CN114583183A - 一种酸性葡萄糖燃料电池电极及其制备方法 - Google Patents

一种酸性葡萄糖燃料电池电极及其制备方法 Download PDF

Info

Publication number
CN114583183A
CN114583183A CN202210211359.8A CN202210211359A CN114583183A CN 114583183 A CN114583183 A CN 114583183A CN 202210211359 A CN202210211359 A CN 202210211359A CN 114583183 A CN114583183 A CN 114583183A
Authority
CN
China
Prior art keywords
electrode
pdms
agnws
solution
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210211359.8A
Other languages
English (en)
Other versions
CN114583183B (zh
Inventor
孙晶
田文帅
高杰
宋雪
青澳
郎明非
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN202210211359.8A priority Critical patent/CN114583183B/zh
Publication of CN114583183A publication Critical patent/CN114583183A/zh
Application granted granted Critical
Publication of CN114583183B publication Critical patent/CN114583183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明属于燃料电池电极领域,公开了一种酸性葡萄糖燃料电池电极及其制备方法。所述电极由三电极***置于带有支持电解质的葡萄糖溶液构成,其中所述三电极***中Pd‑Au‑AgNWs电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极,所述支持电解质为H2SO4溶液,制备方法包括使用PDMS制作基底芯片、PDMS亲水改性、制备Au‑PDMS复合电极、制备Pd‑Au‑AgNWs电极、制备酸性葡萄糖燃料电池电极。本发明利用了PDMS柔韧性和银纳米线以及钯金合金的高比表面积、高导电性和高催化活性,制得的电极对葡萄糖的催化效果好、灵敏度高和选择性好,同时其性能稳定,检测限低,这些优异的性能使Pd‑Au‑AgNWs电极在电化学传感器领域具有广阔的应用前景。

Description

一种酸性葡萄糖燃料电池电极及其制备方法
技术领域
本发明属于燃料电池电极领域,具体涉及一种酸性葡萄糖燃料电池电极及其制备方法。
背景技术
进入到21世纪,人类面临是不断污染的环境问题,一方面,大量产生有害气体,对人类身体健康造成威胁。另一方面,还是燃料的应用增加,开采难度增大,这使提高燃料的利用率成为重要的事情,而燃料电池是一种能量转化装置,它是原电池工作原理,等温的把燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应。燃料电池主要由四部分组成,即阳极、阴极、电解质和外部电路。燃料气由阳极通入,燃料气在阳极上放出电子,电子经外电路传导到阴极,即氧化气阴极通入的场所,并与氧化气结合生成离子。离子在电场作用下,通过电解质迁移到阳极上,与燃料气反应,构成回路,产生电流。同时,由于本身的电化学反应以及电池的内阻,燃料电池还会产生一定的热量。
现有的葡萄糖燃料电池电极主要以碱性为主,因为在酸性条件下葡萄糖活性低,关于它的报道很少。LargeaudF等人使用密度泛函理论(DFT)计算解释了在碱性条件下电极容易催化葡萄糖的原因。并且,由于很多葡萄糖传感器采用的为非贵金属、金属氧化物等,此类材料在中性环境、酸性环境中,表现出很差的稳定性,因此对于中性条件、酸性条件下关于葡萄糖燃料电池的探索研究很少。本发明构建了新型的Pd-Au-AgNWs多金属复合纳米线柔性电极,金、钯元素具有良好的抗酸性,并且金钯结合的合金在酸性条件下仍有良好的催化性能。过渡金属Pd与Au形成合金可以调节Pd电子结构,显著减低Pd的d带中心,减弱氧的吸附,提高电极的活性与抗毒化能力。
本专利发明人虽然已经在PDMS上通过涂AgNWs后沉积金属来检测或催化,但是以往申请的专利和发表的论文中制备的电极都不能应用于酸性燃料电池。这是由于酸性条件下存在大量的H+,Ag等金属在酸性条件下会溶解,导致稳定性变差,耐用性变低。目前大多数酸性燃料电池多是以醇类为主,例如甲醇、乙醇等,而本发明是以无毒无害绿色的葡萄糖作为催化物。张世宏课题组[1]制备了一种酸性介质燃料电池,所采用的材料为AlTiSiN工作层,主要针对双极板防护涂层进行发明创新,本专利所采用的是Au、Pd,性质更加稳定,并且与本专利直接制备耐腐蚀的电极相差较大;Yan H课题组[2]通过组装的方法负载在石墨烯上氮化物纳米颗粒,随后将其作为载体负载PtNPs从而制备电极,所用的溶液为甲醇溶液,采用循环伏安法催化电位范围为-0.2V~1V,而本发明采用电化学沉积法,均匀沉积制备了Pd-Au-AgNWs电极,制备方法相较于其更简单易操作,所用支持溶液为葡萄糖溶液,采用循环伏安法催化电位范围为-0.7V~1V;Huang L课题组[3]通过一步湿化学法合成了具有可调控形态的超薄PtRu纳米晶体,所用溶液为甲醇溶液,本发明采用电化学沉积法,均匀沉积制备了Pd-Au-AgNWs电极,通过控制沉积方法和沉积的条件从而控制纳米形貌,所用支持溶液为葡萄糖溶液;ZhangY课题组[4]制备了一种一维分层PtFe合金纳米结构,所用的溶液为甲醇溶液,采用循环伏安法催化电位范围为-0.3V~0.9V,本专利是通过电化学沉积法制备了枝状的纳米结构,均匀沉积制备了Pd-Au-AgNWs电极,比表面积更高,更容易催化,所用支持溶液为葡萄糖溶液,采用循环伏安法催化电位范围为-0.7V~1V;Yang L课题组[5]通过使用预先制备的Te PbNWs合成三元Te Pb Pt合金纳米管催化剂,其中Pb被用作牺牲模板和还原剂来保护Te、Pt,所用的溶液为甲醇溶液。而本科专利通过电化学沉积Pd,形成致密的薄膜,从而保护Au、AgNWs,相比于其更容易保护电极,提高电极稳定性,所用支持溶液为葡萄糖溶液。Xia Cao课题组[6]通过水基温和化学法合成了一系列新型的双金属PtCu纳米链,采用循环伏安法催化电位范围为-0.3V~0.9V,Hui Min课题组[7]通过化学还原法制备了PtxSn/MWCNTs电极,采用循环伏安法催化电位范围为-0.5V~0.9V,以上制备的两种电极虽然应用于酸性葡萄糖中,但是相比本发明催化电流低,催化效果差。本发明采用电化学沉积法,均匀沉积制备了Pd-Au-AgNWs电极,方法简单,纳米形貌可以调控,并且稳定性高,采用循环伏安法催化电位范围为-0.7V~1V。以上这些电极大多是应用于甲醇酸性燃料电池,并且都是采用化学法制备,并不能良好地应用于酸性葡萄糖的催化。
目前以葡糖糖为代表的糖类燃料电池的研究,具有较好的催化活性以及应用性,目前生物酶常用于葡萄糖的氧化反应,以制备出较好的氧化活性的燃料电池电极,但酶的生存对环境要求极高,在强酸强碱条件下会失去活性,在高温以及低温条件下也会失活,因此它在燃料电池方面受到限制,在氧化葡萄糖时就不能提供稳定的电流。因此,构建一种酸性葡萄糖燃料电池电极尤为重要。
上文引用的参考文献如下:
[1]张世宏,一种酸性介质燃料电池双极板防护涂层及其制备方法.安徽省,安徽工业大学,2017-01-08.
[2]Yan H,Tian C,Sun L,et al.Small-sized and high-dispersed WN from[SiO4(W3O9)4]4-clusters loading on GO-derived graphene as promising carriersfor methanol electro-oxidation[J].Energy&Environmental Science,2014,7(6):1939-1949.
[3]Huang L,Zhang X,Wang Q,et al.Shape-control of Pt–Ru nanocrystals:tuning surface structure for enhanced electrocatalytic methanol oxidation[J].Journal oftheAmerican Chemical Society,2018,140(3):1142-1147.
[4]Zhang Y,Gao F,Song T,et al.Novel networked wicker-like PtFenanowires with branch-rich exteriors for efficient electrocatalysis[J].Nanoscale,2019,11(33):15561-15566.
[5]Yang L,Li G,Ge J,et al.TePbPt alloy nanotube as electrocatalystwith enhanced performance towards methanol oxidation reaction[J].Journal ofMaterials ChemistryA,2018,6(35):16798-16803.
[6]Cao X,Wang N,Jia S,et al.Detection of glucose based on bimetallicPtCu nanochains modified electrodes[J].Analytical chemistry,2013,85(10):5040-5046.
[7]Min H,Wu W,Wu H,et al.Synthesis of PtxSn/MWCNTs and theirApplication in Non-enzymatic Glucose and Hydrogen Peroxide Sensors[J].Electroanalysis,2017,29(3):730-738.
发明内容
为了克服现有技术的不足,本发明提供一种酸性葡萄糖燃料电池电极及其制备方法,制备出的酸性葡萄糖燃料电池电极使用安全、对环境友好、可以提供稳定电流且适应环境的能力强,同时制作成本较低。
本发明的上述目的是通过以下技术方案实现的:一种酸性葡萄糖燃料电池电极,所述电极由三电极***置于带有支持电解质的葡萄糖溶液构成,其中所述三电极***中Pd-Au-AgNWs电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极,所述Pd-Au-AgNWs电极底部为PDMS,下部为AgNWs,上部为Pd、Au形成的松枝状纳米结构,所述支持电解质为H2SO4溶液,pH为0.699。
上述酸性葡萄糖燃料电池电极的制备方法,包括以下步骤:
1.使用PDMS制作基底芯片:向放入硅片的表面皿中浇注内含塑化剂与固化剂的PDMS混合溶液,用真空泵抽尽气泡后,放入烘箱中固化,固化后剥离、切割成大小一致的固体PDMS芯片;
2.PDMS亲水改性:使用臭氧清洗机清洗PDMS芯片表面,处理后的PDMS芯片放入含有聚乙烯醇与甘油的混合溶液浸泡,浸泡后取出去除表面多余液体进行干燥,重复步骤2三到五次;
3.制备Au-PDMS复合电极:取AgNWs溶液均匀涂覆在步骤2多次改性后的PDMS芯片表面,待AgNWs晾干后,将有AgNWs涂层的PDMS作为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极,在H2SO4和KAuCl4的混合溶液中进行恒电位沉积纳米金颗粒,完成电化学沉积后,将制备好的Au-PDMS复合电极取下,使用超纯水冲洗洗去电极表面残留的沉积溶液并干燥;
4.制备Pd-Au-AgNWs电极:将完成并干燥的Au-PDMS电极作为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极,将三电极体系置于醋酸-醋酸钠为缓冲溶液的PdCl2溶液中,采用循环伏安法在Au-AgNWs上沉积纳米钯,沉积完成后取出,超纯水冲洗,氮气吹干;
5.制备酸性葡萄糖燃料电池电极:将步骤4制备的Pd-Au-AgNWs电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极***,将所述三电极***置于带有支持电解质的葡萄糖溶液组成酸性葡萄糖燃料电池电极,所述支持电解质为H2SO4溶液,pH为0.699。
进一步的,所述步骤1具体为:向放入硅片的表面皿中浇注内含塑化剂与固化剂的PDMS混合溶液,其中塑化剂与固化剂质量比为9:2,用真空泵抽尽气泡后,放入烘箱中固化2h,固化后剥离、切割成大小一致的固体PDMS芯片,芯片规格为0.5×0.8cm2
进一步的,所述步骤2具体为:使用臭氧清洗机清洗PDMS芯片表面,处理后的PDMS芯片放入含有4wt%聚乙烯醇与7wt%甘油的混合溶液浸泡20min,浸泡后取出去除表面多余液体,然后在60~100℃下干燥2h。
进一步的,所述步骤3具体为:取AgNWs溶液均匀涂覆在步骤2多次改性后的PDMS芯片表面,待AgNWs晾干后,将有AgNWs涂层的PDMS作为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极,采用辰华CHI660E型电化学工作站,在10mM H2SO4和8mg/mL KAuCl4的混合溶液中进行恒电位沉积纳米金颗粒。设定沉积电压为-0.3V,沉积时间为800s,完成电化学沉积后,将制备好的Au-PDMS复合电极取下,使用超纯水冲洗洗去电极表面残留的沉积溶液并室温干燥。
进一步的,所述步骤4具体为:将完成并干燥的Au-PDMS电极作为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极,将三电极体系置于pH=4的0.1M醋酸-醋酸钠为缓冲溶液的5mM PdCl2溶液中,采用循环伏安法在Au-AgNWs上沉积纳米钯,沉积电位窗为-0.3~0.5V,扫速为25mV/s,沉积完成后取出,超纯水冲洗,氮气吹干。
本发明与现有技术相比的有益效果是:(1)本发明开发了一种酸性葡萄糖燃料电池电极,结合了银纳米线的优点,高比表面积可以扩大对葡萄糖的接触面积,沉积的金属形成了独特的松枝状纳米结构。此类独特松枝状纳米结构的形成是由于以下步骤产生:一方面,创新性的采用了PdCl2与醋酸的混合溶液作为待沉积液,通过电沉积法用于AgNWs上作为保护层,均匀覆盖AgNWs,使得电子可以从内部AgNWs上传导,保留了AgNWs高效的电子传输能力;另一方面,引入了可以产生枝状结构的Au,使其极大的提升了电极的比表面积,增加了灵敏度,提高了抗毒化能力。相比于其他燃料电池而言,该电极对葡萄糖具有较高的电化学响应和良好的长期稳定性。以葡萄糖为基准溶液时,表现出较高的催化性能和高选择性。且Pd-Au-AgNWs电极的制备方法简单,成本低,操作便捷、不易受环境等外界因素影响;(2)本发明利用了PDMS柔韧性和银纳米线以及钯金合金的高比表面积、高导电性和高催化活性,制得的电极对葡萄糖的催化效果好、灵敏度高和选择性好,同时其性能稳定,检测限低,这些优异的性能使Pd-Au-AgNWs电极在电化学传感器领域具有广阔的应用前景。
附图说明
下面结合附图与具体实施方式对本发明作进一步说明
图1为基于Pd-Au-AgNWs电极表面形貌图;
图2为Pd-Au-AgNWs电极葡萄糖溶液与空白硫酸溶液循环伏安曲线对比图;
图3为Pd-Au-AgNWs电极与其他电极循环伏安曲线对比图;
图4为Pd-Au-AgNWs电极与现有技术的Au-AgNWs电极循环伏安曲线对比图;
图5为Pd-Au-AgNWs电极在酸性条件下与碱性条件下循环伏安曲线对比图;
图6为在0.1M H2SO4溶液中,不同浓度葡萄糖溶液的循环伏安曲线;
图7为在0.1M H2SO4溶液中,不同浓度的葡萄糖的标准曲线;
图8为Pd-Au-AgNWs电极重现性对比图。
具体实施方式
下面通过具体实施例详述本发明,但不限制本发明的保护范围。如无特殊说明,本发明所采用的实验方法均为常规方法,所用实验器材、材料、试剂等均可从商业途径获得。
下述实施例中Pd-Au-AgNWs电极的制备方法为:
A.向放入硅片的表面皿中浇注内含塑化剂与固化剂的PDMS混合溶液,其中塑化剂与固化剂质量比为9:2,用真空泵抽尽气泡后,放入烘箱中固化2h,固化后剥离、切割成大小一致的固体PDMS芯片,芯片规格为0.5×0.8cm2
B.使用臭氧清洗机清洗PDMS芯片表面,处理后的PDMS芯片放入含有4wt%聚乙烯醇与7wt%甘油的混合溶液浸泡20min,浸泡后取出去除表面多余液体,然后在60~100℃下干燥2h;
C.取AgNWs溶液均匀涂覆在步骤2多次改性后的PDMS芯片表面,待AgNWs晾干后,将有AgNWs涂层的PDMS作为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极,采用辰华CHI660E型电化学工作站,在10mM H2SO4和8mg/mL KAuCl4的混合溶液中进行恒电位沉积纳米金颗粒。设定沉积电压为-0.3V,沉积时间为800s,完成电化学沉积后,将制备好的Au-PDMS复合电极取下,使用超纯水冲洗洗去电极表面残留的沉积溶液并室温干燥;
D.将完成并干燥的Au-PDMS电极作为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极,将三电极体系置于pH=4的0.1M醋酸-醋酸钠为缓冲溶液的5mM PdCl2溶液中,采用循环伏安法在Au-AgNWs上沉积纳米钯,沉积电位窗为-0.3~0.5V,扫速为25mV/s,沉积完成后取出,超纯水冲洗,氮气吹干。
基于Pd-Au-AgNWs复合电极表面形貌图如图1所示:电极上的纳米颗粒如树枝状均匀分布,电催化性能突出,耐酸性强。
实施例1
葡萄糖溶液与空白硫酸溶液循环伏安曲线对比(图2)。
首先,以所构建Pd-Au-AgNWs电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极***,将该三电极***置于pH为0.699浓度为0.1M的H2SO4支持电解质中溶液,利用循环伏安法,在-0.7V~1.0V的电位范围内进行扫描,记录空白溶液的循环伏安曲线;然后,将三电极体系置于含有0.1M,pH为0.699的H2SO4溶液作为支持电解质的30mM的葡萄糖待测液中利用循环伏安法,在-0.7V~1.0V的电位范围内进行扫描,记录葡萄糖的循环伏安曲线。如附图2所示:50m V/s的扫描速度下测试Pd-Au-AgNWs电极在30mM的葡萄糖的催化效果。从图2中可以看出Pd-Au-AgNWs电极对葡萄糖催化电流为7800μA/cm2/mol。表明Pd-Au-AgNWs电极所组成的燃料能将生物能高效转换为电能。
实施例2
Pd-Au-AgNWs电极与其他电极循环伏安曲线对比(图3)。
将制备的Pd-Au-AgNWs电极、Pd-AgNWs电极、Ni-AgNWs电极、CuO-AgNWs电极分别置于含有0.1M,pH为0.699的H2SO4溶液作为支持电解质的同浓度的葡萄糖待测液中,在50mV/s的扫速下测定浓度为30mM葡萄糖的电流曲线,利用循环伏安法,在-0.7V~1.0V的电位范围内进行扫描。记录同浓度同扫速的葡萄糖的循环伏安曲线。如附图3所示,对比可以发现,在酸性条件下,相对于Pd-AgNWs电极、Ni-AgNWs电极、CuO-AgNWs电极,本发明制备的Pd-Au-AgNWs电极具有较高的稳定性和催化电流,并且可以良好地应用于酸性环境中。
实施例3
Pd-Au-AgNWs电极与现有技术的Au-AgNWs电极循环伏安曲线对比(图4)。
将制备的Pd-Au-AgNWs电极、Au-AgNWs电极分别置于含有0.1M,pH为0.699的H2SO4溶液作为支持电解质的同浓度的葡萄糖待测液中,在50mV/s的扫速下测定浓度为30mM葡萄糖的电流曲线,利用循环伏安法,在-0.7V~1.0V的电位范围内进行扫描。记录同浓度同扫速的葡萄糖的循环伏安曲线。如附图4所示,对比可以发现,在酸性条件下,相对于Au-AgNWs电极,本发明制备的Pd-Au-AgNWs电极具有更高的稳定性和催化电流,也证明了金属间协同作用改善了电极的性质。
实施例4
Pd-Au-AgNWs电极在酸性条件下与碱性条件下循环伏安曲线对比(图5)。
将制备的Pd-Au-AgNWs电极分别置于含有0.1M,pH为0.699的H2SO4溶液和含有0.1M,pH为13的NaOH溶液中,溶液中均含有30mM的葡萄糖待测液。在50mV/s的扫速下测量循环伏安曲线,在-0.7V~1.0V的电位范围内进行扫描。记录同浓度同扫速的葡萄糖的循环伏安曲线。如附图5所示,对比可以发现,在酸性条件下,Pd-Au-AgNWs电极具有更高的催化电流,因此也具有更高效的催化效率。
实施例5
在0.1M H2SO4溶液中,Pd-Au-AgNWs电极对不同相同浓度的葡萄糖的循环伏安响应(图6、图7)。
依次将Pd-Au-AgNWs电极置于含有0.1M,pH为0.699的H2SO4溶液作为支持电解质的不同浓度的葡萄糖待测液中,在50mV/s的扫速下测定浓度为10mM、30mM、50mM、70mM、90mM葡萄糖的电流曲线,利用循环伏安法,在-0.7V~1.0V的电位范围内进行扫描。记录不同浓度同扫速的葡萄糖的循环伏安曲线。如附图6、附图7所示,从图中可以看出,随着浓度不断增大,纳米电极在葡萄糖溶液中的氧化电流也不断增大,氧化峰也不断升高,呈现出良好的催化葡萄糖的线性响应。因此,葡萄糖的氧化还原反应受扩散控制。在10~90mM的范围内两者之间还存在着良好的线性关系。
实施例6
电极重现性的测定(图8)。
首先,将所构建Pd-Au-AgNWs电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极***置于含有pH为0.699浓度为0.1M的H2SO4溶液作为支持电解质的30mM葡萄糖待测液中,利用循环伏安法,在-0.7V~1.0V的电位下,记录100个周期的葡萄糖的循环伏安曲线。然如附图8所示,第一个周期的葡萄糖循环伏安曲线与第一百个周期得到的循环伏安曲线基本重合,葡萄糖氧化峰电流RSD为1.2%,所以电极的重现性高,结构稳定,可以良好的应用于强酸性葡萄糖燃料电池。
以上所述实施方式仅为本发明的优选实施例,而并非本发明可行实施的全部实施例。对于本领域一般技术人员而言,在不背离本发明原理和精神的前提下对其所作出的任何显而易见的改动,都应当被认为包含在本发明的权利要求保护范围之内。

Claims (6)

1.一种酸性葡萄糖燃料电池电极,其特征在于,所述电极由三电极***置于带有支持电解质的葡萄糖溶液构成,其中所述三电极***中Pd-Au-AgNWs电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极,所述Pd-Au-AgNWs电极底部为PDMS,下部为AgNWs,上部为Pd、Au形成的松枝状纳米结构,所述支持电解质为H2SO4溶液,pH为0.699。
2.如权利要求1所述的酸性葡萄糖燃料电池电极的制备方法,其特征在于,包括以下步骤:
S1.使用PDMS制作基底芯片:向放入硅片的表面皿中浇注内含塑化剂与固化剂的PDMS混合溶液,用真空泵抽尽气泡后,放入烘箱中固化,固化后剥离、切割成大小一致的固体PDMS芯片;
S2.PDMS亲水改性:使用臭氧清洗机清洗PDMS芯片表面,处理后的PDMS芯片放入含有聚乙烯醇与甘油的混合溶液浸泡,浸泡后取出去除表面多余液体进行干燥,重复步骤S2三到五次;
S3.制备Au-PDMS复合电极:取AgNWs溶液均匀涂覆在步骤S2多次改性后的PDMS芯片表面,待AgNWs晾干后,将有AgNWs涂层的PDMS作为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极,在H2SO4和KAuCl4的混合溶液中进行恒电位沉积纳米金颗粒,完成电化学沉积后,将制备好的Au-PDMS复合电极取下,使用超纯水冲洗洗去电极表面残留的沉积溶液并干燥;
S4.制备Pd-Au-AgNWs电极:将完成并干燥的Au-PDMS电极作为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极,将三电极体系置于醋酸-醋酸钠为缓冲溶液的PdCl2溶液中,采用循环伏安法在Au-AgNWs上沉积纳米钯,沉积完成后取出,超纯水冲洗,氮气吹干;
S5.制备酸性葡萄糖燃料电池电极:将步骤S4制备的Pd-Au-AgNWs电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极***,将所述三电极***置于带有支持电解质的葡萄糖溶液组成酸性葡萄糖燃料电池电极,所述支持电解质为H2SO4溶液,pH为0.699。
3.根据权利要求1所述的酸性葡萄糖燃料电池电极的制备方法,其特征在于,所述步骤S1具体为:向放入硅片的表面皿中浇注内含塑化剂与固化剂的PDMS混合溶液,其中塑化剂与固化剂质量比为9:2,用真空泵抽尽气泡后,放入烘箱中固化2h,固化后剥离、切割成大小一致的固体PDMS芯片,芯片规格为0.5×0.8cm2
4.根据权利要求1所述的酸性葡萄糖燃料电池电极的制备方法,其特征在于,所述步骤S2具体为:使用臭氧清洗机清洗PDMS芯片表面,处理后的PDMS芯片放入含有4wt%聚乙烯醇与7wt%甘油的混合溶液浸泡20min,浸泡后取出去除表面多余液体,然后在60~100℃下干燥2h。
5.根据权利要求1所述的酸性葡萄糖燃料电池电极的制备方法,其特征在于,所述步骤S3具体为:取AgNWs溶液均匀涂覆在步骤S2多次改性后的PDMS芯片表面,待AgNWs晾干后,将有AgNWs涂层的PDMS作为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极,采用辰华CHI660E型电化学工作站,在10mM H2SO4和8mg/mL KAuCl4的混合溶液中进行恒电位沉积纳米金颗粒,设定沉积电压为-0.3V,沉积时间为800s,完成电化学沉积后,将制备好的Au-PDMS复合电极取下,使用超纯水冲洗洗去电极表面残留的沉积溶液并室温干燥。
6.根据权利要求1所述的酸性葡萄糖燃料电池电极的制备方法,其特征在于,所述步骤S4具体为:将完成并干燥的Au-PDMS电极作为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极,将三电极体系置于pH=4的0.1M醋酸-醋酸钠为缓冲溶液的5mM PdCl2溶液中,采用循环伏安法在Au-AgNWs上沉积纳米钯,沉积电位窗为-0.3~0.5V,扫速为25mV/s,沉积完成后取出,超纯水冲洗,氮气吹干。
CN202210211359.8A 2022-03-04 2022-03-04 一种酸性葡萄糖燃料电池电极及其制备方法 Active CN114583183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210211359.8A CN114583183B (zh) 2022-03-04 2022-03-04 一种酸性葡萄糖燃料电池电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210211359.8A CN114583183B (zh) 2022-03-04 2022-03-04 一种酸性葡萄糖燃料电池电极及其制备方法

Publications (2)

Publication Number Publication Date
CN114583183A true CN114583183A (zh) 2022-06-03
CN114583183B CN114583183B (zh) 2024-05-28

Family

ID=81779135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210211359.8A Active CN114583183B (zh) 2022-03-04 2022-03-04 一种酸性葡萄糖燃料电池电极及其制备方法

Country Status (1)

Country Link
CN (1) CN114583183B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583188A (zh) * 2022-03-04 2022-06-03 大连大学 一种构建中性葡萄糖燃料电池电极的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180358642A1 (en) * 2017-06-12 2018-12-13 Wisconsin Alumni Research Foundation Flow-Based Anode for the Electrocatalytic Oxidation of a Fuel or Other Reductant
CN109298053A (zh) * 2018-10-23 2019-02-01 大连大学 一种应用AuNPs/AgNWs/PDMS可塑电极测定葡萄糖的方法
CN112886025A (zh) * 2019-11-29 2021-06-01 大连大学 一种果糖燃料电池及其构建方法
CN113013421A (zh) * 2019-12-19 2021-06-22 大连大学 一种基于pdms的银纳米线/纳米金/纳米镍复合电极的制备方法及其应用
CN113030203A (zh) * 2019-12-24 2021-06-25 大连大学 一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法
CN113130913A (zh) * 2019-12-31 2021-07-16 大连大学 PtNPs/NiNPs/AgNWs/PET可塑电极及其在构建果糖燃料电池上的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180358642A1 (en) * 2017-06-12 2018-12-13 Wisconsin Alumni Research Foundation Flow-Based Anode for the Electrocatalytic Oxidation of a Fuel or Other Reductant
CN109298053A (zh) * 2018-10-23 2019-02-01 大连大学 一种应用AuNPs/AgNWs/PDMS可塑电极测定葡萄糖的方法
CN112886025A (zh) * 2019-11-29 2021-06-01 大连大学 一种果糖燃料电池及其构建方法
CN113013421A (zh) * 2019-12-19 2021-06-22 大连大学 一种基于pdms的银纳米线/纳米金/纳米镍复合电极的制备方法及其应用
CN113030203A (zh) * 2019-12-24 2021-06-25 大连大学 一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法
CN113130913A (zh) * 2019-12-31 2021-07-16 大连大学 PtNPs/NiNPs/AgNWs/PET可塑电极及其在构建果糖燃料电池上的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LONGLONG YAN ET AL.: "Efficient and poison-tolerant PdxAuy/C binary electrocatalysts for glucose electrooxidation in alkaline medium", 《APPLIED CATALYSIS B: ENVIRONMENTAL》, pages 268 - 274 *
MOHAMMAD ETESAMI ET AL.: "Electrooxidation of Several Organic Compounds on Simply Prepared Metallic Nanoparticles: A Comparative Study", 《J. CHIN. CHEM. SOC.》, vol. 61, pages 377 - 382 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583188A (zh) * 2022-03-04 2022-06-03 大连大学 一种构建中性葡萄糖燃料电池电极的方法

Also Published As

Publication number Publication date
CN114583183B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
WO2006022224A1 (ja) 燃料電池、燃料電池の使用方法、燃料電池用カソード電極、電子機器、電極反応利用装置および電極反応利用装置用電極
Raoof et al. An electrochemical investigation of methanol oxidation on nickel hydroxide nanoparticles
CN113013421B (zh) 一种基于pdms的银纳米线/纳米金/纳米镍复合电极的制备方法及其应用
CN102024955B (zh) 一种用于燃料电池的三维网状纳米多孔钯钌电极材料及其制备方法
CN107863538A (zh) 一种用于乙醇催化的电极及其应用
CN109860643A (zh) 一种芳香重氮盐表面修饰MXene负载铂的氧还原电催化剂及其制备方法
CN108448128A (zh) 一种用钌基碲化物作为阴极的燃料电池膜电极及制备方法
CN101162780B (zh) 一种直接甲醇燃料电池阳极催化剂及其制备方法
CN114583183B (zh) 一种酸性葡萄糖燃料电池电极及其制备方法
CN107195917A (zh) 一种在FTO玻璃上垂直生长的AuPdNWs超细纳米森林电催化剂及其制备方法
CN111777059A (zh) 碳纳米管载体的活化方法、碳纳米管载体及其应用
CN111962099B (zh) 用于电催化生产过氧化氢的电极、其制备方法与应用
El-Nowihy et al. Tailor-designed Pd-Cu-Ni/rGO nanocomposite for efficient glucose electro-oxidation
CN113130913B (zh) PtNPs/NiNPs/AgNWs/PET可塑电极及其在构建果糖燃料电池上的应用
CN113030203B (zh) 一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法
CN112886025A (zh) 一种果糖燃料电池及其构建方法
CN112993266B (zh) 一种应用CuO-NiNPs/碳布可塑电极构建的构建淀粉燃料电池
JP3870802B2 (ja) 酸素還元用電極およびそれを用いた電池
CN113036159A (zh) 一种基于pdms的柔性银纳米线掺杂石墨烯/纳米镍铂复合电极在燃料电池中的应用
CN113013420A (zh) 一种具有抗毒化能力的果糖燃料电池的制备方法
CN113130950B (zh) 一种应用CuO/泡沫镍电极电催化氧化麦芽糖溶液构建麦芽糖燃料电池的方法
CN113130914B (zh) 乳糖燃料电池及构建该燃料电池的PtNPs/CuNPs/NiNPs/碳布可塑电极
CN113054206B (zh) 一种NiNPs/AuNPs/GN/AgNWs/纸可塑电极的制备方法及应用
CN113097500B (zh) 一种CuO-NiNPs/AgNWs/CNT/PDMS阳极的制备方法及其应用
CN113130916B (zh) 基于PdNPs/NiNPs/ITO电极构建乳糖燃料电池的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant