有机化合物(VOCs)泛指在101.325kPa下沸点介于50~260℃之间的有机化合物,主要包括烃类、酯类、醇类、醛类、苯系物和卤代烃等。空气中的VOCs来源广泛,主要有工业源、生活源和农业源等。环境中过量的VOCs会对人体产生严重危害,对生态环境也会造成直接影响,例如产生臭氧、PM2.5等污染。
VOCs的高效治理技术受到广泛关注,主要分为捕集(冷凝、吸收、吸附、膜分离等)和销毁(热焚烧、热催化、等离子体、光催化等)两种方式,其中销毁技术需要首先将空气中低浓度的VOCs气体进行捕获并富集。吸附法是目前应用最为广泛的VOCs捕集技术,其方法成熟度高、操作过程简单且经济成本相对低廉。吸附法的技术核心在于VOCs吸附容量高、解吸可控且易于再生的高性能吸附剂的开发。目前,用于VOCs气体捕集的吸附剂主要为多孔材料,如活性炭、活性碳纤维、硅藻土、介孔二氧化硅、金属有机骨架(MOFs)以及分子筛等。活性炭和活性碳纤维属于炭基多孔材料吸附容量大、耐酸碱且成本低廉,然而其丰富的表面基团易于与VOCs分子发生化学吸附或形成稳定的氢键,解吸/脱附不彻底,且碳基材料不耐高温导致再生困难;硅藻土水热稳定性差且主要为大孔结构,不利于低浓度下的VOCs气体吸附;介孔二氧化硅受限于自身较大的介孔孔道,对动力学直径较小的VOCs分子吸附结合力相对较弱,富集低浓度VOCs气体能力较差;金属有机骨架化合物对VOCs分子具有较高的吸附容量,但其前体制备成本高,目前尚处于基础研发阶段;分子筛在分子尺寸上高度有序、具有孔径可调的微孔孔道,骨架结构丰富,热稳定性好,已广泛用于工业上吸附/分离过程,其中分子筛转轮技术已成功应用于工业排放VOCs气体的吸附捕集,分子筛吸附转轮通常采用无机纤维纸卷成的蜂窝状基底型材,将疏水性分子筛涂覆/生长在蜂窝状多孔结构的通道表面,最后再经烧结制成整体式分子筛吸附转轮,但是其存在易吸附饱而导致吸附效率降低、吸附后脱附、氧化等工艺流程比较复杂。
发明内容
有鉴于此,为克服现有技术中的不足,本发明的目的在于提供一种纳米NiO-VOX/TiO2-分子筛复合催化剂及其制备方法与应用,该催化剂在分子筛吸附VOCs的同时实现对VOCs的降解,大大提高分子筛对VOCs的吸附效率和处理效果,实现吸附、降解一体化,简化VOCs处理的工艺流程。
本发明提供的技术方案如下:
一种纳米NiO-VOX/TiO2-分子筛复合催化剂的制备方法,其特征在于,包括下列步骤:
S1.介孔中空纳米TiO2的合成:将钛酸丁酯溶于无水乙醇,加入表面活性剂CTAB和纳米C,搅拌下滴加无水乙醇、冰醋酸和去离子水的混合物,水解形成溶胶后继续搅拌至形成凝胶,静置2-3天,80~100℃真空干燥8-10小时后研磨,焙烧,制得介孔中空纳米TiO2
S2.纳米NiO-VOX/TiO2的合成:将NH4VO3和Ni(NO3)2·6H2O加入到60-70℃的去离子水中,搅拌溶解,加入所述介孔中空纳米TiO2,搅拌5-10分钟后,加入柠檬酸和聚乙二醇,加速搅拌,升温至80~100℃,持续搅拌至形成凝胶,烘干,研磨,焙烧,得纳米NiO-VOX/TiO2
S3.纳米NiO-VOX/TiO2-分子筛复合催化剂的合成:将所述纳米NiO-VOX/TiO2和分子筛加入去离子水中,超声分散,搅拌4-6h,烘干,得纳米NiO-VOX/TiO2-分子筛复合催化剂。
进一步的,步骤S1中,钛酸丁酯、无水乙醇、冰醋酸、去离子水、表面活性剂CTAB和纳米C的摩尔比为1:(20~40):(1~2.5):(2~6):0.022:2。
进一步的,步骤S1中,所述焙烧为在马弗炉中500℃空气焙烧3小时。
进一步的,步骤S2中,柠檬酸、NH4VO3和Ni(NO3)2·6H2O的摩尔比为4:1:1;所述NiO-VOX/TiO2中,NiO-VOX的质量百分比为1-10%,优选为6%,聚乙二醇与柠檬酸的质量比为1:10。
进一步的,步骤S2中,去离子水的质量为介孔中空纳米TiO2质量的2-5倍。
进一步的,步骤S3中,所述分子筛为ZSM-5、β型分子筛或Y-5A。
进一步的,步骤S3中,去离子水的质量为NiO-VOX/TiO2与分子筛质量之和的3-5倍。
进一步的,所述分子筛为ZSM-5。
进一步的,步骤S2中,所述烘干的温度为120℃,所述焙烧为马弗炉500℃空气焙烧3.5h。
本发明还提供了一种上述制备方法制备得到的纳米NiO-VOX/TiO2-分子筛复合催化剂。
本发明还提供了一种上述纳米NiO-VOX/TiO2-分子筛复合催化剂在VOCs去除中的应用。
本发明还提供了一种VOCs处理剂,所述VOCs处理剂包括上述纳米NiO-VOX/TiO2-分子筛复合催化剂。
与现有技术相比,本发明具有以下有益效果:
1)纳米NiO-VOX/TiO2具有介孔结构,比表面积较大,孔道短,具有较好的VOCs吸附性能,与具有微孔结构高比表面积的分子筛复合后不影响分子筛的吸附,而且在复合的同时具有介孔结构的纳米NiO-VOX/TiO2与具有微孔结构的分子筛形成多级孔,减小孔道,提高复合催化剂对VOCs的吸附效率。
2)纳米NiO-VOX/TiO2中Ni2+形成NiO沉积在TiO2的表面,V5+形成各种结构的不同价态的VOX物种,V以V4+和V5+形式存在,NiO和VOX之间具有较强的相互作用,提高了NiO-V5+对的质量,使催化剂表面具有高活性的·OH浓度提高,使NiO-VOX/TiO2具有较高的VOCs催化降解性能。TiO2表面上有空位存在,焙烧时V5+进入TiO2晶格,部分取代Ti4+,形成Ti-O-V键,降低了TiO2的带隙能,提高纳米NiO-VOX/TiO2的催化性能。V5+消耗光生电子,形成光生电子的浅势捕获阱,使电子空穴分离效率提高,纳米NiO-VOX/TiO2活性提高。其协同作用,使得纳米NiO-VOX/TiO2中对VOCs具有较高的催化降解性能。
3)实现吸附催化于一体,提高分子筛吸附效率和处理效果,简化VOCs处理工艺流程。
附图说明
图1为实施例4催化剂的V2p的XPS图;
图2为ZSM-5及实施例4纳米NiO-VOX/TiO2-分子筛复合催化剂吸附能力测试结果。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为了进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明所有原料,对其来源没有特别限制,在市场上购买的或按照本领域技术人员熟知的常规方法制备的即可。
实施例1
(1)介孔中空纳米TiO2的合成:将17mL钛酸丁酯溶于22mL无水乙醇,加入0.4g表面活性剂CTAB和1.2g纳米C,搅拌下滴加22mL无水乙醇、3.6mL冰醋酸和3.6mL去离子水的混合物,水解形成溶胶后继续搅拌,待形成凝胶后静置2-3天,80℃真空干燥8-10小时后得到的粉末研磨后在马弗炉中500℃空气焙烧3小时,制得4g介孔中空纳米TiO2
(2)纳米NiO-VOX/TiO2的合成:首先将0.0285g的NH4VO3和0.0597g的Ni(NO3)2·6H2O加入到10mL的60-70℃的去离子水中,搅拌溶解,加入4g步骤(1)制备的介孔中空纳米TiO2,搅拌5-10分钟后,加入0.0947g柠檬酸和0.0095g聚乙二醇,加速搅拌,升温至80℃,持续搅拌,至形成凝胶。凝胶在120℃下烘干后,研磨,马弗炉500℃空气焙烧3.5h得4.04gNiO-VOX在NiO-VOX/TiO2中的质量比为1%的纳米NiO-VOX/TiO2
(3)纳米NiO-VOX/TiO2-分子筛复合催化剂的合成:将步骤(2)合成的1g的NiO-VOX/TiO2与4gZSM-5分子筛用20mL去离子水分散,超声,搅拌4h,100℃烘干即得NiO-VOX/TiO2与ZSM-5分子筛的质量比为1:4的纳米NiO-VOX/TiO2-分子筛复合催化剂。
实施例2
(1)介孔中空纳米TiO2的合成:将17mL钛酸丁酯溶于22mL无水乙醇,加入0.4g表面活性剂CTAB和1.2g纳米C,搅拌下滴加22mL无水乙醇、3.6mL冰醋酸和3.6mL去离子水的混合物,水解形成溶胶后继续搅拌,待形成凝胶后静置2-3天,80℃真空干燥8-10小时后得到的粉末研磨后在马弗炉中500℃空气焙烧3小时,制得4g介孔中空纳米TiO2
(2)纳米NiO-VOX/TiO2的合成:首先将0.0576g的NH4VO3和0.1206g的Ni(NO3)2·6H2O加入到10mL的60-70℃的去离子水中,搅拌溶解,加入4g步骤(1)制备的介孔中空纳米TiO2,搅拌5-10分钟后,加入0.1894g柠檬酸和0.0189g聚乙二醇,加速搅拌,升温至80℃,持续搅拌,至形成凝胶。凝胶在120℃下烘干后,研磨,马弗炉500℃空气焙烧3.5h得4.08gNiO-VOX在NiO-VOX/TiO2中的质量比为2%的纳米NiO-VOX/TiO2
