CN114583188A - 一种构建中性葡萄糖燃料电池电极的方法 - Google Patents

一种构建中性葡萄糖燃料电池电极的方法 Download PDF

Info

Publication number
CN114583188A
CN114583188A CN202210211364.9A CN202210211364A CN114583188A CN 114583188 A CN114583188 A CN 114583188A CN 202210211364 A CN202210211364 A CN 202210211364A CN 114583188 A CN114583188 A CN 114583188A
Authority
CN
China
Prior art keywords
electrode
agnws
pdms
glucose
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210211364.9A
Other languages
English (en)
Inventor
孙晶
田文帅
张瑜
蔡伍琪
徐志颖
郎明非
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN202210211364.9A priority Critical patent/CN114583188A/zh
Publication of CN114583188A publication Critical patent/CN114583188A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Composite Materials (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明属于电化学检测技术领域,公开了一种构建中性葡萄糖燃料电池电极的方法,以PDMS为基底,均匀涂抹银纳米线,采用计时电流法沉积金和循环伏安法沉积钯,从而制备出钯金合金纳米电极,研究其中性条件下对葡萄糖氧化性能的影响。本发明利用了PDMS柔韧性和银纳米线以及钯金合金的高比表面积、高导电性和高催化活性,制得的电极对葡萄糖的催化效果好、灵敏度高和选择性好,同时其性能稳定,检测限低,这些优异的性能使Pd‑Au‑AgNWs电极在电化学传感器领域具有广阔的应用前景。

Description

一种构建中性葡萄糖燃料电池电极的方法
技术领域
本发明属于电化学检测技术领域,具体涉及一种构建中性葡萄糖燃料电池电极的方法。
背景技术
燃料电池作为一种可将燃料的化学能通过电化学反应直接转化为电能能量的转化装置,由于其发电不受卡诺循环的限制,能量转换效率高等优点被人们广泛研究应用。葡萄糖是自然界中分布最广、最丰富的单糖,也是生物体内重要的营养物质和主要的热量来源之一,然而葡萄糖的化学性质非常稳定难以被电化学氧化,因此直接将葡萄糖作为燃料电池成为目前研究葡萄糖燃料电池的一个重大挑战。由于葡萄糖氧化酶对葡萄糖具有选择性,被广泛应用于酶促燃料电池,但是葡萄糖氧化酶容易受到温度、pH、有毒化学物质和湿度的影响,从而限制了电池的耐久性、稳定性和阻碍其进一步的发展,为了克服这些缺点,研究不使用酶的葡萄糖燃料电池成为必要。
近年来,非酶纳米电极因其低成本、高稳定性和高催化活性备受关注。电极或电极上的修饰材料代替酶起到电催化剂的作用,而且电极材料的高比表面积有利于离子扩散和质量扩散,从而提供更多的活性位点。同时纳米材料的低电阻和高导电性有利于促进电子的转移和电极表面的催化过程,使用纳米材料作为催化剂,很大程度上解决了酶的特异性和稳定性等问题。
现有的葡萄糖燃料电池电极主要以碱性为主,因为在中性条件下葡萄糖活性低,关于它的报道很少。LargeaudF等人使用密度泛函理论(DFT)计算解释了在碱性条件下电极容易催化葡萄糖的原因。并且,由于很多葡萄糖传感器采用的为非贵金属、金属氧化物等,此类材料在中性环境、酸性环境中,表现出很差的稳定性,因此对于中性条件、酸性条件下关于葡萄糖燃料电池的探索研究很少。
本专利申请发明人虽然已经在PDMS上通过涂AgNWs后沉积单一金属来检测或催化,但是以往申请的专利和发表的论文中制备的电极都不能应用于中性燃料电池。这是由于中性条件下存在大量的复杂的离子,Ag、Au等金属在中性条件下稳定性变差,耐用性变低。在葡萄糖中性燃料电池中,大多是以PB或者PBS作为支持电解质溶液。Guohui Chang课题组[1]制备了纳米银修饰聚苯胺纳米纤维,以玻碳电极为基底,所用的支持电解质溶液为0.2M PBS溶液,所用循环伏安法催化电位范围为-1.0V~0.2V。而本发明采用银纳米线为基底,相对于纳米银有更高的比表面积,且更利于电子的传输,采用电化学沉积法,均匀沉积制备了Pd-Au-AgNWs电极,所用支持电解质溶液为0.1M PBS溶液,所用循环伏安法催化电位范围为-0.7V~1V。Yu Bai课题组[2]通过电化学沉积制备Pt-Pb纳米线阵列电极,其中采用了计时电流法沉积Pd,所用支持溶液为Pb(NO3)2,所用循环伏安法催化电位范围为-0.6V~1V。而本发明采用循环伏安法沉积Pd,沉积电位为0.25~0.4V,扫速为25mV/s,所用循环伏安法催化电位范围为-0.7V~1V。Xing Qiao课题组[3]通过一步原位化学还原法制合成了合金结构Au-Co双金属纳米颗粒修饰氧化石墨烯,所采用的电化学方法为电化学发光法。本发明采用电化学沉积法,通过控制沉积方法和沉积的条件从而控制纳米形貌,均匀沉积制备了Pd-Au-AgNWs电极,所采用的电化学法为循环伏安法。Yipeng Sun课题组[4]制备了Pt-Pb合金电极,所采用的支持电解质溶液为0.1M PB溶液,所采用的循环伏安法催化电位为-0.4V~0.8V,扫速为5mV/s。本发明是通过电化学沉积法制备了枝状的纳米结构,均匀沉积制备了Pd-Au-AgNWs电极,所用支持电解质溶液为0.1M PBS溶液,采用循环伏安法催化电位范围为-0.7V~1V,扫速为50mV/s。这些电极纳米形貌多为一维的纳米线、纳米颗粒、纳米链等,而本发明的纳米为纳米枝状,电化学活性表面积更高,有更高的催化效率。Honghui Shu课题组[5]在玻碳电极上直接电沉积金纳米结构,采用线性扫描伏安法在100mv/s的扫速下催化葡萄糖。本发明是通过电化学沉积法制备了枝状的纳米结构,均匀沉积制备了Pd-Au-AgNWs电极,采用循环伏安法催化电位范围为-0.7V~1V,扫速为50mV/s。同时Honghui Shu课题组[6]也在石墨烯上采用电化学沉积制备了三维金纳米颗粒,采用循环伏安法催化电位范围为0.4V~1.5V,扫速为5mV/s。本发明是通过电化学沉积法制备了枝状的纳米结构,均匀沉积制备了Pd-Au-AgNWs电极,采用循环伏安法催化电位范围为-0.7V~1V,扫速为50mV/s。以上电极虽然通过电化学方法制备了三维的枝状或者球状的纳米结构,但是相比本发明催化电流低,缺乏钯的保护,稳定性差,重现性低。我们之前也申请过纳米银线上沉积金的专利,但是之前沉积金的量比较少,所以沉积出的金只具有纳米颗粒结构,不具有金枝结构,也没有沉积钯元素。因此之前专利中的纳米银金材料不具有在中性溶液催化葡萄糖的性质。
而且,传统电极对葡萄糖氧化性能易受pH的影响,高碱性、高酸性条件下都会限制电催化剂的性能和寿命。因此,构建一种中性葡萄糖燃料电池电极尤为重要。
发明内容
针对上述不足,本发明提供了一种构建中性葡萄糖燃料电池电极的方法,以PDMS为基底,均匀涂抹银纳米线,采用计时电流法沉积金和循环伏安法沉积钯,从而制备出钯金合金纳米电极,研究其中性条件下对葡萄糖氧化性能的影响,该方法对葡萄糖氧化具有较高的催化活性,同时制作成本低。
本发明的上述目的是通过以下技术方案实现的:
一种构建中性葡萄糖燃料电池电极的方法,该电极基底为PDMS,下部为AgNWs,Pd、Au在纳米线上层形成了独特的松枝状的纳米结构,以所构建Pd-Au-AgNWs电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极***,将该三电极***置于葡萄糖溶液和支持电解质中,设置电位为-0.7~1.0V,记录扫描速率为50mV s-1的30mM葡萄糖溶液的循环伏安曲线,并利用标准曲线法对电极电催化氧化葡萄糖溶液的控制过程进行分析。
进一步的,所述基底PDMS进行表面亲水层修饰。
进一步的,所述基底PDMS进行表面亲水层修饰的具体步骤如下:
(1)配制质量分数为3%的聚乙烯醇PVA与质量分数为5%的甘油Gly混合溶液;
(2)将PDMS基底浸泡于PVA和Gly混合溶液20min,去除表面多余的液体,再放入60℃的真空烘箱中干燥2h;
(3)重复步骤(2)两次;
(4)将PDMS基底放入100℃的真空烘箱中干燥2h,得到表面亲水修饰层的PDMS基片。
进一步的,所述支持电解质为0.1M PBS溶液。
进一步的,所述Pd-Au-AgNWs电极包括:在表面改性的PDMS上均匀涂抹AgNWs为导电涂层,纳米钯-金颗粒为电化学沉积层,所述纳米钯-金颗粒沉积在AgNWs上。
进一步的,所述Pd-Au-AgNWs电极的制备方法为:
(1)将100μL 3mg mL-1AgNWs溶液,均匀涂覆在修饰好的PDMS表面,待AgNWs晾干后,即制备出银纳米线柔性电极;
(2)采用三电极体系,有AgNWs涂层的PDMS作为工作电极,Ag/AgCl电极为参比电极,铂丝电极为对电极,放入盛有0.5mol/L的H2SO4和2mg/mL的KAuCl4的混合溶液中进行恒电位沉积纳米金颗粒,沉积电压为-0.5V,沉积时间为1500s,沉积完后,用超纯水轻微冲洗,室温下干燥,即制备出Au-AgNWs电极;
(3)采用三电极体系,Au-AgNWs电极作为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极,将三电极体系置于以pH=4的醋酸-醋酸钠为缓冲溶液,8mmol/L PdCl2溶液中,采用循环伏安沉积纳米钯,设置电化学工作站电沉积参数:电位0.25~0.4V,扫速为25mV/s,沉积完后用超纯水洗,室温下干燥,即制备出Pd-Au-AgNWs电极。
本发明以柔性PDMS为基底,进行亲水修饰后均匀涂抹AgNWs,通过电化学沉积法沉积了枝状纳米Pd-Au合金电极。枝状纳米结构显著地增加了催化剂的比表面积,并为葡萄糖的催化提供了更多的活性位点,有助于更清晰地了解葡萄糖氧化的机制。
本发明与现有技术相比的有益效果是:
(1)本发明开发了一种中性葡萄糖燃料电池电极,结合了银纳米线的优点,高比表面积可以扩大对葡萄糖的接触面积,沉积的金属形成了独特的松枝状纳米结构且分布均匀,增加了灵敏度,相比于其他燃料电池而言,该电极对葡萄糖具有较高的电化学响应和良好的长期稳定性。以葡萄糖为基准溶液时,表现出较高的催化性能和高选择性,且Pd-Au-AgNWs电极的制备方法简单,成本低,操作便捷、不易受环境等外界因素影响。
(2)本发明利用了PDMS柔韧性和银纳米线以及钯金合金的高比表面积、高导电性和高催化活性,制得的电极对葡萄糖的催化效果好、灵敏度高和选择性好,同时其性能稳定,检测限低,这些优异的性能使Pd-Au-AgNWs电极在电化学传感器领域具有广阔的应用前景。
(3)本发明电极可以在任意环境中使用,包括酸性、碱性和中性溶液;并且,相比于Pd-AuNWs电极和Pd-AgNWs电极,本发明具有更突出的优势,即Pd-Au-AgNWs电极在微观结构上相较于Pd-AuNWs电极和Pd-AgNWs电极,并不是简单的叠加,是金属间相互协同作用导致其具有更大的比表面积,并且微观纳米结构呈现更加均匀地分布,使得其电化学活性更高。
本发明构建了新型的Pd-Au-AgNWs多金属复合纳米线柔性电极,金、钯元素具有良好的稳定性,并且金钯结合的合金在中性条件下仍有良好的催化性能。过渡金属Pd与Au形成合金可以调节Pd电子结构,显著减低Pd的d带中心,减弱氧的吸附,提高电极的活性与抗毒化能力。
本发明所构建电池电极基底为PDMS,底部为纳米线,Pd、Au在纳米线上层形成了独特的松枝状的纳米结构。新型纳米结构电池电机比表面积大,电子传输速率快。电子可以从特殊的Pd-Au松枝状结构进入,通过下层AgNWs传输,因此拥有较高的稳定性与催化电流。
本发明以构建的Pd-Au-AgNWs电极为工作电极,Ag/AgCl电极为参比电极,铂丝电极为对电极组成的三电极体系,将该三电极体系置于葡萄糖溶液和支持电解质中,设置电位为-0.7~1.0V,记录葡萄糖的循环伏安曲线,并利用标准曲线法对电极电催化氧化葡萄糖溶液的控制过程进行分析。
本发明通过对比沉积多种金属例如Pd、Hg、Pb等,发现采用独特的沉积方法与沉积条件,通过电化学沉积Pd,Pd可以在Au-AgNWs上形成致密的薄膜,在Pd的保护下,可以有效地将Au、Ag保护起来,极大地提高了电极的稳定性,并且使其可以在中性条件下多次使用。
附图说明
图1为基于Pd-Au-AgNWs电极表面形貌图;
图2为基于Pd-AgNWs电极表面形貌图;
图3为基于Pd-AuNWs电极表面形貌图;
图4为葡萄糖溶液与空白PBS溶液循环伏安曲线对比图;
图5为Pd-Au-AgNWs、Pd-AgNWs和Pd-AuNWs电极电化学活性对比图;
图6为在0.1M PBS溶液中,不同浓度葡萄糖溶液的循环伏安曲线;
图7为在0.1M PBS溶液中,不同浓度的葡萄糖的标准曲线;
图8为Pd-Au-AgNWs电极稳定性曲线图。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案作进一步的说明,但本发明不以任何形式受限于实施例内容。实施例中所述实验方法如无特殊说明,均为常规方法;如无特殊说明,所述实验试剂和材料,均可从商业途径获得。
下述实施例中Pd-Au-AgNWs电极的制备方法为:
1.PDMS表面亲水层修饰。
具体步骤如下:
(1)配制3%(w%)聚乙烯醇PVA与5%(w%)甘油Gly混合溶液;
(2)将PDMS基底浸泡于PVA和Gly混合溶液20min,去除表面多余的液体,再放入60℃的真空烘箱中干燥2h;
(3)重复步骤(2)两次;
(4)将PDMS基底放入100℃的真空烘箱中干燥2h,得到表面亲水修饰层的PDMS基片。
2.电极制备。
具体步骤如下:
(1)将100μL 3mg mL-1AgNWs溶液,均匀涂覆在修饰好的PDMS表面,待AgNWs晾干后,即制备出银纳米线柔性电极。
(2)采用三电极体系,有AgNWs涂层的PDMS作为工作电极,Ag/AgCl电极为参比电极,铂丝电极为对电极,放入盛有0.5mol/L的H2SO4和2mg/mL的KAuCl4的混合溶液中进行恒电位沉积纳米金颗粒。沉积电压为-0.5V,沉积时间为1500s。沉积完后,用超纯水轻微冲洗,室温下干燥,即制备出Au-AgNWs电极。
(3)采用三电极体系,Au-AgNWs电极作为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极,将三电极体系置于以pH=4的醋酸-醋酸钠为缓冲溶液,8mmol/L PdCl2溶液中,采用循环伏安沉积纳米钯。设置电化学工作站电沉积参数:电位0.25~0.4V,扫速为25mV/s。沉积完后用超纯水洗,室温下干燥,即制备出Pd-Au-AgNWs电极。
基于Pd-Au-AgNWs电极表面形貌图如图1所示:电极上的纳米粒子颗粒大小和分布均匀,形成明显的树枝状,电催化性能尤为突出,稳定性好。如图2、图3所示,在微观结构上,相较于Pd-AuNWs电极和Pd-AgNWs电极,Pd-Au-AgNWs电极并不是简单的金属成分叠加,而是金属间相互协同作用导致其具有更大的比表面积,并且微观纳米结构呈现更加均匀地分布,使得其电化学活性更高。
实施例1葡萄糖溶液与空白PBS溶液循环伏安曲线对比
首先,将三电极体系置于pH为7.4浓度为0.1M的PBS溶液中,利用循环伏安法,在-0.7V~1.0V的电位范围内进行扫描,记录空白溶液的循环伏安曲线;然后,将三电极体系置于含有0.1M,pH为7.4的PBS溶液作为支持电解质的30mM的葡萄糖待测液中利用循环伏安法,在-0.7V~1.0V的电位范围内进行扫描,记录葡萄糖的循环伏安曲线。
结果如图4所示:50m V/s的扫描速度下测试Pd-Au-PDMS电极在30mM的葡萄糖的催化效果。从图中可以看出Pd-Au-AgNWs电极对葡萄糖催化电流为11900μA/cm2/mol。表明Pd-Au-AgNWs电极所组成的燃料能将生物能高效转换为电能。
实施例2
在0.1M PBS溶液中,Pd-Au-AgNWs电极、Pd-AgNWs电极和Pd-AuNWs电极分别在浓度为30mM葡萄糖溶液中进行循环伏安响应。
依次将三电极体系置于含有0.1M,pH为7.4的PBS溶液作为支持电解质的不同浓度的葡萄糖待测液中,在50mV/s的扫速下测定浓度为30mM葡萄糖的电流曲线,利用循环伏安法,在-0.7V~1.0V的电位范围内进行扫描。记录Pd-Au-AgNWs电极、Pd-AgNWs电极和Pd-AuNWs电极同浓度同扫速的葡萄糖的循环伏安曲线。
结果如图5所示:从图中可以看出,在葡萄糖溶液中,Pd-Au-AgNWs电极具有最高的电化学活性。相比于Pd-AgNWs电极和Pd-AuNWs电极,Pd-Au-AgNWs电极的峰电流密度极大提升,这是侧面可以佐证Pd、Au、Ag三种金属并不是简单的叠加,而是三种金属的协同效应导致效率极大提升。
实施例3
在0.1M PBS溶液中,Pd-Au-AgNWs电极对不同相同浓度的葡萄糖溶液中进行循环伏安响应。
依次将三电极体系置于含有0.1M,pH为7.4的PBS溶液作为支持电解质的不同浓度的葡萄糖待测液中,在50mV/s的扫速下测定浓度为10mM、20mM、30mM、40mM、50mM、60mM、70mM、80mM、90mM、100mM葡萄糖的电流曲线,利用循环伏安法,在-0.7V~1.0V的电位范围内进行扫描。记录不同浓度同扫速的葡萄糖的循环伏安曲线。
结果如图6、图7所示:从图中可以看出,随着浓度不断增大,纳米电极在葡萄糖溶液中的氧化电流也不断增大,氧化峰也不断升高,呈现出良好的催化葡萄糖的线性响应。因此,葡萄糖的氧化还原反应受扩散控制。在10~100mM的范围内两者之间还存在着良好的线性关系。
实施例4电极稳定性的测定
首先,将三电极体系置于含有pH为7.4浓度为0.1M的PBS溶液作为支持电解质的30mM葡萄糖待测液中,利用循环伏安法,在-0.7V~1.0V的电位下,记录从第一周到第四周的葡萄糖的循环伏安曲线。
结果如附图8所示:从第一周到第四周对同浓度的葡萄糖进行催化,得到的循环伏安曲线基本重合,葡萄糖氧化峰电流RSD为2.2%,所以电极的长期稳定性强,结构稳定,可以良好的应用于中性葡萄糖燃料电池。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (6)

1.一种构建中性葡萄糖燃料电池电极的方法,其特征是,该电极基底为PDMS,下部为AgNWs,Pd、Au在纳米线上层形成了松枝状纳米结构,以所构建Pd-Au-AgNWs电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极***,将该三电极***置于葡萄糖溶液和支持电解质中,设置电位为-0.7~1.0V。
2.如权利要求1所述的一种构建中性葡萄糖燃料电池电极的方法,其特征是,所述基底PDMS进行表面亲水层修饰。
3.如权利要求2所述的一种构建中性葡萄糖燃料电池电极的方法,其特征是,所述基底PDMS进行表面亲水层修饰的具体步骤如下:
(1)配制质量分数为3%的聚乙烯醇PVA与质量分数为5%的甘油Gly混合溶液;
(2)将PDMS基底浸泡于PVA和Gly混合溶液20min,去除表面多余的液体,再放入60℃的真空烘箱中干燥2h;
(3)重复步骤(2)两次;
(4)将PDMS基底放入100℃的真空烘箱中干燥2h,得到表面亲水修饰层的PDMS基片。
4.如权利要求1所述的一种构建中性葡萄糖燃料电池电极的方法,其特征是,所述支持电解质为0.1M PBS溶液。
5.如权利要求1所述的一种构建中性葡萄糖燃料电池电极的方法,其特征是,所述Pd-Au-AgNWs电极包括:在表面改性的PDMS上均匀涂抹AgNWs为导电涂层,纳米钯-金颗粒为电化学沉积层,所述纳米钯-金颗粒沉积在AgNWs上。
6.如权利要求1所述的一种构建中性葡萄糖燃料电池电极的方法,其特征是,所述Pd-Au-AgNWs电极的制备方法为:
(1)将100μL 3mg mL-1AgNWs溶液,均匀涂覆在修饰好的PDMS表面,待AgNWs晾干后,即制备出银纳米线柔性电极;
(2)采用三电极体系,有AgNWs涂层的PDMS作为工作电极,Ag/AgCl电极为参比电极,铂丝电极为对电极,放入盛有0.5mol/L的H2SO4和2mg/mL的KAuCl4的混合溶液中进行恒电位沉积纳米金颗粒,沉积电压为-0.5V,沉积时间为1500s,沉积完后,用超纯水轻微冲洗,室温下干燥,即制备出Au-AgNWs电极;
(3)采用三电极体系,Au-AgNWs电极作为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极,将三电极体系置于以pH=4的醋酸-醋酸钠为缓冲溶液,8mmol/L PdCl2溶液中,采用循环伏安沉积纳米钯,设置电化学工作站电沉积参数:电位0.25~0.4V,扫速为25mV/s,沉积完后用超纯水洗,室温下干燥,即制备出Pd-Au-AgNWs电极。
CN202210211364.9A 2022-03-04 2022-03-04 一种构建中性葡萄糖燃料电池电极的方法 Pending CN114583188A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210211364.9A CN114583188A (zh) 2022-03-04 2022-03-04 一种构建中性葡萄糖燃料电池电极的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210211364.9A CN114583188A (zh) 2022-03-04 2022-03-04 一种构建中性葡萄糖燃料电池电极的方法

Publications (1)

Publication Number Publication Date
CN114583188A true CN114583188A (zh) 2022-06-03

Family

ID=81774182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210211364.9A Pending CN114583188A (zh) 2022-03-04 2022-03-04 一种构建中性葡萄糖燃料电池电极的方法

Country Status (1)

Country Link
CN (1) CN114583188A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863538A (zh) * 2017-11-03 2018-03-30 大连大学 一种用于乙醇催化的电极及其应用
CN108717074A (zh) * 2018-05-23 2018-10-30 大连大学 一种纳米银线/氮掺杂多壁碳纳米管复合电极制备及应用该电极测定葡萄糖的方法
CN109298046A (zh) * 2018-10-23 2019-02-01 大连大学 一种用于乙醇催化的电极及其应用
CN113013421A (zh) * 2019-12-19 2021-06-22 大连大学 一种基于pdms的银纳米线/纳米金/纳米镍复合电极的制备方法及其应用
CN114583183A (zh) * 2022-03-04 2022-06-03 大连大学 一种酸性葡萄糖燃料电池电极及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863538A (zh) * 2017-11-03 2018-03-30 大连大学 一种用于乙醇催化的电极及其应用
CN108717074A (zh) * 2018-05-23 2018-10-30 大连大学 一种纳米银线/氮掺杂多壁碳纳米管复合电极制备及应用该电极测定葡萄糖的方法
CN109298046A (zh) * 2018-10-23 2019-02-01 大连大学 一种用于乙醇催化的电极及其应用
CN113013421A (zh) * 2019-12-19 2021-06-22 大连大学 一种基于pdms的银纳米线/纳米金/纳米镍复合电极的制备方法及其应用
CN114583183A (zh) * 2022-03-04 2022-06-03 大连大学 一种酸性葡萄糖燃料电池电极及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LONGLONG YAN ET AL.: "Efficient and poison-tolerant PdxAuy/C binary electrocatalysts for glucose electrooxidation in alkaline medium", 《APPLIED CATALYSIS B: ENVIRONMENTAL》, pages 268 - 274 *
MOHAMMAD ETESAMI ET AL: "Electrooxidation of Several Organic Compounds on Simply Prepared Metallic Nanoparticles: A Comparative Study", 《J. CHIN. CHEM. SOC.》, pages 377 - 382 *

Similar Documents

Publication Publication Date Title
WO2006022224A1 (ja) 燃料電池、燃料電池の使用方法、燃料電池用カソード電極、電子機器、電極反応利用装置および電極反応利用装置用電極
CN1229176C (zh) 葡萄糖分子氧化的方法及装置
CN103336043A (zh) 一种过氧化氢生物传感器的制备方法
Ahmadalinezhad et al. Synthesis and electrochemical study of nanoporous palladium–cadmium networks for non-enzymatic glucose detection
CN113013421A (zh) 一种基于pdms的银纳米线/纳米金/纳米镍复合电极的制备方法及其应用
CN114235924B (zh) 一种卷心菜结构的Pt/Au纳米合金修饰针灸针的无酶血糖传感器微电极及其制备
Li et al. Simple construction of an enzymatic glucose biosensor based on a nanocomposite film prepared in one step from iron oxide, gold nanoparticles, and chitosan
El-Nowihy et al. Tailor-designed Pd-Cu-Ni/rGO nanocomposite for efficient glucose electro-oxidation
KEUN et al. Immobilization of glucose oxidase on multi-wall carbon nanotubes for biofuel cell applications
CN114583183B (zh) 一种酸性葡萄糖燃料电池电极及其制备方法
CN114583188A (zh) 一种构建中性葡萄糖燃料电池电极的方法
Jin et al. High catalytic activity of Pt-modified Ag electrodes for oxidation of glycerol and allyl alcohol
Xu et al. A Layered Nano-structured Perovskite-type Oxide LaNiTiO3 for nonenzymatic catalytic detection of hydrogen peroxide
CN113130913B (zh) PtNPs/NiNPs/AgNWs/PET可塑电极及其在构建果糖燃料电池上的应用
CN112993266B (zh) 一种应用CuO-NiNPs/碳布可塑电极构建的构建淀粉燃料电池
CN113030203B (zh) 一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法
CN114023981A (zh) 复合催化级联反应在葡萄糖燃料电池中的应用
CN112886025A (zh) 一种果糖燃料电池及其构建方法
CN113036159A (zh) 一种基于pdms的柔性银纳米线掺杂石墨烯/纳米镍铂复合电极在燃料电池中的应用
CN113130950B (zh) 一种应用CuO/泡沫镍电极电催化氧化麦芽糖溶液构建麦芽糖燃料电池的方法
CN113013420A (zh) 一种具有抗毒化能力的果糖燃料电池的制备方法
CN113092552B (zh) 一种CuO-NiNPs/MFC电极构建乳糖燃料电池的方法
CN113036158B (zh) 一种阳极构建淀粉燃料电池的方法
CN113130916B (zh) 基于PdNPs/NiNPs/ITO电极构建乳糖燃料电池的方法
CN115000434B (zh) 具有功能载体的直接乙醇燃料电池电催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination