CN114665068A - 一种以锂铝合金为负极的全固态锂电池的制备方法 - Google Patents

一种以锂铝合金为负极的全固态锂电池的制备方法 Download PDF

Info

Publication number
CN114665068A
CN114665068A CN202210190133.4A CN202210190133A CN114665068A CN 114665068 A CN114665068 A CN 114665068A CN 202210190133 A CN202210190133 A CN 202210190133A CN 114665068 A CN114665068 A CN 114665068A
Authority
CN
China
Prior art keywords
lithium
solid
aluminum alloy
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210190133.4A
Other languages
English (en)
Inventor
何平
潘慧
周豪慎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202210190133.4A priority Critical patent/CN114665068A/zh
Publication of CN114665068A publication Critical patent/CN114665068A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种以锂铝合金为负极的全固态锂电池的制备方法,属于电化学技术领域。所述锂铝合金由锂金属和铝金属合金化而成。本发明提供的用于全固态锂电池负极的锂铝合金,制备方法简单,成本低廉,对固态电解质稳定,解决了全固态电池负极与电解质界面不稳定问题,有效地抑制了负极与电解质界面副产物的生成和锂枝晶的生长,提高了全固态电池的循环稳定性。该锂铝合金负极比容量大,电极电位较低,有效提高了全固态电池的能量密度。

Description

一种以锂铝合金为负极的全固态锂电池的制备方法
技术领域
本发明属于电化学技术领域,具体涉及一种以锂铝合金为负极的全固态锂电池的制备方法。
背景技术
基于传统液态电解液的锂离子电池已在日常生活中广泛应用,但是液态有机电解液具有易燃、易挥发、易泄漏的缺点,给电池造成较大的安全隐患。因此,使用更加安全的固态电解质取代传统有机电解液已经成为未来电池发展的大势所趋。近年来,利用具有高锂离子电导率的硫系固态电解质设计而成的全固态电池引起了研究人员的广泛关注。硫系固态电解质锂离子电导率高,可以降低电池整体的内阻;质地较软,方便一步成型。然而,硫系固态电解质电化学窗口较窄,对锂金属不稳定,与锂金属接触时会被还原,消耗负极的金属锂,并生成低锂离子电导率的副产物,增大了负极和电解质的界面阻抗,最终造成电池性能的迅速衰减。
使用合金负极取代锂金属负极是提高负极与硫系固态电解质界面稳定性的有效方法。目前,常用的合金负极有锂铟负极、硅负极等。锂铟负极对硫系固态电解质稳定性良好,但是锂铟负极的理论比容量仅为233mAh g-1,远远不能满足高比能量电池的要求;且锂铟负极的电极电位较高,为0.62V vs.Li/Li+,造成电池整体输出电压较低。硅负极理论比容量大,但是由于硅是半导体,电子电导率较低,因此硅负极中必须加入大量的碳来提高电极的电子电导率,所以在实际应用中,硅负极的容量远低于其理论值;负极中大量碳的加入会促进电解质分解,进一步加剧负极/电解质界面恶化。另外,硅负极在循环过程中体积变化巨大,循环稳定性较差。目前,负极与硫系电解质不匹配的问题已经成为了制约全固态电池发展的最关键的问题之一。
发明内容
本发明的目的是提供一种以锂铝合金为负极的全固态锂电池的制备方法,该锂铝合金负极理论比容量高,电极工作电位低,可以实现高能量密度的全固态电池。
为了实现上述目的,本发明采用以下技术方案:
一种锂铝合金,由锂金属和铝金属合金化而成,锂金属和铝金属的物质的量比例为0.02:1~10:1。
上述锂铝合金制备工艺包含以下步骤:
步骤1,预处理锂片,去除锂片表面杂质,至锂片表面光滑、平整、无杂质,裁所需质量的锂片备用;
步骤2,预处理铝箔,去除铝箔表面杂质,至铝箔表面光滑、平整、无杂质,裁所需质量的铝箔备用;
步骤3,取预处理后的锂片和预处理后的铝箔,置于加压模具中,施加压力,静置后得到所需锂铝合金。
上述锂铝合金在制备全固态锂电池中的应用。
一种全固态锂电池,包括正极层、负极层和电解质层,
所述正极层由活性物质、碳材料和固态电解质粉末制成,所述活性物质为硫、LiNixMnyCo1-x-yO2或LiNixMnyAl1-x-yO2,其中0<x<1、0<y<1;所述碳材料为科琴黑(KetjenBlack)、乙炔黑、石墨、石墨烯、碳纳米管、Super P中的一种或几种;所述固态电解质为Li10GeP2S12、Li6PS5X或Li2S-P2S5中的一种或几种,其中X为Cl、Br或I;
所述负极层由上述锂铝合金制成;
所述电解质层由Li10GeP2S12、Li6PS5X或Li2S-P2S5中的一种或几种制成,其中X为Cl、Br或I。
在本发明的一个实施例中,正极层采用的活性物质为硫,先将硫和碳材料复合形成硫碳复合物,再与碳材料、固态电解质粉末混合,制成硫正极层。
在本发明的一个实施例中,上述全固态电池通过以下步骤制备得到:
步骤1,将电解质粉体置于模具中,压制后得到电解质层;
步骤2,将活性物质、碳材料和固态电解质粉末混合,制备得到正极材料;
步骤3,将正极材料铺在电解质层的一侧,并放入集流体,压制后形成正极层;
步骤4,将铝箔置于电解质层的另一侧,再将锂片置于铝箔上,并放入集流体;
步骤5,经压制后,得到全固态电池。
借由上述方案,本发明至少具有以下优点:
本发明提供了一种用作全固态锂电池负极的锂铝合金,并将其应用于硫系固态电解质全电池体系中。该锂铝合金理论比容量大,电极工作电位低,实现了电池较高的输出电压和较大的能量密度。另外,该锂铝合金与硫系电解质兼容性良好,负极/固态电解质界面稳定性良好,抑制了负极与电解质界面的副反应和锂枝晶的生长,实现了循环性能优异的全固态电池。
附图说明
图1为本发明全固态电池的结构示意图。其中:1是锂铝合金负极,2是硫系固态电解质,3是全固态正极。
图2(a)是锂铝合金-Li10GeP2S12-锂铝合金对称电池在0.5mA cm-2的电流密度和0.5mAh cm-2的面载量下的循环图;图2(b)是锂铝合金-Li10GeP2S12-锂铝合金对称电池循环过程中的电化学阻抗谱测试;图2(c)是锂铝合金-Li10GeP2S12-锂铝合金对称电池的极限电流密度测试。
图3(a)是硫碳复合物的热重表征;图3(b)是以锂铝合金为负极的全固态锂-硫电池在0.2C下的长循环图;图3(c)是以锂铝合金为负极的全固态锂-硫电池在0.2C下的充放电曲线图;图3(d)是以锂铝合金为负极的全固态锂-硫电池的倍率性能测试图。
图4是以锂铝合金为负极的全固态三元锂离子固态电池的充放电曲线图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。实施例中未注明具体条件的实验方法及未说明配方的试剂均为按照本领域常规条件。
实施例1
步骤1:称取100mg Li10GeP2S12粉末置于固态电池模具中,加压400MPa,保持5min。
步骤2:处理锂片和铝箔,使其表面光滑、平整、无杂质。按物质的量0.8:1裁取直径为8mm的锂片和直径为10mm的铝箔。将铝箔置于固态电池模具内的Li10GeP2S12电解质的一侧,再将锂片置于铝箔上,放入直径为10mm的铜箔作为集流体。
步骤3:以同样的方法在固态电池模具内的Li10GeP2S12电解质的另一侧放入铝箔、锂片和铜箔。
步骤4:将电池模具置于加压夹具上,加压400MPa,拧紧夹具,静置6h后进行对称电池测试。
如图2(a),该对称电池在0.5mA cm-2的电流密度和0.5mAh cm-2的面载量下稳定循环超过2500h,证明该锂铝合金与Li10GeP2S12电解质具有良好的兼容性。图2(b)是对称电池循环过程中的电化学阻抗谱测试,电池初始的阻抗为55.15Ωcm2,循环10h和30h后电化学阻抗增大到198.77Ωcm2和292.28Ωcm2,但是在30h后,电池的电化学阻抗几乎保持不变,也对应于图2(a)中对称电池在循环30h后过电位逐渐稳定。图2(c)是该对称电池的极限电流密度测试,在电流密度高达11mA cm-2时,该对称电池仍可以稳定运行,说明该锂铝合金负极与硫系固态电解质有着良好的兼容性,并且该锂铝合金负极有着优异的倍率性能。
实施例2
步骤1:硫和碳纳米管按质量比7:3研磨,密封于菌种瓶中,Ar氛围下155℃烧结5h,冷却至室温后研磨30min,再次密封于菌种瓶中,Ar氛围下200℃烧结2h,得到硫碳复合物。
该硫碳复合物的热重表征如图3(a),其中硫的质量分数为68.8%。
步骤2:上述硫碳复合物、碳纳米管、Li10GeP2S12电解质粉末按质量比3:1:4以400rpm转速球磨10h,制备得全固态硫正极材料。
步骤3:称取100mg Li10GeP2S12粉末置于固态电池模具中,加压400MPa,保持5min。
步骤4:称取约3.8mg上述全固态硫正极材料,均匀铺在固态电池模具内的Li10GeP2S12电解质的一侧,放入直径为10mm的碳铝箔作为集流体,加压400MPa,保持5min。
步骤5:处理锂片和铝箔,使其表面光滑、平整、无杂质。按物质的量0.8:1裁取直径为8mm的锂片和直径为10mm的铝箔。将铝箔置于固态电池模具内的Li10GeP2S12电解质的另一侧,再将锂片置于铝箔上,放入直径为10mm的铜箔作为集流体。
步骤6:将电池模具置于加压夹具上,加压400MPa,拧紧夹具,静置6h后进行全固态锂-硫电池测试。
如图3(b),以锂铝合金为负极的全固态锂-硫电池在0.2C下可逆容量为1237mAhgS -1,稳定循环200圈后容量保持率高达93%;图3(c)是对应的全固态锂-硫电池的充放电曲线。图3(d)是全固态锂-硫电池的倍率性能测试,以锂铝合金为负极的全固态锂-硫电池在0.1、0.2、0.3、0.5和1C倍率下容量分别为1362、1239、1110、914和514mAh gS -1,表现出优异的倍率性能。
实施例3
实施例3与实施例2的不同之处仅在于全固态正极的设计:实施例3中的全固态正极活性物质为LiNbO3包覆的LiNi0.8Mn0.1Co0.1O2
步骤1:将LiNi0.8Mn0.1Co0.1O2与Li10GeP2S12电解质粉末按质量比7:3置于研钵中研磨30min,得到全固态三元正极材料。
步骤2:称取100mg Li10GeP2S12粉末置于固态电池模具中,加压400MPa,保持5min。
步骤3:称取约7.5mg上述全固态三元正极材料,均匀铺在固态电池模具内的Li10GeP2S12电解质的一侧,放入直径为10mm的铝箔作为集流体,加压400MPa,保持5min。
其余同实施例2,不再赘述。
如图4所示,以锂铝合金为负极的全固态三元锂离子固态电池首圈充电容量为230.9mAh g-1,首圈放电容量为198.6mAh g-1,首圈库伦效率达到86%,且第二圈可逆容量达198.6mAh g-1,证明本发明设计的锂铝合金负极与硫系电解质兼容性良好,可以实现性能优异的的全固态锂离子电池。

Claims (4)

1.一种锂铝合金,其特征在于:由锂金属和铝金属合金化而成,锂金属和铝金属的物质的量比例为0.02:1~10:1。
2.权利要求1所述的锂铝合金制备工艺,其特征在于:包含以下步骤:
步骤1,预处理锂片,去除锂片表面杂质,至锂片表面光滑、平整、无杂质,裁所需质量的锂片备用;
步骤2,预处理铝箔,去除铝箔表面杂质,至铝箔表面光滑、平整、无杂质,裁所需质量的铝箔备用;
步骤3,取预处理后的锂片和预处理后的铝箔,置于加压模具中,施加压力,静置后得到所需锂铝合金。
3.权利要求1所述的锂铝合金在制备全固态锂电池中的应用。
4.一种全固态锂电池,包括正极层、负极层和电解质层,其特征在于:
所述正极层由活性物质、碳材料和固态电解质粉末制成,所述活性物质为硫、LiNixMnyCo1-x-yO2或LiNixMnyAl1-x-yO2,其中0<x<1、0<y<1;所述碳材料为科琴黑、乙炔黑、石墨、石墨烯、碳纳米管、Super P中的一种或几种;所述固态电解质为Li10GeP2S12、Li6PS5X或Li2S-P2S5中的一种或几种,其中X为Cl、 Br或I;
所述负极层由权利要求1所述的锂铝合金制成;
所述电解质层由Li10GeP2S12、Li6PS5X或Li2S-P2S5中的一种或几种制成,其中X为Cl、 Br或I。
CN202210190133.4A 2022-02-28 2022-02-28 一种以锂铝合金为负极的全固态锂电池的制备方法 Pending CN114665068A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210190133.4A CN114665068A (zh) 2022-02-28 2022-02-28 一种以锂铝合金为负极的全固态锂电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210190133.4A CN114665068A (zh) 2022-02-28 2022-02-28 一种以锂铝合金为负极的全固态锂电池的制备方法

Publications (1)

Publication Number Publication Date
CN114665068A true CN114665068A (zh) 2022-06-24

Family

ID=82027758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210190133.4A Pending CN114665068A (zh) 2022-02-28 2022-02-28 一种以锂铝合金为负极的全固态锂电池的制备方法

Country Status (1)

Country Link
CN (1) CN114665068A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115642292A (zh) * 2022-12-26 2023-01-24 中国科学院宁波材料技术与工程研究所 一种零应变全固态锂铝电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224377A (zh) * 2020-01-21 2021-08-06 本田技研工业株式会社 固体电池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224377A (zh) * 2020-01-21 2021-08-06 本田技研工业株式会社 固体电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115642292A (zh) * 2022-12-26 2023-01-24 中国科学院宁波材料技术与工程研究所 一种零应变全固态锂铝电池

Similar Documents

Publication Publication Date Title
CN108598390B (zh) 一种锂硫电池用正极材料的制备方法及锂硫电池
CN108417777B (zh) 一种多孔三元复合正极片及其制备方法及其应用
CN108321438B (zh) 全石墨锂硫电池及其制备方法
CN105742695B (zh) 一种锂离子电池及其制备方法
CN111370791A (zh) 一种锂硫电池化成方法及该化成方法制备的锂硫电池
CN113066988B (zh) 一种负极极片及其制备方法和用途
CN114665068A (zh) 一种以锂铝合金为负极的全固态锂电池的制备方法
CN105671363B (zh) 一种锑基合金材料及其应用
CN115285947B (zh) 一种钠离子电池用硒化物负极材料及其制备方法、钠离子电池
CN116190574A (zh) 一种适用于全固态电池的复合负极及其制备方法
CN110890540A (zh) 一种含氟一氧化硅负极材料及其制备方法和应用
Zhang et al. Low-cost batteries based on industrial waste Al–Si microparticles and LiFePO 4 for stationary energy storage
CN114023940A (zh) 钴氮掺杂碳材料在全固态锂硫电池正极中的应用及制备
CN111628166B (zh) 一种用于锂-硫电池的立体硫化锂电极及其制备方法
CN114005959A (zh) 锂金属负极的碘化锂保护层及其制备工艺和应用
CN114242961A (zh) 一种石墨烯/硅的氧化物包覆纳米硅复合材料及制备方法与应用
CN113328076A (zh) 一种碳包覆硫化铁量子点复合纳米片及其制备方法和应用
CN110923646A (zh) 复合型碳薄膜及其制备方法与应用
CN116247169B (zh) 一种含Se掺杂的CoS2为负极的钠离子电池制备方法
CN116741998B (zh) 一种锂金属电池负极界面修饰层的制备方法
CN111969243B (zh) 一种钠离子固态电池及其制备工艺
CN117525372B (zh) 一种基于金属有机骨架材料的锂电池负极材料
CN111261857B (zh) 一种钠离子电池用FePS3/NC复合负极材料及其制备方法、钠离子电池
CN116081627A (zh) 一种多孔SiOx@C复合材料的原位液相制备方法
CN117819554A (zh) Si@void@C结构的硅碳负极材料及其制备方法、应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination