CN114685170A - 微波闪烧合成碳化硅的方法 - Google Patents

微波闪烧合成碳化硅的方法 Download PDF

Info

Publication number
CN114685170A
CN114685170A CN202210463925.4A CN202210463925A CN114685170A CN 114685170 A CN114685170 A CN 114685170A CN 202210463925 A CN202210463925 A CN 202210463925A CN 114685170 A CN114685170 A CN 114685170A
Authority
CN
China
Prior art keywords
microwave
silicon carbide
firing
synthesizing
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210463925.4A
Other languages
English (en)
Other versions
CN114685170B (zh
Inventor
张锐
闵志宇
董宾宾
关莉
张新月
李哲
范冰冰
陈勇强
李豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luoyang Institute of Science and Technology
Original Assignee
Luoyang Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luoyang Institute of Science and Technology filed Critical Luoyang Institute of Science and Technology
Priority to CN202210463925.4A priority Critical patent/CN114685170B/zh
Publication of CN114685170A publication Critical patent/CN114685170A/zh
Application granted granted Critical
Publication of CN114685170B publication Critical patent/CN114685170B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

本发明涉及一种微波闪烧合成碳化硅的方法,首先,将硅源和碳源均匀混合,之后,将得到的混合粉体直接置于微波烧结炉中进行微波烧成,或者,将混合后的粉体先进行预成型,之后再置于微波烧结炉中进行微波烧成;微波烧成的过程包括:将微波烧结炉的输入功率升至3KW以上,温度迅速上升到设定温度后,不保温,立即结束烧制,完成微波烧成,合成碳化硅;所述的设定温度不小于600℃。本发明借助微波加热快速、节约能源且保护环境的优势,将硅源和碳源混合后直接在高微波输入功率下一分钟内实现碳化硅的合成,效率极高,且通过本发明方法可制得纯度高的α‑SiC。

Description

微波闪烧合成碳化硅的方法
技术领域
本发明涉及无机非金属材料制备技术领域,具体涉及一种微波闪烧合成碳化硅的方法。
背景技术
碳化硅(SiC)陶瓷具有优良的高温力学性能、抗氧化性强、耐磨损性好、热稳定性佳、热膨胀系数小、热导率大、弹性模量高,高温电性能优良、硬度高以及抗热震和耐化学腐蚀等优良性能,在汽车、机械化工、环境保护、空间技术、信息电子、能源等领域有着日益广泛的应用,己经成为一种在很多工业领域性能优异的其他材料不可替代的结构陶瓷,并日益受到人们的重视。
SiC粉料的合成方法主要分为三种:
(1)固相法,包括粉末煅烧法、碳热还原法、自蔓延高温合成法和机械粉碎法;
(2)液相法,包括溶胶-凝胶法和聚合物热分解法;
(3)气相法,包括化学气相沉积法、等离子体法和激光诱导法等。
其中,固相法由于成本低廉、原料易获得等优势,已广泛用于工业化生产。然而,碳化硅由于存在极强的共价键,因此,目前,碳化硅的合成需要在高温下实现(普遍在1400~2700℃),且合成周期较长,普遍在5~100小时,造成了大量的能源浪费。
由此可见,上述现有的碳化硅的制备方法显然仍存在有不便与缺陷,而亟待加以进一步改进,但长久以来一直未见适用的方法被报道。本发明人基于从事此类产品设计制造多年丰富的实务经验及专业知识,积极加以研究创新,以期创设一种微波闪烧合成碳化硅的方法,能够改进一般现有合成碳化硅需要在高温下完成以及合成周期长的缺陷,经过不断的研究、设计,并经过反复试作样品及改进后,终于创设出确具实用价值的本发明。
发明内容
针对现有技术存在的缺陷,本发明提供一种微波闪烧合成碳化硅的方法,借助微波加热快速、节约能源且保护环境的优势,将硅源和碳源混合后直接在高微波输入功率下一分钟内实现碳化硅的合成。
本发明的发明目的是通过以下技术方案来实现的,依据本发明提出的一种微波闪烧合成碳化硅的方法,具体包括以下步骤:
(1)将硅源、碳源均匀混合;
(2)将混合后的粉体直接置于微波烧结炉中进行微波烧成,或者,将混合后的粉体先进行预成型,之后再置于微波烧结炉中进行微波烧成;微波烧成的过程包括:将微波烧结炉的输入功率升至3KW以上,温度迅速上升到设定温度后,不保温,立即结束烧制,完成微波烧成,合成碳化硅;所述的设定温度不小于600℃。
前述的微波闪烧合成碳化硅的方法,其中,步骤(1)中所述的硅源包括但不限于硅粉、正硅酸乙酯、石英砂、白炭黑,硅溶胶等中的一种或多种。
前述的微波闪烧合成碳化硅的方法,其中,步骤(1)中所述的碳源包括但不限于工业煤、石墨、活性炭、石油焦等中的一种或多种。
前述的微波闪烧合成碳化硅的方法,其中,步骤(1)中碳源和硅源中碳硅摩尔比为0.5~10:1;混料方式包括但不限于球磨法、研磨法、机械搅拌等。
前述的微波闪烧合成碳化硅的方法,其中,步骤(2)中的成型方式包括但不限于干压成型、等静压成型、溶胶凝胶成型等。
前述的微波闪烧合成碳化硅的方法,其中,步骤(2)中微波烧成时输入功率为3KW~10KW,加热频率为915MHz或2450MHz。
前述的微波闪烧合成碳化硅的方法,其中,按照上述方法最终制备得到α-SiC。
前述的微波闪烧合成碳化硅的方法,其中,所制备的α-SiC晶体发育良好,为典型的六方结构。
前述的微波闪烧合成碳化硅的方法,所制备的α-SiC在制备半导体材料、功能陶瓷、高级耐火材料等领域具有潜在的巨大应用价值。
本发明与现有技术相比具有明显的优点和有益效果。借由上述技术方案,本发明一种微波闪烧合成碳化硅的方法可达到相当的技术进步性及实用性,并具有广泛的利用价值,其至少具有下列优点:
本发明借助微波加热快速、节约能源且保护环境的优势,将硅源和碳源混合后直接进行微波烧成,或者混合后先预成型再进行微波烧成,在高微波输入功率下,一分钟内实现碳化硅的合成,其效率极高,极大地加快了制备α-SiC的速率,缩短了制备周期,相比现有技术的烧结温度(普遍在1400~2700℃范围内),本发明的烧结温度显著降低,在600~1100℃范围内,一分钟内即可完成α-SiC的制备,且所制备的α-SiC具有非常高的纯度,纯度>99%,该α-SiC可以应用于制备半导体材料,功能陶瓷、高级耐火材料等。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1为实施例1中制备的碳化硅的扫描电镜图;
图2为实施例1中制备的碳化硅的XRD图谱。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合具体实施例以及附图,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部实施例。基于本发明的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明所提供的一种微波闪烧合成碳化硅的方法,具体包括以下步骤:
(1)将硅源、碳源均匀混合,混合的方式包括但不限于球磨法混合、研磨法混合、机械搅拌混合等。
硅源可以选用硅粉、正硅酸乙酯、石英砂、白炭黑,硅溶胶等中的一种或多种。
碳源可以选用工业煤、石墨、活性炭、石油焦等中的一种或多种;碳硅摩尔比为0.5~10:1。
(2)将混合后的粉体直接置于微波烧结炉中进行微波烧成,或者,将混合后的粉体先通过干压成型、等静压成型、溶胶凝胶成型等成型方法进行预成型,之后再置于微波烧结炉中进行微波烧成。
微波烧成的过程包括:将微波烧结炉的输入功率升至3KW以上,温度迅速上升到设定温度后,不保温,立即结束烧制,完成微波烧成,合成α-SiC;所述的设定温度不小于600℃。
优选地,微波烧成时输入功率为3KW~10KW,加热频率为915MHz或2450MHz。
实施例1:
选取粒径为2000目的碳粉为碳源,粒径为1000目的硅粉为硅源,碳硅摩尔比为1:1,以酒精为研磨介质,以300r/min球磨12h进行粉体混合;之后,将混合粉体置于微波烧结炉中,将输入功率调整到5KW,加热频率为2450MHz,样品迅速升温到800℃后,不保温,立即结束烧制,得到碳化硅。
图1是本实施例所制备的碳化硅的扫描电镜图,由图1可知,所制备的碳化硅晶体发育良好,为典型的六方结构。
图2是本实施例所制备的碳化硅的XRD图谱,由图2可知:制备的样品为纯α-SiC相。
实施例2:
选取粒径为1000目的活性炭为碳源,粒径为325目的硅粉为硅源,碳硅摩尔比为2:1,以酒精为研磨介质,以300r/min球磨24h进行粉体混合;之后,将混合粉体置于微波烧结炉中,将输入功率调整到6KW,加热频率为2450MHz,样品迅速升温到700℃后,不保温,立即结束烧制,得到碳化硅。
实施例3:
选取粒径为325目的石油焦为碳源,粒径为2000目的石英砂为硅源,碳硅摩尔比为3:1,以酒精为研磨介质,以300r/min球磨24h进行粉体混合;之后,将混合粉体利用等静压机在20MPa压力下保压2min得到坯体。将坯体置于微波烧结炉中,将输入功率调整到4KW,加热频率为2450MHz,样品迅速升温到900℃后,不保温,立即结束烧制,得到碳化硅。
实施例4:
选取粒径为1000目的石墨为碳源,粒径为1000目的硅粉为硅源,碳硅摩尔比为2:1,以酒精为研磨介质,以300r/min球磨24h进行粉体混合;之后,将混合粉体利用干压机在50MPa压力下保压1min得到坯体。将坯体置于微波烧结炉中,将输入功率调整到7KW,加热频率为915MHz,样品迅速升温到1000℃后,不保温,立即结束烧制,得到碳化硅。
实施例5:
选取粒径为1000目的石墨为碳源,粒径为1000目的硅粉为硅源,碳硅摩尔比为1:1,以酒精为研磨介质,以300r/min球磨24h进行粉体混合;之后,将混合粉体利用等静压机在10MPa压力下保压5min得到坯体。将坯体置于微波烧结炉中,将输入功率调整到3KW,加热频率为2450MHz,样品迅速升温到650℃后,不保温,立即结束烧制,得到碳化硅。
以上所述仅是本发明的具体实施例,并非对本发明作任何形式上的限制,本发明还可以根据以上结构和功能具有其它形式的实施例,不再一一列举。因此,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

1.微波闪烧合成碳化硅的方法,其特征在于包括以下步骤:
(1)将硅源、碳源均匀混合;
(2)将混合后的粉体直接置于微波烧结炉中进行微波烧成,或者,将混合后的粉体先进行预成型,之后再置于微波烧结炉中进行微波烧成;微波烧成的过程包括:将微波烧结炉的输入功率升至3KW以上,温度迅速上升到设定温度后,不保温,立即结束烧制,完成微波烧成,合成碳化硅;所述的设定温度不小于600℃。
2.如权利要求1所述的微波闪烧合成碳化硅的方法,其特征在于步骤(1)中所述的硅源至少包括硅粉、正硅酸乙酯、石英砂、白炭黑,硅溶胶中的一种或多种。
3.如权利要求1所述的微波闪烧合成碳化硅的方法,其特征在于步骤(1)中所述的碳源至少包括工业煤、石墨、活性炭、石油焦中的一种或多种。
4.如权利要求1-3任一所述的微波闪烧合成碳化硅的方法,其特征在于碳源和硅源中碳硅摩尔比为0.5~10:1。
5.如权利要求1-3任一所述的微波闪烧合成碳化硅的方法,其特征在于混料方式至少包括球磨法混合或研磨法混合或机械搅拌混合。
6.如权利要求1或4所述的微波闪烧合成碳化硅的方法,其特征在于骤(2)中的成型方式至少包括干压成型、等静压成型、溶胶凝胶成型。
7.如权利要求1或4所述的微波闪烧合成碳化硅的方法,其特征在于步骤(2)中微波烧成时输入功率为3KW~10KW,加热频率为915MHz或2450MHz。
8.如权利要求1或4所述的微波闪烧合成碳化硅的方法,其特征在于最终得到α-SiC。
9.如权利要求8所述的微波闪烧合成碳化硅的方法,其特征在于所制备的α-SiC为典型的六方结构。
10.如权利要求8或9所述的微波闪烧合成碳化硅的方法,其特征在于所制备的α-SiC在制备半导体材料、功能陶瓷、高级耐火材料中的应用。
CN202210463925.4A 2022-04-29 2022-04-29 微波闪烧合成碳化硅的方法 Active CN114685170B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210463925.4A CN114685170B (zh) 2022-04-29 2022-04-29 微波闪烧合成碳化硅的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210463925.4A CN114685170B (zh) 2022-04-29 2022-04-29 微波闪烧合成碳化硅的方法

Publications (2)

Publication Number Publication Date
CN114685170A true CN114685170A (zh) 2022-07-01
CN114685170B CN114685170B (zh) 2023-05-23

Family

ID=82144634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210463925.4A Active CN114685170B (zh) 2022-04-29 2022-04-29 微波闪烧合成碳化硅的方法

Country Status (1)

Country Link
CN (1) CN114685170B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894058A (zh) * 2022-11-25 2023-04-04 南京航空航天大学 一种SiC/SiC复合材料闪烧快速致密化的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320802A (ja) * 2006-05-31 2007-12-13 Doshisha SiCセラミックス及びその製造方法
JP2007320838A (ja) * 2006-06-05 2007-12-13 F C C:Kk 炭化金属焼結体の製造方法
CN102897763A (zh) * 2012-10-08 2013-01-30 北京科技大学 一种低温快速合成α-SiC微粉的方法
CN106565245A (zh) * 2016-10-19 2017-04-19 张家港市东大工业技术研究院 一种微波原位烧结技术制备碳化硅多孔陶瓷的方法
CN111762785A (zh) * 2020-04-01 2020-10-13 郑州航空工业管理学院 一种双频微波制备颗粒状碳化硅的方法
CN113264774A (zh) * 2021-06-24 2021-08-17 郑州航空工业管理学院 一种晶种诱导微波合成的SiC晶体及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320802A (ja) * 2006-05-31 2007-12-13 Doshisha SiCセラミックス及びその製造方法
JP2007320838A (ja) * 2006-06-05 2007-12-13 F C C:Kk 炭化金属焼結体の製造方法
CN102897763A (zh) * 2012-10-08 2013-01-30 北京科技大学 一种低温快速合成α-SiC微粉的方法
CN106565245A (zh) * 2016-10-19 2017-04-19 张家港市东大工业技术研究院 一种微波原位烧结技术制备碳化硅多孔陶瓷的方法
CN111762785A (zh) * 2020-04-01 2020-10-13 郑州航空工业管理学院 一种双频微波制备颗粒状碳化硅的方法
CN113264774A (zh) * 2021-06-24 2021-08-17 郑州航空工业管理学院 一种晶种诱导微波合成的SiC晶体及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LUCIA CARASSITI 等: "Ultra-rapid, sustainable and selective synthesis of silicon carbide powders and nanomaterials via microwave heating", 《ENERGY & ENVIRONMENTAL SCIENCE》 *
XINYUE ZHANG 等: "Influences of pre-forming on preparation of SiC by microwave heating", 《CERAMICS INTERNATIONAL》 *
宋勃震: "微波合成SiC加热效应与生长机理研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894058A (zh) * 2022-11-25 2023-04-04 南京航空航天大学 一种SiC/SiC复合材料闪烧快速致密化的方法

Also Published As

Publication number Publication date
CN114685170B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
CN111454061B (zh) 一种聚碳硅烷不熔化预处理及其裂解转化三维陶瓷方法
CN110745827B (zh) 一种二维片状SiC材料的制备方法
CN111848172B (zh) 二硅化钼/碳化硅三维聚合物先驱体陶瓷及其制备方法
CN104387073B (zh) 基于反应烧结法制造超细高韧性碳化硅陶瓷材料的方法
CN105272269A (zh) 一种氮化硅/六方氮化硼纳米复相陶瓷的制备方法
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
Izhevskyi et al. Liquid phase sintered SiC. Processing and transformation controlled microstructure tailoring
CN109251033A (zh) 一种微波合成Ti2AlC块体材料的方法
CN113718370A (zh) 一种中空碳化硅纤维的制备方法
CN110436930A (zh) 一种高性能纳米SiC陶瓷及其制备方法和应用
CN106747446A (zh) 一种微波混合加热合成Al4SiC4粉体的新方法
CN114685170A (zh) 微波闪烧合成碳化硅的方法
CN111762785A (zh) 一种双频微波制备颗粒状碳化硅的方法
CN106747447A (zh) 一种合成Al4SiC4粉体材料的新方法
CA1139791A (en) Sintered silicon carbide-aluminum nitride articles and method of making such articles
CN107746282A (zh) 一种原位碳化硅纤维增强液相烧结碳化硅陶瓷及制造方法
Ebadzadeh et al. Microwave hybrid synthesis of silicon carbide nanopowders
Cheng et al. Development of translucent aluminum nitride (AIN) using microwave sintering process
CN111747748B (zh) 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN103951446A (zh) 一种利用陶瓷抛光废渣和煤矸石制备β-SiAlON复相材料的方法
CN109704780B (zh) 一种耐热冲击氮化硼-锶长石陶瓷基复合材料及其制备方法
CN107827090B (zh) 一种六方氮化硼晶须的微波合成方法
CN102731109B (zh) 一种AlON材料的合成方法
CN101955357B (zh) 可加工复相陶瓷材料及其制备方法和二次硬化热处理方法
CN109160815B (zh) 一种耐高温碳化硅-碳化钽泡沫陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Min Zhiyu

Inventor after: Dong Binbin

Inventor after: Zhang Rui

Inventor after: Guan Li

Inventor after: Zhang Xinyue

Inventor after: Li Zhe

Inventor after: Fan Bingbing

Inventor after: Chen Yongqiang

Inventor after: Li Hao

Inventor before: Zhang Rui

Inventor before: Min Zhiyu

Inventor before: Dong Binbin

Inventor before: Guan Li

Inventor before: Zhang Xinyue

Inventor before: Li Zhe

Inventor before: Fan Bingbing

Inventor before: Chen Yongqiang

Inventor before: Li Hao

CB03 Change of inventor or designer information
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20220701

Assignee: YUZHOU YANGZHIJUN KILN Co.,Ltd.

Assignor: LUOYANG INSTITUTE OF SCIENCE AND TECHNOLOGY

Contract record no.: X2024980000563

Denomination of invention: Method for synthesizing silicon carbide by microwave flash firing

Granted publication date: 20230523

License type: Common License

Record date: 20240112

EE01 Entry into force of recordation of patent licensing contract