(3)纳米NiO-VOX/TiO2-分子筛复合催化剂的合成:将步骤(2)合成的1g的NiO-VOX/TiO2与3gZSM-5分子筛用20mL去离子水分散,超声,搅拌4h,100℃烘干即得NiO-VOX/TiO2与ZSM-5分子筛的质量比为1:3的纳米NiO-VOX/TiO2-分子筛复合催化剂。
实施例3
(1)介孔中空纳米TiO2的合成:将17mL钛酸丁酯溶于22mL无水乙醇,加入0.4g表面活性剂CTAB和1.2g纳米C,搅拌下滴加22mL无水乙醇、3.6mL冰醋酸和3.6mL去离子水的混合物,水解形成溶胶后继续搅拌,待形成凝胶后静置2-3天,80℃真空干燥8-10小时后得到的粉末研磨后在马弗炉中500℃空气焙烧3小时,制得4g介孔中空纳米TiO2
(2)纳米NiO-VOX/TiO2的合成:首先将0.1176g的NH4VO3和0.2463g的Ni(NO3)2·6H2O加入到10mL的60-70℃的去离子水中,搅拌溶解,加入4g步骤(1)制备的介孔中空纳米TiO2,搅拌5-10分钟后,加入0.3867g柠檬酸和0.0387g聚乙二醇,加速搅拌,升温至80℃,持续搅拌,至形成凝胶。凝胶在120℃下烘干后,研磨,马弗炉500℃空气焙烧3.5h得4.167gNiO-VOX在NiO-VOX/TiO2中的质量比为4%的纳米NiO-VOX/TiO2
(3)纳米NiO-VOX/TiO2-分子筛复合催化剂的合成:将步骤(2)合成的1g的NiO-VOX/TiO2与10gZSM-5分子筛用50mL去离子水分散,超声,搅拌4h,100℃烘干即得NiO-VOX/TiO2与ZSM-5分子筛的质量比为1:10的纳米NiO-VOX/TiO2-分子筛复合催化剂。
实施例4
(1)介孔中空纳米TiO2的合成:将17mL钛酸丁酯溶于22mL无水乙醇,加入0.4g表面活性剂CTAB和1.2g纳米C,搅拌下滴加22mL无水乙醇、3.6mL冰醋酸和3.6mL去离子水的混合物,水解形成溶胶后继续搅拌,待形成凝胶后静置2-3天,80℃真空干燥8-10小时后得到的粉末研磨后在马弗炉中500℃空气焙烧3小时,制得4g介孔中空纳米TiO2
(2)纳米NiO-VOX/TiO2的合成:首先将0.1802g的NH4VO3和0.3773g的Ni(NO3)2·6H2O加入到10mL的60-70℃的去离子水中,搅拌溶解,加入4g步骤(1)制备的介孔中空纳米TiO2,搅拌5-10分钟后,加入0.5924g柠檬酸和0.0592g聚乙二醇,加速搅拌,升温至80℃,持续搅拌,至形成凝胶。凝胶在120℃下烘干后,研磨,马弗炉500℃空气焙烧3.5h得4.255gNiO-VOX在NiO-VOX/TiO2中的质量比为6%的纳米NiO-VOX/TiO2
(3)纳米NiO-VOX/TiO2-分子筛复合催化剂的合成:将步骤(2)合成的1g的NiO-VOX/TiO2与8g ZSM-5分子筛用40mL去离子水分散,超声,搅拌4h,100℃烘干即得NiO-VOX/TiO2与ZSM-5分子筛的质量比为1:8的纳米NiO-VOX/TiO2-分子筛复合催化剂。
实施例5
(1)介孔中空纳米TiO2的合成:将17mL钛酸丁酯溶于22mL无水乙醇,加入0.4g表面活性剂CTAB和1.2g纳米C,搅拌下滴加22mL无水乙醇、3.6mL冰醋酸和3.6mL去离子水的混合物,水解形成溶胶后继续搅拌,待形成凝胶后静置2-3天,80℃真空干燥8-10小时后得到的粉末研磨后在马弗炉中500℃空气焙烧3小时,制得4g介孔中空纳米TiO2
(2)纳米NiO-VOX/TiO2的合成:首先将0.3137g的NH4VO3和0.6567g的Ni(NO3)2·6H2O加入到12mL的60-70℃的去离子水中,搅拌溶解,加入4g步骤(1)制备的介孔中空纳米TiO2,搅拌5-10分钟后,加入1.0312g柠檬酸和0.1031g聚乙二醇,加速搅拌,升温至80℃,持续搅拌,至形成凝胶。凝胶在120℃下烘干后,研磨,马弗炉500℃空气焙烧3.5h得4.444gNiO-VOX在NiO-VOX/TiO2中的质量比为10%的纳米NiO-VOX/TiO2
(3)纳米NiO-VOX/TiO2-分子筛复合催化剂的合成:将步骤(2)合成的1g的NiO-VOX/TiO2与20g ZSM-5分子筛用80mL去离子水分散,超声,搅拌4h,100℃烘干即得NiO-VOX/TiO2与ZSM-5分子筛的质量比为1:20的纳米NiO-VOX/TiO2-分子筛复合催化剂。
采用N2吸附-脱附法测得的TiO2、纳米NiO-VOX/TiO2、ZSM-5、实施例4制备的纳米NiO-VOX/TiO2-ZSM-5复合催化剂的比表面积、孔容、孔径、粒径,测试结果如表1所示。
表1
可见,TiO2、纳米NiO-VOX/TiO2、纳米NiO-VOX/TiO2-ZSM-5复合催化剂均具有较大的比表面积,TiO2、纳米NiO-VOX/TiO2具有介孔结构,与ZSM-5复合后的NiO-VOX/TiO2-ZSM-5复合催化剂仍然具有较大的孔容,复合对ZSM-5本身的吸附作用影响不大。
图1为实施例4催化剂的V2p的XPS图。图1可见,515.79eV和516.94eV处分别为V4+和V5+的特征峰,表明VOX中V以V4+和V5+的形式存在,且V4+和V5+的比例为1:3-4,NiO与VOX之间以及载体TiO2间强烈的相互作用。
VOCs的去除效果测试以常见的VOCs甲苯为参比物,在接有气相色谱仪的固定床反应器中进行。气相色谱仪前探测器配备氢火焰离子探测器和热导探测器。测试实验时,100mg的ZSM-5、纳米NiO-VOX/TiO2-分子筛复合催化剂分别放入反应管,吸附反应前,200℃处理12h以除去催化剂中的水和杂质。加热蒸发甲苯,使甲苯以100mL/min的速率,测得甲苯的浓度为400ppm。测定甲苯饱和吸附时间和饱和吸附能力。吸附容量计算公式:
其中:
F为甲苯的流速
C0为起始甲苯浓度mg/m3
Ct为t分钟后甲苯的浓度mg/m3
t为吸附时间
ts为饱和吸附时间
图2和表2为ZSM-5及实施例4纳米NiO-VOX/TiO2-分子筛复合催化剂吸附能力测试结果。
表2
催化剂 吸附能力(mg/g)
ZSM-5 121.8
实施例4NiO-VOX/TiO2-ZSM-5 146.5
表2可见,ZSM-5对甲苯的吸附能力为121.8mg/g,纳米NiO-VOX/TiO2-ZSM-5复合复合催化剂的吸附能力为146.5mg/g,比ZSM-5吸附能力提高了20.3%。
图2可见,ZSM-5的达到吸附饱和的吸附时间为21分钟,而纳米NiO-VOX/TiO2-分子筛复合催化剂饱和吸附时间为52分钟,并且达到吸附饱和后,纳米NiO-VOX/TiO2-分子筛复合催化剂吸附后反应管中甲苯浓度增加速率小于ZSM-5,均表明纳米NiO-VOX/TiO2对甲苯有较好的催化降解效果。
图2和表2结果说明纳米NiO-VOX/TiO2-分子筛复合催化剂对VOCs具有较好的处理效果,提高了分子筛的吸附效率。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种用于去除VOCs的纳米NiO-VOX/TiO2-分子筛复合催化剂的制备方法,其特征在于,包括下列步骤:
S1.介孔中空纳米TiO2的合成:将钛酸丁酯溶于无水乙醇,加入表面活性剂CTAB和纳米C,搅拌下滴加无水乙醇、冰醋酸和去离子水的混合物,水解形成溶胶后继续搅拌至形成凝胶,静置2-3天,80 ~100℃真空干燥8-10 小时后研磨,在马弗炉中500 ℃空气焙烧3小时,制得介孔中空纳米TiO2
S2.纳米NiO-VOX/TiO2的合成:将NH4VO3和Ni(NO3)2•6H2O加入到60-70℃的去离子水中,搅拌溶解,加入所述介孔中空纳米TiO2,搅拌5-10分钟后,加入柠檬酸和聚乙二醇,加速搅拌,升温至80 ~100℃,持续搅拌至形成凝胶,烘干,研磨,焙烧,得纳米NiO-VOX/TiO2;所述烘干的温度为120℃,所述焙烧为马弗炉500℃空气焙烧3.5 h;
S3.纳米NiO-VOX/TiO2-分子筛复合催化剂的合成:将所述纳米NiO-VOX/TiO2和分子筛加入去离子水中,超声分散,搅拌4-6h,烘干,得纳米NiO-VOX/TiO2-分子筛复合催化剂,所述分子筛为ZSM-5、β型分子筛或Y-5A。
2.根据权利要求1所述的制备方法,其特征在于,步骤S1中,钛酸丁酯、无水乙醇、冰醋酸、去离子水、表面活性剂CTAB和纳米C的摩尔比为1:(20~40):(1~2.5):(2~6):0.022:2。
3.根据权利要求1所述的制备方法,其特征在于,步骤S2中,柠檬酸、NH4VO3和Ni(NO3)2•6H2O的摩尔比为4:1:1;所述NiO-VOX/TiO2中,NiO-VOX的质量百分比为1-10%,聚乙二醇与柠檬酸的质量比为1:10。
4.根据权利要求1所述的制备方法,其特征在于,所述分子筛为ZSM-5。
5.权利要求1-4任一项所述制备方法制备得到的用于去除VOCs的纳米NiO-VOX/TiO2-分子筛复合催化剂。
6.权利要求5所述的用于去除VOCS的纳米NiO-VOX/TiO2-分子筛复合催化剂在VOCs去除中的应用。
7.一种VOCs处理剂,其特征在于,所述VOCs处理剂包括权利要求5所述的用于去除VOCs的纳米NiO-VOX/TiO2-分子筛复合催化剂。
CN202210576780.9A 2022-05-25 2022-05-25 纳米NiO-VOX/TiO2-分子筛复合催化剂及其制备方法与应用 Active CN114887655B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210576780.9A CN114887655B (zh) 2022-05-25 2022-05-25 纳米NiO-VOX/TiO2-分子筛复合催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210576780.9A CN114887655B (zh) 2022-05-25 2022-05-25 纳米NiO-VOX/TiO2-分子筛复合催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114887655A CN114887655A (zh) 2022-08-12
CN114887655B true CN114887655B (zh) 2023-09-15

Family

ID=82725926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210576780.9A Active CN114887655B (zh) 2022-05-25 2022-05-25 纳米NiO-VOX/TiO2-分子筛复合催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114887655B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115591518B (zh) * 2022-10-28 2023-11-03 南通大学 一种用于VOCs净化的分子筛@玻璃纤维块的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1473654A (zh) * 2002-08-06 2004-02-11 中国科学院大连化学物理研究所 复合氧化物催化剂及其制备方法和应用
CN103736515A (zh) * 2014-01-06 2014-04-23 西安建筑科技大学 VOCs催化氧化的高性能吸附、吸波型催化剂及其制备
CN103752299A (zh) * 2014-01-14 2014-04-30 沈阳理工大学 一种制备大孔空心球型氧化钛光催化材料的方法
CN104226320A (zh) * 2014-08-27 2014-12-24 北京科技大学 钒硼共掺杂二氧化钛与氧化镍复合光催化剂的制备方法
CN106186060A (zh) * 2016-07-19 2016-12-07 西安交通大学 一种直径小于100nm超细中空二氧化钛纳米球的制备方法
KR101964215B1 (ko) * 2018-04-26 2019-04-01 (주)세라컴 육각형 촉매 지지체에 적합한 촉매 제조방법 및 그에 의해 제조된 촉매

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1473654A (zh) * 2002-08-06 2004-02-11 中国科学院大连化学物理研究所 复合氧化物催化剂及其制备方法和应用
CN103736515A (zh) * 2014-01-06 2014-04-23 西安建筑科技大学 VOCs催化氧化的高性能吸附、吸波型催化剂及其制备
CN103752299A (zh) * 2014-01-14 2014-04-30 沈阳理工大学 一种制备大孔空心球型氧化钛光催化材料的方法
CN104226320A (zh) * 2014-08-27 2014-12-24 北京科技大学 钒硼共掺杂二氧化钛与氧化镍复合光催化剂的制备方法
CN106186060A (zh) * 2016-07-19 2016-12-07 西安交通大学 一种直径小于100nm超细中空二氧化钛纳米球的制备方法
KR101964215B1 (ko) * 2018-04-26 2019-04-01 (주)세라컴 육각형 촉매 지지체에 적합한 촉매 제조방법 및 그에 의해 제조된 촉매

Also Published As

Publication number Publication date
CN114887655A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
CN111479630B (zh) 用于催化甲醛氧化的锰催化剂及其制备和用途
CN107824210B (zh) 一种氮掺杂介孔碳包裹的二氧化钛复合光催化剂及其制备方法和应用
CN107029702B (zh) 负载氧化锰的碳纤维毡催化剂材料及其制备方法和应用
CN110935280B (zh) 氮掺杂介孔竹基生物炭及其应用
CN1680018A (zh) 甲醛分解剂及其制备方法
CN106861626B (zh) 一种吸附-光催化双功能材料及其制备方法与在挥发性有机气体治理工艺的应用
CN114887655B (zh) 纳米NiO-VOX/TiO2-分子筛复合催化剂及其制备方法与应用
CN114259978B (zh) 一种高效的燃煤烟气脱汞吸附剂的制备工艺及其产品
CN106268641A (zh) 一种N‑TiO2蚕沙多孔炭双功能吸附剂及其制备方法
KR101918652B1 (ko) 포름알데히드 가스 제거용 활성탄소 및 그 제조방법
CN113213480B (zh) 一种一步法制备竹质活性炭的方法
CN112691542B (zh) 一种用于吸附-催化氧化VOCs的金属复合分子筛材料及其制备方法与应用
CN112058216B (zh) 一种改性硅基吸附材料及有机污染物的低温原位降解方法
CN116272860B (zh) 一种VOCs治理的再生活性炭及其制备方法
CN108912887B (zh) 一种可降解甲醛的室内装饰用硅藻泥涂料
CN115090279B (zh) 用于粮油加工行业恶臭VOCs净化的二氧化钛负载型催化剂及其制备方法
CN106311222A (zh) 一种双过渡金属基蚕沙多孔炭催化剂及其制备方法
CN114471146B (zh) 一种绿色净味的甲醛清除剂及其制备方法
CN115025812B (zh) 一种纳米MnOX-VOX/TiO2-改性分子筛复合催化剂及其制备方法与应用
Gao et al. A comparative study on adsorbing gaseous formaldehyde with novel biomass activated carbons from agriculture wastes at ambient temperature
CN114887617B (zh) 一种富含氧空位且表面功能化的氧化锰/碳复合催化剂及其制备方法和在去除甲醛中的应用
CN110813235A (zh) 一种镍离子吸附剂及其制备方法
CN115155636B (zh) 一种钠硼共掺杂的氮化碳光催化剂、还原氧化石墨烯复合膜及制备方法和应用
CN113231073B (zh) 一种纳米CuO-MnO2/玻璃纤维复合材料及其制备方法和应用
CN113332954B (zh) 一种烧结烟气脱硝吸附剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant