CN114645273A - 被膜和具有被膜的复合材料 - Google Patents

被膜和具有被膜的复合材料 Download PDF

Info

Publication number
CN114645273A
CN114645273A CN202111409332.1A CN202111409332A CN114645273A CN 114645273 A CN114645273 A CN 114645273A CN 202111409332 A CN202111409332 A CN 202111409332A CN 114645273 A CN114645273 A CN 114645273A
Authority
CN
China
Prior art keywords
coating film
composite material
inorganic oxide
sus
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111409332.1A
Other languages
English (en)
Inventor
三宅庆治
石井仁士
三轮朋宏
西岛大贵
谷口贵章
佐佐木高义
坂井伸行
L·努尔蒂维亚彦托
柳泽亚衣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Toyota Motor Corp
Original Assignee
National Institute for Materials Science
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Toyota Motor Corp filed Critical National Institute for Materials Science
Publication of CN114645273A publication Critical patent/CN114645273A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/105Intermediate treatments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及被膜和具有被膜的复合材料。被膜,是层叠了无机氧化物的纳米片材的具有多层结构的被膜,其中,膜厚为一定以上。复合材料,具有金属材料、和在金属材料成膜的该被膜。

Description

被膜和具有被膜的复合材料
技术领域
本发明涉及被膜、特别是由无机氧化物构成的被膜和具有该被膜的复合材料。
背景技术
在钢铁、家电、建材、汽车等各领域中,要求各种金属材料具有耐蚀性(防锈性)和涂膜密合性。为了提高各种金属材料的耐蚀性,得到防锈效果提高了的材料,已知大量添加Cr等金属添加物以在该金属材料的表面形成钝化层(金属氧化物产生的氧化保护膜)。但是,添加了金属添加物的材料除了使金属材料的组成改变以外,成本也升高。
另一方面,为了提高各种金属材料的耐蚀性和涂膜密合性,广泛地采用对各种金属材料进行铬酸盐处理。但是,铬酸盐处理存在6价铬的毒性问题,需要排水处理设备,具有与污染控制相伴的环境相关的重大问题,因此,最近代替铬酸盐处理的非铬处理正在发展。
例如,日本特开2006-274385中公开了一种防锈皮膜组合物,其使用由通式:[M2+ 1- xM3+ x(OH)2][G·yH2O〕(式中,M2+为选自Mg、Fe、Zn、Cu或Co中的2价金属离子,M3+为选自Al、Fe、Cr或In中的3价金属离子,0.2≦x≦0.33,G为碳数至多5的饱和脂肪族单羧酸的Ca、Mg、Zn、Ni、Cu、Co、Mn、Al、Fe、Cr或Ce盐,y为比0大的实数。)表示的在水中剥离的层状复合氢氧化物。
日本特开2011-184800中公开了一种表面处理剂,其为用有机胺或有机铵将结晶性层状无机化合物纳米片材(nanosheet)化的表面处理剂,其特征在于,上述有机胺或有机铵为多官能性有机胺或多官能性有机铵化合物。
发明内容
但是,在根据关联技术的被膜和被膜的成膜方法中,为了获得所期望的耐蚀性,相对于成为成膜对象的各种金属材料,必须将被膜以大的被膜量进行被覆,与其相伴,膜厚也变厚,也担心金属材料的重量增加、进而成本增加。
本发明的方案提供一种耐蚀性高的被膜和具有该被膜的复合材料。
本发明人对用于解决上述课题的手段进行了各种研究,结果发现:通过对于各种金属材料以一定以上的膜厚被覆具有将具有亚nm~nm水平的膜厚的片状无机氧化物层叠的多层结构的被膜,从而各种金属材料的耐蚀性提高,完成了本发明。
(1)本发明的第1方案涉及被膜,其是具有将无机氧化物的纳米片材层叠的多层结构的被膜,其中,膜厚为20nm以上,上述无机氧化物的纳米片材彼此的层间距离为1.0nm以下。
(2)上述无机氧化物可为Ca2Nb3O10
(3)上述无机氧化物可具有钙钛矿型晶体结构。
(4)上述无机氧化物可为二氧化钛。
(5)本发明的第2方案涉及复合材料,其是具有金属材料和在上述金属材料上成膜的被膜的复合材料,其中,被膜为上述被膜。
(6)上述复合材料可具有耐热性。
根据本发明的方案,提供耐蚀性高的被膜和具有该被膜的复合材料。
附图说明
以下参照附图对本发明的例示性实施方式的特征、优点以及技术和工业重要性进行说明,其中相同的附图标记表示相同的要素,并且其中:
图1为示出比较例和实施例中的SUS的脱脂和酸洗的工艺的方案。
图2为示出用于对比较例和实施例中的经脱脂和酸洗的SUS采用LBL法使有机物层和二氧化钛纳米片材交替地层叠的工艺的方案。
图3为比较例和实施例的制造中使用的分散溶液中的二氧化钛纳米片材的AFM图像。
图4为实施例1的复合材料的截面的TEM图像。
图5为示出比较例1~3和实施例1~3中的被膜的膜厚和盐水喷雾试验后的侵蚀深度的关系的坐标图。
图6A为盐水喷雾试验后的比较例1的SUS的照片。
图6B为盐水喷雾试验后的实施例1的复合材料的照片。
图7为对于比较例4和实施例4的复合材料示出UV照射时间(横轴)与由XRD的衍射图案中的来自多层结构的峰位置(2θ)算出的无机氧化物的纳米片材彼此的层间距离(面间隔)(左纵轴)和XRD的衍射图案中的来自多层结构的峰位置(2θ)(右纵轴)的关系的坐标图。
图8为示出比较例4和实施例4的复合材料中的盐水喷雾试验后的侵蚀深度的坐标图。
图9为实施例5的复合材料的截面的TEM图像。
图10A为热处理和盐水喷雾试验后的比较例1的SUS的照片。
图10B为热处理和盐水喷雾试验后的实施例1的复合材料的照片。
图10C为热处理和盐水喷雾试验后的实施例5的复合材料的照片。
图10D为热处理和盐水喷雾试验后的实施例6的复合材料的照片。
图11为示出热处理和盐水喷雾试验后的比较例1的SUS以及实施例1、5和6的复合材料的腐蚀面积率的坐标图。
具体实施方式
以下对本发明的实施方式详细地说明。本发明的被膜和具有被膜的复合材料并不限定于下述实施方式,在不脱离本发明的主旨的范围内,本领域技术人员能够以实施了可进行的改变、改进等的各种方式来实施。
本发明的实施方式涉及具有将无机氧化物的纳米片材层叠的多层结构、膜厚为一定以上的被膜,以及具有金属材料和在金属材料上成膜的该被膜的复合材料。
作为无机氧化物,并无限定,例如可列举出二氧化钛(氧化钛)(组成式:Ti1-dO2(0≦d≦0.50),例如Ti0.87O2、Ti0.91O2、Ti1.00O2)、氧化钌(组成式:RuOd(1.8≦d≦2.2),例如RuO2.1)、铌酸钙(本说明书等中也称为“CNO”)(组成式:Ca2Nb3Oz(9≦z≦10),例如Ca2Nb3O10)、尖晶石(组成式:MgAl2O4)等。
无机氧化物可为无定形(非晶),也可为结晶质,还可为它们的混合物。例如,在无机氧化物为二氧化钛的情况下,二氧化钛可以是无定形的二氧化钛、具有纤铁矿结构的二氧化钛、具有锐钛矿型晶体结构的二氧化钛、具有金红石型晶体结构的二氧化钛、或这3者以上的混合物。例如,在无机氧化物为CNO的情况下,CNO可以是无定形的CNO、具有钙钛矿型晶体结构的CNO、或者它们的混合物。
优选在金属材料上形成了无机氧化物的被膜后能够对复合材料赋予耐热性的无机氧化物。其中,所谓耐热性,是指复合材料在高温、通常300℃~500℃、例如400℃下实施了6小时~10小时、例如8小时的热处理后仍具有优异的耐蚀性。作为这样的无机氧化物,并无限定,可列举出CNO、SNO(Sr2Nb3O10)。作为能够形成对复合材料赋予耐热性的被膜的无机氧化物,优选CNO、特别是具有钙钛矿型晶体结构的CNO。通过无机氧化物为CNO、特别是具有钙钛矿型晶体结构的CNO,从而本发明的实施方式的具有被膜的复合材料能够确保耐热性、即、在高温热处理后也确保优异的耐蚀性,减少腐蚀导致的腐蚀面积。
所谓无机氧化物的纳米片材,是指由无机氧化物构成的超薄膜形状的片材,其膜厚的平均值通常为0.1nm~5nm,优选为0.5nm~3.5nm的范围,其平面(纵和横)的大小的圆当量直径的平均值通常为0.1μm~50μm,优选为0.5μm~10μm的范围,具有高的二维各向异性。应予说明,无机氧化物的纳米片材的膜厚和平面的大小能够由例如原子力显微镜(AFM)的照片图像、作为成为对象的无机氧化物的纳米片材的5处的平均值测定。
本发明的实施方式的被膜具有层叠了无机氧化物的纳米片材的多层结构。就无机氧化物的纳米片材的层叠数而言,只要被膜的膜厚成为下述说明的膜厚的范围,则并无限定,下限值通常为3层,优选为5层,上限值通常为100层,优选为50层。
本发明的实施方式的被膜具有上述范围的无机氧化物的纳米片材的多层结构,从而能够形成膜厚薄的被膜,同时能够确保具有本发明的实施方式的被膜的复合材料的优异的耐蚀性。
本发明的实施方式的被膜的膜厚为20nm以上。应予说明,被膜的膜厚能够由例如透射型电子显微镜(TEM)的照片图像、作为成为对象的被膜的3处的平均值测定。
通过被膜的膜厚成为上述范围,从而能够控制具有本发明的实施方式的被膜的复合材料的侵蚀(腐蚀)深度(即,使侵蚀深度变浅),能够确保优异的耐蚀性。
再有,对本发明的实施方式的被膜的膜厚的上限值并无限定,如果被膜的膜厚过高,则复合材料的重量或成本上升,进而,从使被膜容易剥离的观点出发,通常为100nm,优选为50nm。
本发明的实施方式的被膜在无机氧化物的纳米片材与无机氧化物的纳米片材之间可具有由有机物构成的层(有机物层)。这种情况下,本发明的实施方式的被膜具有无机氧化物的纳米片材与有机物层交替地层叠的多层结构。
本发明的实施方式的被膜优选在无机氧化物的纳米片材与无机氧化物的纳米片材之间没有有机物层。
通过本发明的实施方式的被膜不具有有机物层,从而无机氧化物的纳米片材彼此的层叠变得更密,能够进一步控制具有本发明的实施方式的被膜的复合材料的侵蚀深度,确保更优异的耐蚀性。
无机氧化物的纳米片材彼此的层间距离、即无机氧化物的纳米片材与无机氧化物的纳米片材的层间距离为1.0nm以下。应予说明,无机氧化物的纳米片材彼此的层间距离例如能够作为由TEM或X射线衍射分析(XRD)的衍射图案中的来自多层结构的峰位置(2θ)的面间隔算出。
通过无机氧化物的纳米片材彼此的层间距离为上述范围,从而无机氧化物的纳米片材彼此的层叠变得更密,能够进一步控制具有本发明的实施方式的被膜的复合材料的侵蚀深度,确保更优异的耐蚀性。
用于将本发明的实施方式的被膜成膜的金属材料只要为在水溶液中稳定的固体物质,则基本上没有问题,在原理上对其大小也无限制。作为金属材料,并无限定,可列举出铁、铝等金属、不锈钢[SUS(铁、铬、镍)]等合金等。
本发明的实施方式的被膜和复合材料例如能够采用如下的方法制造:LBL(layer-by-layer,逐层自装)法,使采用脱脂和酸洗将加工油和垢除去了的金属材料浸渍于使有机物分散的悬浮液中,形成有机物层,然后洗涤、干燥,进而,浸渍于使无机氧化物的纳米片材分散的悬浮液中,在有机物层上形成由无机氧化物的纳米片材构成的层,然后洗涤、干燥,将该工序反复实施。
本发明的实施方式的被膜和复合材料中的有机物层或由无机氧化物的纳米片材构成的层的膜厚能够采用悬浮液的浓度、浸渍时间、浸渍温度等来调整,本发明的实施方式的被膜的总膜厚能够通过调整LBL法的重复次数来调整。
例如,在本发明的实施方式的被膜和复合材料中,在无机氧化物为二氧化钛纳米片材的情况下,本发明的实施方式的被膜和复合材料能够如下所述制造。
首先,将金属材料在二氧化钛纳米片材悬浮的溶胶和阳离子性聚合物溶液中交替地浸渍,反复进行该操作,从而使纳米片材和聚合物分别以亚nm~nm水平的膜厚吸附在金属材料上,使该成分交替地反复的多层膜累积。
作为实际的操作,将金属材料(1)浸渍于二氧化钛溶胶溶液→(2)用纯水洗涤→(3)浸渍于有机聚阳离子溶液→(4)用纯水洗涤,将这样的一连串的操作作为1个循环,将其反复进行必要的次数。作为有机聚阳离子,聚二甲基二烯丙基氯化铵(PDDA)、聚乙烯亚胺(PEI)、盐酸聚烯丙胺(PAH)等是适当的。
二氧化钛纳米片材具有负电荷,因此通过与具有正电荷的聚合物(聚二甲基二烯丙基氯化铵(PDDA)、聚乙烯亚胺(PEI)、盐酸聚烯丙胺(PAH)等)组合,能够在适当地处理过的金属材料表面上自组织化地交替地分别作为单层吸附。通过将该操作反复,能够采用LBL法构筑二氧化钛被膜。
就成为在金属材料上交替地层叠的原料的二氧化钛纳米片材而言,以纤铁矿型钛酸盐(CsxTi2-x/4O4(其中,0.5≦x≦1)、AxTi2-x/3Lix/3O4(其中,A=K、Rb、Cs;0.5≦x≦1))为代表,将三钛酸盐(Na2Ti3O7)、四钛酸盐(K2Ti4O9)、五钛酸盐(Cs2Ti5O11)等层状钛氧化物转换为氢型(HxTi2-x/4O4·nH2O、H4x/3Ti2-x/3O4·nH2O、H2Ti3O7·nH2O、H2Ti4O9·nH2O、H2Ti5O11·nH2O)后,在适当的胺等的水溶液中振荡,进行单层剥离而得到。
转换为该氢型的化学处理为将酸处理和胶体化处理组合的处理。即,使盐酸等酸水溶液接触具有层状结构的钛氧化物粉末,将生成物过滤、洗涤后,干燥,从而将在处理前在层间存在的碱金属离子全部置换为氢离子,得到氢型物质。
其次,将得到的氢型物质放入胺等的水溶液中搅拌,从而胶体化,成为溶胶溶液。此时,构成层状结构的层剥离直至成为1片1片。在该溶胶溶液中,构成母晶的层、即纳米片材一片片地在水中分散。纳米片材的膜厚依赖于其初始母晶的晶体结构,极薄,为1nm左右。另一方面,纵和横的尺寸为μm级,具有非常高的二维各向异性。
在层叠操作之前,将金属材料表面清洁。通常进行采用洗涤剂的洗涤、采用有机溶剂的脱脂、采用浓硫酸等的洗涤。接着,将金属材料浸渍于有机聚阳离子溶液中,吸附聚阳离子,从而将正电荷引入金属材料表面。为了稳定地进行以后的层叠,这是必要的。
上述吸附循环的工艺参数中,溶液的浓度、pH、浸渍时间在合成品质良好的被膜上很重要。二氧化钛溶胶的浓度优选为10重量%以下,特别优选为0.5重量%以下。另外,纳米片材具有在酸性侧凝集的倾向,因此pH需要为5以上,对于稳定的成膜而言,pH优选7以上。有机聚阳离子的浓度优选调整为10重量%以下,pH优选调整为与二氧化钛溶胶相同。浸渍时间需要为10分钟以上。如果比其短,则有可能没有充分地使纳米片材或聚合物吸附·被覆于基板表面。如果满足以上的条件,则能够非常稳定地进行制膜。
再有,在无机氧化物为二氧化钛纳米片材以外的无机氧化物的情况下,在上述的制造方法中,通过将二氧化钛纳米片材变为相应的无机氧化物的纳米片材,从而能够制造本发明的实施方式的被膜和复合材料。
例如,在无机氧化物为CNO的情况下,成为在金属材料上交替地层叠的原料的CNO纳米片材通过将层状钙钛矿型氧化物(KCa2Nb3O10)转换为氢型(HCa2Nb3O10·nH2O)后,在适当的胺等的水溶液中振荡,进行单层剥离而得到。
该转换为氢型的化学处理为将酸处理和胶体化处理组合的处理。即,使盐酸等酸水溶液接触具有层状结构的钙钛矿型氧化物粉末,将生成物过滤、洗涤后,干燥,从而将在处理前在层间存在的碱金属离子全部置换为氢离子,得到氢型物质。
其次,将得到的氢型物质放入胺等的水溶液中搅拌,从而胶体化,成为溶胶溶液。此时,构成层状结构的层剥离直至成为1片1片。在该溶胶溶液中,构成母晶的层、即纳米片材一片片地在水中分散。纳米片材的膜厚依赖于其初始母晶的晶体结构,极薄,为1nm左右。另一方面,纵和横的尺寸为μm级,具有非常高的二维各向异性。
在这样制造的本发明的实施方式的具有将无机氧化物的纳米片材层叠的多层结构的被膜和具有该被膜的复合材料中,无机氧化物的纳米片材与聚合物(即、有机物)以亚nm的膜厚反复,有机物成为了中间层。
在本发明的实施方式的被膜和复合材料中,无机氧化物的纳米片材彼此的层间距离例如能够通过将有机物层中所含的有机物的一部分或全部除去来调整,为了将有机物层中所含的有机物的一部分或全部除去,例如能够进行(i)采用由将紫外线(UV)照射一定时间(UV处理)而产生的臭氧进行的处理、或者(ii)有机物烧失的温度下的热处理。
作为紫外光源,能够使用UV灯、各种高压汞灯、氙灯等。
作为有机物的聚合物的除去速度依赖于被膜的组成·结构、紫外线强度、热处理温度等参数。
因此,(i)中的紫外线的照射条件、(ii)中的热处理条件例如能够一边采用XRD确认无机氧化物的纳米片材彼此的层间距离一边设定。
例如,在(i)中,紫外线作为波长300nm以下的光,以紫外线强度1mWcm-2照射约24小时。再有,在(i)中,对于有机物的分解,需要臭氧。不过,在无机氧化物为二氧化钛的情况下,不必供给臭氧,这是因为,对二氧化钛照射紫外线时,利用二氧化钛具有的光催化作用将有机物分解。
例如,在(ii)中,热处理通常在300℃~600℃下通常实施30分钟~2小时。
本发明的实施方式的被膜能够参照例如日本特开2001-270022、日本特开2002-265223这些文献中引用的文献等而制造。
另外,对于这样制造的本发明的实施方式的被膜和复合材料而言,在形成了无机氧化物的纳米片材后,能够进行各种处理,以使该无机氧化物具有所期望的晶体结构。
例如,在本发明的实施方式的被膜和复合材料中,在无机氧化物的纳米片材为二氧化钛的情况下,在形成了无机氧化物的纳米片材的多层结构后,通过在非活性气氛下、通常在600℃以上的温度下进行热处理,从而能够将无定形的二氧化钛转换为具有锐钛矿型晶体结构的二氧化钛,进而通过在900℃以上的温度下热处理,从而能够将具有锐钛矿型晶体结构的二氧化钛转换为具有金红石型晶体结构的二氧化钛。
例如,在本发明的实施方式的被膜和复合材料中,在无机氧化物的纳米片材为CNO的情况下,在形成了无机氧化物的纳米片材的多层结构后,在氢气氛下、高温例如400℃~600℃、例如500℃下进行处理(即,高温H2还原处理),从而能够抑制金属基材的氧化,并且使具有钙钛矿型晶体结构的CNO更致密地结合。
本发明的实施方式的被膜为金属材料成膜用的被膜,由于在金属材料上以一定的膜厚致密地成膜,因此能够提高金属材料的耐蚀性。因此,本发明的实施方式的复合材料具有耐蚀性,使用本发明的实施方式的复合材料制造的部件能够抑制长期使用引起的功能消失和外观的恶化。
以下对与本发明有关的几个实施例进行说明,并不意在将本发明限定于该实施例中所示的方案。
I.关于具有被膜的复合材料的耐蚀性
I-1.试样制备
<比较例1>
基于图1的工艺,得到了经脱脂和酸洗的SUS。以下记载详细情况。具体地,将经水洗的SUS(SUS409)在将水和油脂洗涤剂(碱性浸渍剂)混合以致油脂洗涤剂的浓度成为50g/L(通常调整到30g/L~70g/L)而制作的洗涤用水溶液中、在60℃(通常调整到40℃~90℃)下浸渍5分钟(通常调整到1分钟~10分钟),进而反复水洗3次,从而进行了脱脂(加工油除去)。
接着,将经脱脂的SUS在将酸洗涤剂(酸性除锈剂)混合以致酸洗涤剂的浓度成为500mL/L(通常调整到200mL/L以上,即使不与水混合而以原液使用也可以)而制作的洗涤用水溶液中、在55℃(通常调整到室温~80℃)下浸渍10分钟(通常调整到2分钟~20分钟),进而反复水洗3次,从而进行了酸洗(垢除去)。
<比较例2>
基于图1和图2中记载的表面处理(成膜)工艺,制造在作为金属材料的SUS上以成为1nm的方式使具有将作为无机氧化物的二氧化钛的纳米片材层叠的多层结构的被膜成膜的复合材料。再有,被膜的膜厚采用TEM图像测定。以下记载详细情况。
首先,基于图1,将SUS洗涤。具体地,将经水洗的SUS在将水和油脂洗涤剂(碱性浸渍剂)混合以致油脂洗涤剂的浓度成为50g/L而制作的洗涤用水溶液中、在60℃下浸渍5分钟,进而反复水洗3次,从而进行了脱脂。
接着,将经脱脂的SUS在将酸洗涤剂(酸性除锈剂)混合以致酸洗涤剂的浓度成为500mL/L而制作的洗涤用水溶液中、在55℃下浸渍10分钟,进而反复水洗3次,从而进行了酸洗(垢除去)。
其次,基于图2,在经脱脂和酸洗的SUS上采用LBL法使有机物层与二氧化钛纳米片材交替地层叠。
具体地,将经脱脂和酸洗的SUS在PDDA溶液(100g/L、pH=9)中浸渍15分钟,然后,将从PDDA溶液取出的SUS采用纯水洗涤,在室温下喷吹N2或空气的高压气体,从而得到在表面层叠了PDDA的SUS(PDDA/SUS)。
接着,使PDDA/SUS在二氧化钛纳米片材的分散溶液(Ti0.87O2、0.3g/L、pH=9)中浸渍20分钟,然后,从二氧化钛纳米片材的分散溶液取出,采用纯水洗涤3次,用N2或空气将附着于表面的水除去,从而得到在表面层叠了PDDA和二氧化钛的SUS(二氧化钛纳米片材/PDDA/SUS)。在图3中示出分散溶液中的二氧化钛纳米片材的AFM图像。
最后,对得到的二氧化钛纳米片材/PDDA/SUS照射48小时以上的紫外线(UV、254nm、1~1.2mW/cm2),从而进行UV处理,得到了比较例2的复合材料。
<比较例3>
除了在比较例2中,将图2中记载的成膜工艺中的UV处理前的工艺、即、将经脱脂和酸洗的SUS在PDDA溶液中浸渍后洗涤·干燥、然后进一步在二氧化钛纳米片材的分散溶液中浸渍后洗涤·干燥的工艺反复进行3次以外,与比较例2同样地操作,制造了在SUS上使具有将二氧化钛的纳米片材的层叠的多层结构的被膜以10nm成膜的复合材料。
<实施例1>
除了在比较例2中,将图2中记载的成膜工艺中的UV处理前的工艺、即、将经脱脂和酸洗的SUS在PDDA溶液中浸渍后洗涤·干燥、然后进一步在二氧化钛纳米片材的分散溶液中浸渍后洗涤·干燥的工艺反复进行5次以外,与比较例2同样地操作,制造了在SUS上使具有将二氧化钛的纳米片材层叠的多层结构的被膜以20nm成膜的复合材料。在图4中示出实施例1的复合材料的截面的TEM图像。
<实施例2>
除了在比较例2中,将图2中记载的成膜工艺中的UV处理前的工艺、即、将经脱脂和酸洗的SUS在PDDA溶液中浸渍后洗涤·干燥、然后进一步在二氧化钛纳米片材的分散溶液中浸渍后洗涤·干燥的工艺反复进行10次以外,与比较例2同样地操作,制造了在SUS上使具有将二氧化钛的纳米片材层叠的多层结构的被膜以30nm成膜的复合材料。
<实施例3>
除了在比较例2中,将图2中记载的成膜工艺中的UV处理前的工艺、即、将经脱脂和酸洗的SUS在PDDA溶液中浸渍后洗涤·干燥、然后进一步在二氧化钛纳米片材的分散溶液中浸渍后洗涤·干燥的工艺反复进行20次以外,与比较例2同样地操作,制造了在SUS上使具有将二氧化钛的纳米片材层叠的多层结构的被膜以40nm成膜的复合材料。
I-2.评价
<盐水喷雾试验>
对于比较例1的SUS以及比较例2~3和实施例1~3的复合材料,实施了盐水喷雾试验。就盐水喷雾试验而言,将JISK8150中规定的盐水喷雾、干燥的循环反复20次。
在图5中示出比较例1~3和实施例1~3中的被膜的膜厚与盐水喷雾试验后的侵蚀深度的关系。由图5可知,随着被膜的膜厚变厚,侵蚀深度变浅,特别是通过被膜的膜厚成为20nm以上,侵蚀深度变浅至约0.05mm。
在图6A中示出盐水喷雾试验后的比较例1的SUS的照片。在图6B中示出盐水喷雾试验后的实施例1的复合材料的照片。由图6A、6B可知,实施例1的复合材料与比较例1的SUS相比,具有良好的耐蚀性。
II.关于被膜中的无机氧化物的纳米片材彼此的层间距离产生的效果
II-1.试样制备
<比较例4>
在实施例1中,除了没有实施图2中记载的成膜工艺中的UV处理以外,与实施例1同样地操作,得到了在SUS上PDDA和二氧化钛的纳米片材交替地层叠的复合材料。
<实施例4>
与实施例1同样地操作,制造了在SUS上使层叠了二氧化钛的纳米片材的具有多层结构的被膜成膜的复合材料。
II-2.评价
<XRD>
对于比较例4和实施例4的复合材料实施了XRD。再有,对于实施例4的复合材料,在作为其制造过程的图2中记载的成膜工艺中的UV处理中,在照射12小时UV后、照射24小时UV后也分别实施了XRD。
图7中,对于比较例4(UV照射时间:0小时)和实施例4(UV照射时间:12小时、24小时和48小时)的复合材料,示出了UV照射时间(横轴)与由XRD的衍射图案中的来自多层结构的峰位置(2θ)算出的无机氧化物的纳米片材彼此的层间距离(面间隔)(左纵轴)和XRD的衍射图案中的来自多层结构的峰位置(2θ)(右纵轴)的关系。由图7可知,如果使UV照射时间为12小时以上,则XRD的衍射图案中的来自多层结构的峰位置的2θ向高角度侧移动,无机氧化物的纳米片材彼此的层间距离(面间隔)成为1.0nm以下。
<盐水喷雾试验>
对于比较例4和实施例4的复合材料,实施了盐水喷雾试验。就盐水喷雾试验而言,将JISK8150中规定的盐水喷雾、干燥的循环反复20次。
在图8中示出比较例4和实施例4的复合材料中的盐水喷雾试验后的侵蚀深度。由图8可知,实施例4的复合材料的侵蚀深度比比较例4的复合材料的侵蚀深度浅,因此,可知在复合材料中,通过使无机氧化物的纳米片材彼此的层间距离成为1.0nm以下,能够使侵蚀深度更浅。认为这是因为,无机氧化物的纳米片材彼此的层间距离成为1.0nm以下时,无机氧化物的纳米片材彼此的层叠变得更密,被膜的耐蚀性进一步提高。
III.关于具有被膜的复合材料的高温热处理后的耐蚀性
III-1.试样制备
<实施例5>
在实施例1中,除了将二氧化钛纳米片材的分散溶液(0.3g/L、pH=9)变为Ca2Nb3O10纳米片材的分散溶液(0.3g/L、pH=9)以外,与实施例1同样地操作,制造了在SUS上使具有将具有钙钛矿型晶体结构的Ca2Nb3O10的纳米片材层叠的多层结构的被膜以20nm成膜的复合材料。在图9中示出实施例5的复合材料的截面的TEM图像。
再有,成为在金属材料上交替地层叠的原料的Ca2Nb3O10纳米片材通过将层状钙钛矿型氧化物(KCa2Nb3O10)转换为氢型(HCa2Nb3O10·nH2O)后在适当的胺等的水溶液中振荡,进行单层剥离而得到。
转换为该氢型的化学处理为将酸处理和胶体化处理组合的处理。即,使盐酸等酸水溶液接触具有层状结构的钙钛矿型氧化物粉末,将生成物过滤、洗涤后,干燥,从而将在处理前在层间存在的碱金属离子全部置换为氢离子,得到了氢型物质。
其次,将得到的氢型物质放入胺等的水溶液中搅拌,从而胶体化,成为溶胶溶液。此时,构成层状结构的层剥离直至成为1片1片。在该溶胶溶液中,构成母晶的层、即纳米片材一片片地在水中分散。纳米片材的膜厚依赖于其初始母晶的晶体结构,极薄,为1nm左右。另一方面,纵和横的尺寸为μm级,具有非常高的二维各向异性。
<实施例6>
在实施例5中,除了对实施例5的复合材料进一步进行了高温H2还原处理(5%H2/Ar气氛下、500℃、6小时的处理)以外,与实施例5同样地操作,制造了在SUS上使具有将具有钙钛矿型晶体结构的Ca2Nb3O10的纳米片材层叠的多层结构的被膜以20nm成膜的复合材料。再有,Ca2Nb3O10的纳米片材的晶体结构采用XRD确认。
III-2.评价
<高温热处理后的盐水喷雾试验>
对于比较例1的SUS以及实施例1、5和6的复合材料,在400℃下热处理8小时后,实施了盐水喷雾试验。就盐水喷雾试验而言,将JISK8150中规定的盐水喷雾、干燥的循环反复20次。
在图10A~10D中示出热处理和盐水喷雾试验后的比较例1的SUS以及实施例1的复合材料、实施例5的复合材料和实施例6的复合材料的照片,在图11中示出热处理和盐水喷雾试验后的比较例1的SUS以及实施例1的复合材料、实施例5的复合材料和实施例6的复合材料的腐蚀面积率。所谓腐蚀面积率,为相对于各个试样的喷雾了盐水的面积的、腐蚀的面积的比例。由图10A~10D可知,实施例5和6的复合材料与比较例1和实施例1的复合材料相比,即使在高温热处理后也具有良好的耐蚀性。进而,由图11可知,实施例6的复合材料与实施例5的复合材料相比,在高温热处理后具有更良好的耐蚀性。如图11中所示那样,实施例1、5、6的腐蚀面积率为40%以下。认为这是因为,通过实施高温H2还原处理,能够使具有钙钛矿型晶体结构的CNO更致密地结合。

Claims (7)

1.被膜,是具有将无机氧化物的纳米片材层叠的多层结构的被膜,其特征在于,膜厚为20nm以上,所述无机氧化物的纳米片材彼此的层间距离为1.0nm以下。
2.根据权利要求1所述的被膜,其特征在于,所述无机氧化物为Ca2Nb3O10
3.根据权利要求1或2所述的被膜,其特征在于,所述无机氧化物具有钙钛矿型晶体结构。
4.根据权利要求1所述的被膜,其特征在于,所述无机氧化物为二氧化钛。
5.复合材料,是具有金属材料和在所述金属材料上成膜的被膜的复合材料,其特征在于,所述被膜为根据权利要求1~4的任一项所述的被膜。
6.根据权利要求5所述的复合材料,其特征在于,所述复合材料具有耐热性。
7.根据权利要求6所述的复合材料,其特征在于,在400℃下热处理8小时后,所述复合材料的腐蚀了的面积相对于喷雾了盐水的面积的比例为40%以下。
CN202111409332.1A 2020-12-21 2021-11-25 被膜和具有被膜的复合材料 Pending CN114645273A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020210927A JP7431150B2 (ja) 2020-12-21 2020-12-21 被膜及び被膜を有する複合材料
JP2020-210927 2020-12-21

Publications (1)

Publication Number Publication Date
CN114645273A true CN114645273A (zh) 2022-06-21

Family

ID=81991761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111409332.1A Pending CN114645273A (zh) 2020-12-21 2021-11-25 被膜和具有被膜的复合材料

Country Status (3)

Country Link
US (1) US20220195607A1 (zh)
JP (1) JP7431150B2 (zh)
CN (1) CN114645273A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010024718A1 (en) * 2000-03-24 2001-09-27 National Institute For Research In Inorganic Materials Titania ultrathin film and method for producing it
JP2003326637A (ja) * 2002-05-17 2003-11-19 National Institute For Materials Science マンガン酸ナノシート超薄膜およびその製造方法
CN1900360A (zh) * 2006-07-14 2007-01-24 西南大学 镁合金表面功能梯度膜制备方法
JP2011184273A (ja) * 2010-03-11 2011-09-22 National Institute For Materials Science 薄片状ペロブスカイト酸化物粒子を配合した有機溶媒分散体及びその製造方法並びにそれを用いたペロブスカイト酸化物薄膜及びその製造方法
JP2020169390A (ja) * 2020-06-19 2020-10-15 吉田 英夫 ワークの炭素皮膜被覆構造
CN111788328A (zh) * 2018-03-08 2020-10-16 日本Itf株式会社 复合被膜及复合被膜的形成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003072499A1 (ja) 2002-02-28 2005-06-16 独立行政法人科学技術振興機構 チタニアナノシート配向薄膜とその製造方法およびチタニアナノシート配向薄膜を備えた物品
US20080050573A1 (en) * 2004-07-16 2008-02-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Silicon Nanosheet , Nanosheet Solution and Process for Producing the Same, Nanosheet -Containing Composite, and Nanosheet Aggregate
JP5885150B2 (ja) 2011-05-19 2016-03-15 国立研究開発法人物質・材料研究機構 高誘電性ナノシート積層体、高誘電性ナノシート積層体、高誘電体素子、および高誘電体薄膜素子の製造方法
US20170092975A1 (en) * 2015-09-25 2017-03-30 Samsung Electronics Co., Ltd. Composite electrolyte film, electrochemical cell including the composite electrolyte film, and method of preparing the composite electrolyte film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010024718A1 (en) * 2000-03-24 2001-09-27 National Institute For Research In Inorganic Materials Titania ultrathin film and method for producing it
JP2003326637A (ja) * 2002-05-17 2003-11-19 National Institute For Materials Science マンガン酸ナノシート超薄膜およびその製造方法
CN1900360A (zh) * 2006-07-14 2007-01-24 西南大学 镁合金表面功能梯度膜制备方法
JP2011184273A (ja) * 2010-03-11 2011-09-22 National Institute For Materials Science 薄片状ペロブスカイト酸化物粒子を配合した有機溶媒分散体及びその製造方法並びにそれを用いたペロブスカイト酸化物薄膜及びその製造方法
CN111788328A (zh) * 2018-03-08 2020-10-16 日本Itf株式会社 复合被膜及复合被膜的形成方法
JP2020169390A (ja) * 2020-06-19 2020-10-15 吉田 英夫 ワークの炭素皮膜被覆構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中国腐蚀与防护学会: "《腐蚀与防护全书 热喷涂》", 31 December 1992, 北京:化学工业出版社, pages: 248 - 249 *

Also Published As

Publication number Publication date
US20220195607A1 (en) 2022-06-23
JP7431150B2 (ja) 2024-02-14
JP2022097787A (ja) 2022-07-01

Similar Documents

Publication Publication Date Title
Wu et al. Highly porous copper ferrite foam: a promising adsorbent for efficient removal of As (III) and As (V) from water
Rudnev et al. Aluminum-and titanium-supported plasma electrolytic multicomponent coatings with magnetic, catalytic, biocide or biocompatible properties
Nasalevich et al. Photocatalytic oxidation of ethanol and isopropanol vapors on cadmium sulfide
JP2006328501A (ja) 金属用化成処理液および処理方法
Ji et al. Multilayered TNAs/SnO2/PPy/β-PbO2 anode achieving boosted electrocatalytic oxidation of As (III)
WO2006051876A1 (ja) 金属酸化物膜の製造方法
KR20200003874A (ko) 다층 구조체 및 다층 구조체의 제조 방법
EP3523022A1 (en) Iron doped titanium dioxide nanocrystals and their use as photocatalysts
Nagai et al. Heat treatment in molecular precursor method for fabricating metal oxide thin films
JP5240813B2 (ja) 金属表面微細構造の作成方法
JP2004255684A (ja) 高品位チタニアナノシート超薄膜とその製造方法
Khan et al. Recent advances in the design and surface modification of titanium-based LDH for photocatalytic applications
JP7398111B2 (ja) 耐食性及び強度に優れたアルミニウム合金材及びその製造方法
JP4941980B2 (ja) 酸化タングステンナノシート、および、その製造方法
Absus et al. A facile synthesis of octahedral layered birnessite-type manganese oxide (OL-1) nanostructures with tremendous catalytic activity for methylene blue degradation
CN114645273A (zh) 被膜和具有被膜的复合材料
Liu et al. The reversible wetting transition between superhydrophilicity and superhydrophobicity of tremella-like CuxO@ CuxS nanosheets prepared by one-step anodization and the application of on-demand oil/water separation
JP5303483B2 (ja) オゾン分解除去用触媒、その製造方法、およびそれを用いたオゾン分解除去方法
Stepniowski et al. Nanostructured anodic films grown on copper: A review of fabrication techniques and applications
Rajoria et al. Preparation and characterization of novel SnO2-GO/TiO2NTs electrode for the degradation of electroplating effluents
JPH1018083A (ja) 酸化チタン被覆金属材料の製造方法
JP2002265223A (ja) チタニア超薄膜およびその製造方法
JP7356705B2 (ja) 防錆シートおよび防錆方法
US20210188655A1 (en) Methods of synthesizing metal oxide nanostructures and photocatalytic water treatment applications of same
JP2007330878A (ja) 複合光触媒粒子及びその製造方法並びに複合光触媒皮膜及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination