CN114628623A - 一种碳纳米管穿插的KFeSO4F材料的制法及应用 - Google Patents

一种碳纳米管穿插的KFeSO4F材料的制法及应用 Download PDF

Info

Publication number
CN114628623A
CN114628623A CN202210141854.6A CN202210141854A CN114628623A CN 114628623 A CN114628623 A CN 114628623A CN 202210141854 A CN202210141854 A CN 202210141854A CN 114628623 A CN114628623 A CN 114628623A
Authority
CN
China
Prior art keywords
kfeso
carbon nano
nano tube
kfsf
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210141854.6A
Other languages
English (en)
Other versions
CN114628623B (zh
Inventor
周小四
廖家英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN202210141854.6A priority Critical patent/CN114628623B/zh
Publication of CN114628623A publication Critical patent/CN114628623A/zh
Application granted granted Critical
Publication of CN114628623B publication Critical patent/CN114628623B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0497Chemical precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种碳纳米管穿插的KFeSO4F材料的制备方法及应用,该方法为:将碳纳米管酸化后分散于多元醇溶剂中,得到碳纳米管分散液;将铁源和氟化钾搅拌溶解于碳纳米管分散液中,得到混合液;使混合液经溶剂热反应生成沉淀;将沉淀在还原性气氛中煅烧后制得。本发明方法工艺简单,使用的原料绿色环保,制得的KFSF@CNTs材料具有优异的电化学性能,是一种有前景的钾离子电池正极材料。

Description

一种碳纳米管穿插的KFeSO4F材料的制法及应用
技术领域
本发明涉及一种钾离子电池正极材料的制备方法及应用,尤其涉及一种碳纳米管穿插的KFeSO4F材料的制法及应用。
背景技术
锂离子电池由于具有高能量密度、长周期寿命和高工作电压等优势,已成为电动汽车、便携式电子设备,乃至固定储能***等领域的主要电源。然而,锂资源的稀缺和高昂的价格不利于其在大规模储能体系中的应用。近年来,钾离子电池作为一种很有前途的替代品而引起了广泛的兴趣。钾与钠相较锂在自然界的含量更高,价格低廉,并且它们与锂离子电池的电化学机制相似。另外,钾的氧化还原电位(K/K+:–2.93V)比钠的(Na/Na+:–2.71V)更低,溶剂化的钾离子半径也更小,因此钾离子电池可能具有更高的能量密度,更高的倍率性能,在实际应用中也具有更大的潜力。
KFeSO4F因其原料廉价易得,同时具有三维的离子通道、高理论比容量、高工作电压和高结构稳定性而成为钾离子电池的理想正极材料。然而,KFeSO4F属于聚阴离子型化合物,其电子导电性较差。但由于硫酸盐的热稳定较差(超过450℃即分解),KFeSO4F在合成过程中难以进行高温煅烧,也无法通过此类方法来进行碳包覆。因此KFeSO4F材料的发展和应用受到实际比容量偏低、循环稳定性和倍率能力较差的限制。
传统的KFeSO4F材料合成是通过将FeSO4和KF球磨混合,然后在380℃左右的中低温煅烧4天获得。该反应耗费时间长,并且产物中往往存在一些杂相。近年来,研究人员开始尝试采用溶剂热方法合成KFeSO4F,通过FeSO4·7H2O和KF在乙二醇溶剂中溶剂热反应获得,该反应时间仅需6小时。随后通过固相球磨将KFeSO4F与高导电性的石墨烯机械混合,获得的复合材料相较于初始材料展现出更高的比容量,但循环和倍率性能的提升很有限。
因此,传统的固相方法中,FeSO4和KF的反应耗时长,反应产物还存在一些电化学非活性的杂相。其次,机械混合包碳方法会破坏KFeSO4F原有的微观形貌结构,并且材料与碳材料接触的紧密程度仍有待改善。
发明内容
发明目的:本发明的第一个目的是提供一种循环性能及倍率性能优异的碳纳米管穿插的KFeSO4F材料的制备方法;
本发明的第二个目的是提供一种上述碳纳米管穿插的KFeSO4F材料的制备方法制备的碳纳米管穿插的KFeSO4F材料的应用。
技术方案:本发明所述的碳纳米管穿插的KFeSO4F材料的制备方法,包括以下步骤:
(1)将碳纳米管酸化后分散于多元醇溶剂中,得到碳纳米管分散液;
(2)将铁源和氟化钾搅拌溶解于碳纳米管分散液中,得到混合液;
(3)使步骤(2)中的混合液经溶剂热反应生成沉淀;
(4)将步骤(3)中的沉淀在还原性气氛中煅烧,得到碳纳米管穿插的KFeSO4F材料。
其中,所述步骤(1)中的多元醇为乙二醇、二乙二醇、三乙二醇或甘油中的一种;以下乙二醇、二乙二醇、三乙二醇、甘油分别简写为EG、DEG、TEG、Gly。
其中,所述步骤(2)中,铁源、氟化钾、碳纳米管的质量比为1:0.21~0.23:0.036~0.072。
其中,所述步骤(1)中碳纳米管分散液的浓度为1.0~2.0g L-1
其中,步骤(1)中碳纳米管采用浓硫酸/浓硝酸的混合溶液酸化,所述浓硫酸/浓硝酸体积比优选为3:1。
其中,所述步骤(2)中铁源和氟化钾的浓度为0.1~0.2mol L-1;所述铁源为FeSO4·7H2O。
其中,所述步骤(3)中反应温度为150~180℃,反应时间2~6h。
其中,所述步骤(3)中溶剂热反应在搅拌的条件下进行;所述搅拌的方式为磁力搅拌,速率控制在1000~2000rpm。
其中,所述步骤(1)中碳纳米管的直径为10~50nm,长度为10~30μm。
其中,所述步骤(4)中还原性气氛为氢氩混合气,所述氢氩混合气中氢气体积百分数为5~10%。
其中,所述步骤(4)中煅烧的方法包括以下步骤:将步骤(3)所得沉淀干燥后置于管式炉中,以3~5℃min-1的速率升温至350~380℃后保持2~6h。
上述的碳纳米管穿插的KFeSO4F材料的制备方法制备得到碳纳米管穿插的KFeSO4F材料作为钾离子电池正极材料的应用。
本发明在合成过程中采用了低成本的多元醇作为溶剂,使FeSO4·7H2O和KF溶解,并在溶剂热过程中形成KFeSO4F沉淀原位生长于碳纳米管上,反应时间短,得到产物纯度高。通过不同溶剂调控,产物的形貌产生可控的变化。此外,该方法使用碳纳米管作为成核添加剂,可以诱导KFeSO4F的均匀成核生长,形成独特的形貌,工艺简单,原料绿色环保。
通过本发明方法可制得微米级的碳纳米管穿插的KFSF@CNTs材料,该材料有利于电子沿着碳纳米管在颗粒之间传输,大大促进材料容量的发挥,提高了KFSF@CNTs材料的循环稳定性和倍率性能。微米级颗粒也利于材料的堆积,获得较高的振实密度,对应于更高的体积能量密度。此外,通过该方法获得的KFeSO4F为KTiOPO4结构,具有三维的离子通道,可以加快离子传导,降低了钾离子电池在充放电过程中的能量势垒。
有益效果:本发明与现有技术相比,取得如下显著效果:本发明方法制得的KFSF@CNTs材料具有优异的电化学性能,作为钾离子电池的正极材料,KFSF@CNTs在0.2C倍率(1C=128mA g-1)时,提供110.9mAh g-1可逆容量,平均工作电压达到3.73V。在20C的大倍率下仍可提供69.6mAh g-1可逆容量,在1C倍率下1000次循环中表现出良好的循环稳定性,容量保持率为88.9%。此外,KFSF@CNTs//石墨的钾离子全电池在0.2C倍率下显示可逆容量为110.1mAh g-1,能量密度达到370Wh kg-1,300次循环后的容量保留率为81.1%。因此,这种碳纳米管穿插的材料作为高性能低成本正极材料具有很好的应用潜力。
附图说明
图1为本发明实施例1的KFSF@CNTs/DEG材料的XRD精修和晶体结构示意图;
图2为本发明实施例1的KFSF@CNTs/DEG材料的XPS全谱图;
图3为本发明实施例1的KFSF@CNTs/DEG材料的穆斯堡尔谱图;
图4为本发明实施例1的KFSF@CNTs/DEG材料的SEM图;
图5为本发明实施例1的KFSF@CNTs/DEG材料的TEM图和HRTEM图;
图6为本发明实施例1的KFSF@CNTs/DEG电极的循环伏安曲线图;
图7为本发明实施例1的KFSF@CNTs/DEG电极的充/放电曲线和dQ/dV曲线图;
图8为本发明实施例1的KFSF@CNTs/DEG和对比例1、2的材料在不同电流密度下的倍率性能图和充放电曲线图;
图9为本发明实施例1的KFSF@CNTs/DEG和对比例1、2的材料在0.2C倍率下的充放电曲线和循环性能图;
图10为本发明实施例1的KFSF@CNTs/DEG在1C倍率下的循环性能图;
图11为本发明实施例4的KFSF@CNTs/EG材料的SEM图;
图12为本发明实施例5的KFSF@CNTs/TEG材料的SEM图;
图13为本发明实施例6的KFSF@CNTs/Gly材料的SEM图;
图14为本发明对比例1的KFSF/DEG的SEM图;
图15为本发明对比例3的XRD谱图;
图16为本发明对比例4的XRD谱图。
具体实施方式
下面对本发明作进一步详细描述。
实施例1
KFSF@CNTs材料的制备:
(1)将1g直径为10~30nm,长度为20~30μm碳纳米管加入到20mL浓硝酸和60mL浓硫酸的混合溶剂中70℃加热搅拌8h。冷却后用400mL去离子水稀释,并通过抽滤分离;
(2)将50mg酸化后的碳纳米管加入到50mL二乙二醇溶剂中,超声1h获得浓度为1gL-1的均匀碳纳米管分散液;
(3)将1.39g FeSO4·7H2O和0.29g KF加入到碳纳米管分散液,搅拌0.5h充分溶解,两者的浓度均为0.1mol L-1
(4)将步骤(3)所得分散液加入到100mL水热釜中,置于油浴锅中加热到160℃,并恒温6h,期间保持磁力搅拌速度为1500rpm。待冷却至室温后,所得沉淀通过离心分离,并用丙酮洗3遍,最后80℃真空干燥;
(5)将步骤(4)所得沉淀置于含5vol%氢气的氢氩混合气管式炉中,以3℃min-1的速率升温至350℃煅烧2h,冷却后即为所得产物。由于反应溶剂二乙二醇为DEG,将该样品标记为KFSF@CNTs/DEG。
KFSF@CNTs/DEG材料的表征:
图1为KFSF@CNTs/DEG材料的XRD结构精修以及对应的晶体结构示意图,该图表明该材料是纯相的具有KTP结构的化合物;图2为KFSF@CNTs/DEG的XPS全谱图,该图显示K、Fe、S、O、F和C元素的存在;图3为KFSF@CNTs/DEG的穆斯堡尔谱图,该图证明其中Fe的价态为+2。
利用SEM、TEM以及HRTEM图分析所得KFSF@CNTs/DEG材料的尺寸、形貌和微观结构。图4a和4b为KFSF@CNTs/DEG材料的SEM图,图4a显示KFSF@CNTs/DEG的二次粒子为均匀的橄榄球状结构,粒径为2μm左右;图4b显示KFSF@CNTs/DEG由200nm左右的菱形一次粒子堆积而成,其中还穿插着一些碳纳米管。图5a和5b为KFSF@CNTs/DEG的TEM图,该图同样显示碳纳米管穿插于KFSF的一次粒子中;图5c为KFSF@CNTs/DEG的HRTEM图像,该图显示KFSF@CNTs/DEG中的(201)和(011)晶面的晶格间距均为0.562nm,且两晶面的夹角为74.5°。
电化学性能测试:
以1-甲基-2-吡咯烷酮作为溶剂,将本实施例制得的KFSF@CNTs/DEG与炭黑、聚偏二氟乙烯以70:20:10的质量比研磨混合均匀,将所得的均匀浆体涂抹在Al箔上并将其在80℃下真空干燥12h。使用1molL-1KPF6的碳酸乙烯(EC)和碳酸丙烯(PC)(体积比为1:1)溶液作为钾离子电池电解液,玻璃纤维和金属钾分别作为钾离子电池隔膜和对电极。电化学性能的测试采用CR2032电池。电池组装在充满氩气气氛的手套箱中进行,水和氧浓度均小于0.1ppm。电池的恒电流充放电测试在室温下,用蓝电CT2001A多通道电池测试***,在2.0–4.5V(vs.K+/K)固定电压范围内进行。具体的性能见图6至图10。
图6是KFSF@CNTs/DEG电极在2.0–4.5V(vs.K+/K)电压区间,扫描速率为0.1mV s-1时前三圈的循环伏安曲线,曲线基本重合,表明材料脱嵌钾可逆性良好;图7为KFSF@CNTs/DEG在2.0–4.5V(vs.K+/K)电压区间的充/放电曲线图,电流密度为0.2C,可逆比容量达到110.9mAh g-1,平均工作电压为3.73V,其中1C=128mA g-1,其中的dQ/dV曲线展示出四对氧化还原峰,与充放电曲线的四个电压平台对应;图8a为KFSF@CNTs/DEG与对比例1中无碳纳米管穿插的KFSF/DEG和对比例2中机械球磨混合碳纳米管的KFSF/DEG+5wt%CNTs在不同电流密度下的倍率性能图,可以看出,即使在20C的高电流密度下,KFSF@CNTs/DEG的容量仍能达到69.6mAh g-1,图8b为KFSF@CNTs/DEG在不同电流密度下的充放电曲线;图9a、图9b分别为KFSF@CNTs/DEG与对比例1的材料在0.2C电流密度下的充放电曲线和循环性能图,很明显,KFSF@CNTs/DEG的容量更高;图10为KFSF@CNTs/DEG在1C电流密度下的循环性能图,该图显示,KFSF@CNTs/DEG循环1000圈后,容量保持率达到88.9%。
实施例2
(1)将1g直径为10~30nm,长度为20~30μm碳纳米管加入到20mL浓硝酸和60mL浓硫酸的混合溶剂中70℃加热搅拌8h。冷却后用400mL去离子水稀释,并通过抽滤分离;
(2)将100mg酸化后的碳纳米管加入到50mL二乙二醇溶剂中,超声1h获得浓度为2gL-1的均匀碳纳米管分散液。
(3)将2.78g FeSO4·7H2O和0.58g KF加入到碳纳米管分散液,搅拌0.5h充分溶解,两者的浓度均为0.2mol L-1
(4)将步骤(3)所得分散液加入到100mL水热釜中,置于油浴锅中加热到160℃,并恒温6h,期间保持磁力搅拌速度为1500rpm。待冷却至室温后,所得沉淀通过离心分离,并用丙酮洗3遍,最后80℃真空干燥;
(5)将步骤(4)所得沉淀置于含5vol%氢气的氢氩混合气管式炉中,以3℃min-1的速率升温至350℃煅烧2h,冷却后即为所得产物。
按照与实施例1相同的方法对所制得的KFSF@CNTs材料进行结构表征与电化学性能测试,其结构表征结果与实施例1基本相同,其电化学性能测试结果见表1。
实施例3
(1)将1g直径为10~30nm,长度为20~30μm碳纳米管加入到20mL浓硝酸和60mL浓硫酸的混合溶剂中70℃加热搅拌8h。冷却后用400mL去离子水稀释,并通过抽滤分离;
(2)将100mg酸化后的碳纳米管加入到50mL二乙二醇溶剂中,超声1h获得浓度为2gL-1的均匀碳纳米管分散液。
(3)将1.39g FeSO4·7H2O和0.32g KF加入到碳纳米管分散液,搅拌0.5h充分溶解,两者的浓度分别为0.1和0.11mol L-1
(4)将步骤(3)所得分散液加入到100mL水热釜中,置于油浴锅中加热到160℃,并恒温6h,期间保持磁力搅拌速度为1500rpm。待冷却至室温后,所得沉淀通过离心分离,并用丙酮洗3遍,最后80℃真空干燥;
(5)将步骤(4)所得沉淀置于含5vol%氢气的氢氩混合气管式炉中,以3℃min-1的速率升温至350℃煅烧2h,冷却后即为所得产物。
按照与实施例1相同的方法对所制得的KFSF@CNTs材料进行结构表征与电化学性能测试,其结构表征结果与实施例1基本相同,其电化学性能测试结果见表1。
实施例4
(1)将1g直径为10~30nm,长度为20~30μm碳纳米管加入到20mL浓硝酸和60mL浓硫酸的混合溶剂中70℃加热搅拌8h。冷却后用400mL去离子水稀释,并通过抽滤分离;
(2)将50mg酸化后的碳纳米管加入到50mL乙二醇溶剂中,超声1h获得浓度为1g L-1的均匀碳纳米管分散液。
(3)将1.39g FeSO4·7H2O和0.29g KF加入到碳纳米管分散液,搅拌0.5h充分溶解,两者的浓度均为0.1mol L-1
(4)将步骤(3)所得分散液加入到100mL水热釜中,置于油浴锅中加热到160℃,并恒温6h,期间保持磁力搅拌速度为1500rpm。待冷却至室温后,所得沉淀通过离心分离,并用丙酮洗3遍,最后80℃真空干燥;
(5)将步骤(4)所得沉淀置于含5vol%氢气的氢氩混合气管式炉中,以3℃min-1的速率升温至350℃煅烧2h,冷却后即为所得产物。由于反应溶剂为EG,将该样品标记为KFSF@CNTs/EG。
按照与实施例1相同的方法对所制得的KFSF@CNTs/EG材料进行结构表征与电化学性能测试。其形貌如图11所示,KFSF@CNTs/EG的二次粒子也为均匀的橄榄球状结构,粒径为2μm左右,但一次粒子为无规则的颗粒,表面附着少量的碳纳米管。其电化学性能测试结果见表1。
实施例5
(1)将1g直径为10~30nm,长度为20~30μm碳纳米管加入到20mL浓硝酸和60mL浓硫酸的混合溶剂中70℃加热搅拌8h。冷却后用400mL去离子水稀释,并通过抽滤分离;
(2)将50mg酸化后的碳纳米管加入到50mL三乙二醇溶剂中,超声1h获得浓度为1gL-1的均匀碳纳米管分散液。
(3)将1.39g FeSO4·7H2O和0.29g KF加入到碳纳米管分散液,搅拌0.5h充分溶解,两者的浓度均为0.1mol L-1
(4)将步骤(3)所得分散液加入到100mL水热釜中,置于油浴锅中加热到160℃,并恒温6h,期间保持磁力搅拌速度为1500rpm。待冷却至室温后,所得沉淀通过离心分离,并用丙酮洗3遍,最后80℃真空干燥;
(5)将步骤(4)所得沉淀置于含5vol%氢气的氢氩混合气管式炉中,以3℃min-1的速率升温至350℃煅烧2h,冷却后即为所得产物。由于反应溶剂为TEG,将该样品标记为KFSF@CNTs/TEG。
按照与实施例1相同的方法对所制得的KFSF@CNTs/TEG材料进行结构表征与电化学性能测试。其形貌如图12所示,KFSF@CNTs/TEG为微米级的菱形颗粒,碳纳米管穿插于颗粒中。其电化学性能测试结果见表1。
实施例6
(1)将1g直径为10~30nm,长度为20~30μm碳纳米管加入到20mL浓硝酸和60mL浓硫酸的混合溶剂中70℃加热搅拌8h。冷却后用400mL去离子水稀释,并通过抽滤分离;
(2)将50mg酸化后的碳纳米管加入到50mL甘油溶剂中,超声1h获得浓度为1g L-1的均匀碳纳米管分散液。
(3)将1.39g FeSO4·7H2O和0.29g KF加入到碳纳米管分散液,搅拌0.5h充分溶解,两者的浓度均为0.1mol L-1
(4)将步骤(3)所得分散液加入到100mL水热釜中,置于油浴锅中加热到160℃,并恒温6h,期间保持磁力搅拌速度为1500rpm。待冷却至室温后,所得沉淀通过离心分离,并用丙酮洗3遍,最后80℃真空干燥;
(5)将步骤(4)所得沉淀置于含5vol%氢气的氢氩混合气管式炉中,以3℃min-1的速率升温至350℃煅烧2h,冷却后即为所得产物。由于反应溶剂为Gly,将该样品标记为KFSF@CNTs/Gly。
按照与实施例1相同的方法对所制得的KFSF@CNTs/Gly材料进行结构表征与电化学性能测试。其形貌如图13所示,KFSF@CNTs/Gly的二次粒子为长径比更大的橄榄球状结构,长度约为4μm,直径约为1μm,一次粒子为棒状颗粒,表面附着少量的碳纳米管。其电化学性能测试结果见表1。
对比实施例1,4,5,6的电化学性能,可知实施例1中在二乙二醇中制备的KFSF样品性能较优。尽管初始铁源、氟化钾、碳纳米管的质量比相同,均为1:0.21:0.036。但通过碳含量测试,实施例1,4,5,6样品的碳纳米管含量分别为4.6%,1.5%,2.1%,2.5%。这表明在二乙二醇溶剂中,KFSF更容易附着在碳纳米管上,使碳纳米管较多的沉淀下来。KFSF与碳纳米管更紧密的接触也使得该样品最终电化学性能更优。由图4、11可知,同样为橄榄球形,但是KFeSO4F在乙二醇中成核生长较快,不易沿着碳纳米管生长,因此,实施例4相比实施例1的样品中碳纳米管含量要少。由此可知,最终样品中的碳纳米管含量越高、KFSF与碳纳米管结合的越紧密,越有利于获得更优异的电化学性能。而本发明实施例1-4样品的橄榄球形貌与实施例5样品的菱形形貌、实施例6样品的棒状形貌相比,橄榄球形貌更易于材料的紧密堆积,更有利于提高体积能量密度。
对比例1
无碳纳米管穿插的KFSF/DEG的制备:
(1)将1.39g FeSO4·7H2O和0.29g KF加入到50mL二乙二醇,搅拌0.5h充分溶解,两者的浓度均为0.1mol L-1
(2)将步骤(1)所得分散液加入到100mL水热釜中,置于油浴锅中加热到160℃,并恒温6h,期间保持磁力搅拌速度为1500rpm。待冷却至室温后,所得沉淀通过离心分离,并用丙酮洗3遍,最后80℃真空干燥;
(3)将步骤(2)所得沉淀置于含5vol%氢气的氢氩混合气管式炉中,以3℃min-1的速率升温至350℃煅烧2h,冷却后即为所得产物。由于反应溶剂为DEG且无碳纳米管,将该样品标记为KFSF/DEG。
按照与实施例1相同的方法对所制得的KFSF/DEG材料进行结构表征与电化学性能测试。其形貌如图14所示,KFSF/DEG为微米级的菱形颗粒,对比KFSF@CNT/DEG形貌可知碳纳米管可作为成核剂,使KFSF沿着碳纳米管成核生长为更小的晶粒。图9a为KFSF/DEG与KFSF@CNT/DEG在不同电流密度下的倍率性能图,KFSF@CNT/DEG的可逆容量要高于KFSF/DEG;图8b为KFSF@CNTs/DEG和KFSF/DEG在0.2C电流密度下的循环性能图对比,该图显示,KFSF/DEG的循环稳定性远远落后于KFSF@CNTs/DEG;由以上测试可知,KFSF/DEG电化学性能远不如KFSF@CNTs/DEG。
对比例2
碳纳米管机械混合的KFSF样品的制备:
(1)将1.39g FeSO4·7H2O和0.29g KF加入到50mL二乙二醇,搅拌0.5h充分溶解,两者的浓度均为0.1mol L-1
(2)将步骤(1)所得分散液加入到100mL水热釜中,置于油浴锅中加热到160℃,并恒温6h,期间保持磁力搅拌速度为1500rpm。待冷却至室温后,所得沉淀通过离心分离,并用丙酮洗3遍,最后80℃真空干燥;
(3)将步骤(2)所得沉淀置于含5vol%氢气的氢氩混合气管式炉中,以3℃min-1的速率升温至350℃煅烧2h,随后冷却至室温;
(4)将步骤(3)所得产物与5wt%碳纳米管在行星式球磨机中,以500rpm球磨混合12h,所得样品标记为KFSF/DEG+5wt%CNTs。
按照与实施例1相同的方法对所制得的KFSF/DEG+5wt%CNTs材料进行电化学性能测试,结果见表1,如图8和图9所示,其电化学性能虽然较无碳纳米管的KFSF/DEG有所提升,但明显不如碳纳米管穿插的KFSF@CNTs/DEG样品。
对比例3
采用一元醇制备KFSF样品:
(1)将1g直径为10~30nm,长度为20~30μm碳纳米管加入到20mL浓硝酸和60mL浓硫酸的混合溶剂中70℃加热搅拌8h。冷却后用400mL去离子水稀释,并通过抽滤分离;
(2)将50mg酸化后的碳纳米管加入到50mL乙二醇单甲醚溶剂中,超声1h获得浓度为1g L-1的均匀碳纳米管分散液。
(3)将1.39g FeSO4·7H2O和0.29g KF加入到碳纳米管分散液,搅拌0.5h充分溶解,两者的浓度均为0.1mol L-1
(4)将步骤(3)所得分散液加入到100mL水热釜中,置于油浴锅中加热到160℃,并恒温6h,期间保持磁力搅拌速度为1500rpm。待冷却至室温后,所得沉淀通过离心分离,并用丙酮洗3遍,最后80℃真空干燥;
(5)将步骤(4)所得沉淀置于含5vol%氢气的氢氩混合气管式炉中,以3℃min-1的速率升温至350℃煅烧2h,冷却后即为所得产物。
按照与实施例1相同的方法对所制得的材料进行结构表征与电化学性能测试。其XRD结构表征如图15所示,可以发现该产物中明显存在K2SO4的杂相,主要是该钾盐在一元醇中的低溶解度造成的。其电化学性能测试结果见表1,明显不如其他多元醇中制得的样品。因此,采用多元醇制备是必要的。
对比例4
高原料浓度下所制得的KFSF@CNTs:
(1)将1g直径为10~30nm,长度为20~30μm碳纳米管加入到20mL浓硝酸和60mL浓硫酸的混合溶剂中70℃加热搅拌8h。冷却后用400mL去离子水稀释,并通过抽滤分离;
(2)将200mg酸化后的碳纳米管加入到50mL二乙二醇溶剂中,超声1h获得浓度为4gL-1的均匀碳纳米管分散液。
(3)将5.56g FeSO4·7H2O和1.16g KF加入到碳纳米管分散液,搅拌0.5h未能充分溶解,两者的理论浓度为0.4mol L-1
(4)将步骤(3)所得分散液加入到100mL水热釜中,置于油浴锅中加热到160℃,并恒温6h,期间保持磁力搅拌速度为1500rpm。待冷却至室温后,所得沉淀通过离心分离,并用丙酮洗3遍,最后80℃真空干燥;
(5)将步骤(4)所得沉淀置于含5vol%氢气的氢氩混合气管式炉中,以3℃min-1的速率升温至350℃煅烧2h,冷却后即为所得产物。
按照与实施例1相同的方法对所制得的KFSF@CNTs材料进行结构表征与电化学性能测试。其XRD结构表征如图16所示,可以发现该产物中存在FeSO4·H2O的杂相,主要是原料FeSO4·7H2O在高浓度下无法充分溶解,随后在溶剂热过程中脱水造成的。其电化学性能测试结果见表1,明显不如其他在所给浓度范围中制得的样品。
表1电化学性能数据
Figure BDA0003506679640000121

Claims (10)

1.一种碳纳米管穿插的KFeSO4F材料的制备方法,其特征在于,包括以下步骤:
(1)将碳纳米管酸化后分散于多元醇溶剂中,得到碳纳米管分散液;
(2)将铁源和氟化钾搅拌溶解于碳纳米管分散液中,得到混合液;
(3)使步骤(2)中的混合液经溶剂热反应生成沉淀;
(4)将步骤(3)中的沉淀在还原性气氛中煅烧,得到碳纳米管穿插的KFeSO4F材料。
2.根据权利要求1所述的碳纳米管穿插的KFeSO4F材料的制备方法,其特征在于,所述步骤(1)中的多元醇为乙二醇、二乙二醇、三乙二醇或甘油中的一种。
3.根据权利要求1所述的碳纳米管穿插的KFeSO4F材料的制备方法,其特征在于,所述步骤(2)中,铁源、氟化钾、碳纳米管的质量比为1:0.21~0.23:0.036~0.072。
4.根据权利要求1所述的碳纳米管穿插的KFeSO4F材料的制备方法,其特征在于,所述步骤(1)中碳纳米管分散液的浓度为1.0~2.0g L-1
5.根据权利要求1所述的碳纳米管穿插的KFeSO4F材料的制备方法,其特征在于,所述步骤(2)中铁源和氟化钾的浓度为0.1~0.2mol L-1
6.根据权利要求1所述的碳纳米管穿插的KFeSO4F材料的制备方法,其特征在于,所述步骤(3)中反应温度为150~180℃,反应时间2~6h。
7.根据权利要求1所述的碳纳米管穿插的KFeSO4F材料的制备方法,其特征在于,所述步骤(3)中溶剂热反应在搅拌的条件下进行。
8.根据权利要求1所述的碳纳米管穿插的KFeSO4F材料的制备方法,其特征在于,所述步骤(1)中碳纳米管的直径为10~50nm,长度为10~30μm。
9.根据权利要求1所述的碳纳米管穿插的KFeSO4F材料的制备方法,其特征在于,所述步骤(4)中还原性气氛为氢氩混合气,所述氢氩混合气中氢气体积百分数为5~10%。
10.一种权利要求1-9任一项所述的碳纳米管穿插的KFeSO4F材料的制备方法制备得到碳纳米管穿插的KFeSO4F材料作为钾离子电池正极材料的应用。
CN202210141854.6A 2022-02-16 2022-02-16 一种碳纳米管穿插的KFeSO4F材料的制法及应用 Active CN114628623B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210141854.6A CN114628623B (zh) 2022-02-16 2022-02-16 一种碳纳米管穿插的KFeSO4F材料的制法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210141854.6A CN114628623B (zh) 2022-02-16 2022-02-16 一种碳纳米管穿插的KFeSO4F材料的制法及应用

Publications (2)

Publication Number Publication Date
CN114628623A true CN114628623A (zh) 2022-06-14
CN114628623B CN114628623B (zh) 2023-05-23

Family

ID=81898823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210141854.6A Active CN114628623B (zh) 2022-02-16 2022-02-16 一种碳纳米管穿插的KFeSO4F材料的制法及应用

Country Status (1)

Country Link
CN (1) CN114628623B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120007020A1 (en) * 2008-10-23 2012-01-12 Universite De Picardie Jules Verne Method for producing inorganic compounds
CN102332580A (zh) * 2011-03-15 2012-01-25 中国科学院物理研究所 氟化硫酸铁盐化合物、制备方法及用途
US20130323590A1 (en) * 2011-02-15 2013-12-05 Sumitomo Chemical Company, Limited Sodium secondary battery electrode and sodium secondary battery
US20150303469A1 (en) * 2012-10-19 2015-10-22 Commissariat A L'Energie Atomique Et Aux Energie Alternatives Composite material comprising nano-objects, in particular carbon nano-objects, process for preparing same, and ink and electrode comprising this material
CN105958029A (zh) * 2016-06-24 2016-09-21 合肥国轩高科动力能源有限公司 一种锂离子电池负极复合材料钒酸锂/碳纳米管/碳的制备方法
CN106602008A (zh) * 2016-12-06 2017-04-26 广州汽车集团股份有限公司 磷酸锰锂正极材料的自组装制备方法以及磷酸锰锂正极材料
CN107230779A (zh) * 2017-05-03 2017-10-03 武汉理工大学 一种高温稳定的相变型氟硫酸铁锂电池材料的制备方法及电极片与锂离子电池的使用方法
US20170373306A1 (en) * 2016-06-22 2017-12-28 Sharp Kabushiki Kaisha Carbon-metal/alloy composite material, synthesis method, and electrode including same
CN109167047A (zh) * 2018-09-19 2019-01-08 哈尔滨工业大学 自支撑三维石墨烯/锡复合锂离子电池负极材料的制备方法
JP2020145061A (ja) * 2019-03-06 2020-09-10 学校法人東京理科大学 カリウムイオン電池用電解液、カリウムイオン電池、カリウムイオンキャパシタ用電解液、及び、カリウムイオンキャパシタ
CN113046768A (zh) * 2021-03-15 2021-06-29 东北师范大学 一种氟磷酸钒氧钾及其制备方法和应用、一种钾离子电池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120007020A1 (en) * 2008-10-23 2012-01-12 Universite De Picardie Jules Verne Method for producing inorganic compounds
US20130323590A1 (en) * 2011-02-15 2013-12-05 Sumitomo Chemical Company, Limited Sodium secondary battery electrode and sodium secondary battery
CN102332580A (zh) * 2011-03-15 2012-01-25 中国科学院物理研究所 氟化硫酸铁盐化合物、制备方法及用途
US20150303469A1 (en) * 2012-10-19 2015-10-22 Commissariat A L'Energie Atomique Et Aux Energie Alternatives Composite material comprising nano-objects, in particular carbon nano-objects, process for preparing same, and ink and electrode comprising this material
US20170373306A1 (en) * 2016-06-22 2017-12-28 Sharp Kabushiki Kaisha Carbon-metal/alloy composite material, synthesis method, and electrode including same
CN105958029A (zh) * 2016-06-24 2016-09-21 合肥国轩高科动力能源有限公司 一种锂离子电池负极复合材料钒酸锂/碳纳米管/碳的制备方法
CN106602008A (zh) * 2016-12-06 2017-04-26 广州汽车集团股份有限公司 磷酸锰锂正极材料的自组装制备方法以及磷酸锰锂正极材料
CN107230779A (zh) * 2017-05-03 2017-10-03 武汉理工大学 一种高温稳定的相变型氟硫酸铁锂电池材料的制备方法及电极片与锂离子电池的使用方法
CN109167047A (zh) * 2018-09-19 2019-01-08 哈尔滨工业大学 自支撑三维石墨烯/锡复合锂离子电池负极材料的制备方法
JP2020145061A (ja) * 2019-03-06 2020-09-10 学校法人東京理科大学 カリウムイオン電池用電解液、カリウムイオン電池、カリウムイオンキャパシタ用電解液、及び、カリウムイオンキャパシタ
CN113046768A (zh) * 2021-03-15 2021-06-29 东北师范大学 一种氟磷酸钒氧钾及其制备方法和应用、一种钾离子电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIEMIN DONG 等: "Graphene encircled KFeSO4F cathode composite for high energy density potassium-ion batteries" *
郭振东: "锂离子电池正极材料氟硫酸铁锂的制备及电化学性质研究" *

Also Published As

Publication number Publication date
CN114628623B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
Yang et al. Constructing SbOC bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries
Xie et al. Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance
Tong et al. One-pot solvothermal synthesis of hierarchical WO3 hollow microspheres with superior lithium ion battery anode performance
Zhang et al. Lysine-assisted hydrothermal synthesis of hierarchically porous Fe2O3 microspheres as anode materials for lithium-ion batteries
Sun et al. High rate lithium-ion batteries from hybrid hollow spheres with a few-layered MoS 2-entrapped carbon sheath synthesized by a space-confined reaction
CN102208631B (zh) 超长单晶v2o5纳米线/石墨烯正极材料及制备方法
Bai et al. A large-scale, green route to synthesize of leaf-like mesoporous CuO as high-performance anode materials for lithium ion batteries
Wan et al. Pillow-shaped porous CuO as anode material for lithium-ion batteries
WO2022032743A1 (zh) 一种CoTe2/MXene复合材料及其制备方法
Su et al. Preparation and electrochemical Li storage performance of MnO@ C nanorods consisting of ultra small MnO nanocrystals
Liu et al. Preparing micro/nano dumbbell-shaped CeO2 for high performance electrode materials
Zhang et al. Self-assembled Co3O4 nanostructure with controllable morphology towards high performance anode for lithium ion batteries
Li et al. FeMnO3 porous nanocubes/Mn2O3 nanotubes hybrids derived from Mn3 [Fe (CN) 6] 2· nH2O Prussian Blue Analogues as an anode material for lithium-ion batteries
CN112357956B (zh) 碳/二氧化钛包覆氧化锡纳米颗粒/碳组装介孔球材料及其制备和应用
CN114335681B (zh) 无机卤化物固态电解质、其制备方法、锂离子电池及应用
Wang et al. Enhanced cyclic performance of Cu2V2O7/reduced Graphene Oxide mesoporous microspheres assembled by nanoparticles as anode for Li-ion battery
Tao et al. FeS2 microsphere as cathode material for rechargeable lithium batteries
Luo et al. High performance composites of spinel LiMn 2 O 4/3DG for lithium ion batteries
Seok et al. Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility
Gu et al. Synthesis of 3D-hiearchical LiMPO 4 (M= Fe, Mn) microstructures as cathode materials for lithium-ion batteries
Zhang et al. Microwave-assisted synthesis of a novel CuC2O4∙ xH2O/Graphene composite as anode material for lithium ion batteries
Yang et al. Insights into electrochemical performances of NiFe2O4 for lithium-ion anode materials
Sun et al. Comparative study of electrochemical performance of SnO2 anodes with different nanostructures for lithium-ion batteries
CN107959024B (zh) 一种钠离子电池负极用片状Sb2Se3纳米晶的制备方法
CN108448085A (zh) 钛酸锂-碳纳米管复合材料及其制备方法、锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant