CN114442601B - 一种无人驾驶车辆跟踪控制方法及装置 - Google Patents

一种无人驾驶车辆跟踪控制方法及装置 Download PDF

Info

Publication number
CN114442601B
CN114442601B CN202011231921.0A CN202011231921A CN114442601B CN 114442601 B CN114442601 B CN 114442601B CN 202011231921 A CN202011231921 A CN 202011231921A CN 114442601 B CN114442601 B CN 114442601B
Authority
CN
China
Prior art keywords
control
vehicle
derivative
state
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011231921.0A
Other languages
English (en)
Other versions
CN114442601A (zh
Inventor
黄琨
苏常军
陈慧勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yutong Bus Co Ltd
Original Assignee
Yutong Bus Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yutong Bus Co Ltd filed Critical Yutong Bus Co Ltd
Priority to CN202011231921.0A priority Critical patent/CN114442601B/zh
Publication of CN114442601A publication Critical patent/CN114442601A/zh
Application granted granted Critical
Publication of CN114442601B publication Critical patent/CN114442601B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明属于无人驾驶技术领域,具体涉及一种无人驾驶车辆跟踪控制方法及装置。该方法首先获取车辆当前***状态量,根据当前***状态量所在状态分区,确定与***状态分区对应的控制显式关系式,***状态量包括车体坐标系下纵向位移的一阶导数、车体坐标系下横向位移的一阶导数、横摆角、横摆角的一阶导数、惯性坐标系下纵向位移、以及惯性坐标系下横向位移,然后将当前***状态量代入至所述控制显式关系式中,得到与所述当前***状态量对应的当前最优前轮转角控制量;最后参照所述当前最优前轮转角控制量,控制车辆运行。本发明将反复的在线计算简化为单纯的查表工作,大大减少了在线计算时间,提高了***控制的实时性,保证了跟踪精度。

Description

一种无人驾驶车辆跟踪控制方法及装置
技术领域
本发明属于无人驾驶技术领域,具体涉及一种无人驾驶车辆跟踪控制方法及装置。
背景技术
跟踪控制技术作为无人驾驶***的关键技术之一,通过控制车辆的转向***以及制动/驱动***等,使得车辆能够在指定的时间到达给定的或规划的轨迹点,从而实现车辆的无人驾驶操作。
目前行业内主流的无人驾驶***跟踪控制技术有PID控制算法、预瞄式控制算法、前反馈控制算法、传统模型预测算法。PID控制算法需要大量的人工标定,控制精度无法实时保证,同时当车辆状态发生改变时,控制精度会受到较大影响,导致控制误差较大;预瞄式控制算法与前反馈控制算法不需要人工标定,控制精度能够保证车辆正常行驶,但不具备车速扰动抗干扰能力,当车速发生突变时,由于时间滞后等因素影响会导致控制误差变大;相比以上算法,传统模型预测控制算法在保证控制精度的同时,具备良好的车速扰动抗干扰能力,但由于需要反复进行在线优化,随着场景的变化,在线计算量会显著增加,不能满足无人驾驶***实时跟踪控制的需求。
发明内容
本发明提供了一种无人驾驶车辆跟踪控制方法及装置,用以解决现有技术的控制方法无法满足无人驾驶***实时跟踪控制需要的问题。
为解决上述技术问题,本发明的技术方案包括:
本发明提供了一种无人驾驶车辆跟踪控制方法,包括如下步骤:
1)获取车辆当前***状态量,根据当前***状态量所在状态分区,确定与***状态分区对应的控制显式关系式;
其中,采用显式模型预测控制方法得到所述状态分区以及状态分区对应的控制显式关系式;且所述显式模型预测控制方法的***状态量包括车体坐标系下纵向位移的一阶导数、车体坐标系下横向位移的一阶导数、横摆角、横摆角的一阶导数、惯性坐标系下纵向位移、以及惯性坐标系下横向位移,***控制量为前轮转角;
2)将当前***状态量代入至所述控制显式关系式中,得到与所述当前***状态量对应的当前最优前轮转角控制量;
3)参照所述当前最优前轮转角控制量,控制车辆运行,以使车辆跟踪预设轨迹。
上述技术方案的有益效果为:本发明将显式模型预测控制方法应用于无人驾驶车辆控制上来,在离线预处理阶段,划分***状态分区,并确定***状态分区对应的控制显式关系式,该阶段结束后,将划分的状态分区以及对应的控制显式关系式存储在***运行空间中供在线计算使用,在线阶段时,在每一个采样时刻,一旦确定***的初始状态,就可以通过查询方式找到当前时刻对应的控制显式关系式,最终计算得到当前时刻的最优前轮转角控制量以对车辆进行控制。该方法将计算复杂度较高的最优控制求解问题转移为离线计算,在线计算只需要一个简单的查询过程和线性函数运算过程,将反复的在线计算简化为单纯的查表工作,大大减少了在线计算时间,提高了***控制的实时性,保证了跟踪精度,解决了复杂场景下无人驾驶***高效实时跟踪控制问题。
进一步的,采用显式模型预测控制方法得到所述状态分区以及状态分区对应的控制显式关系式包括:
建立车辆动力学模型,并将动力学模型转化为状态空间表达式;
基于所述状态空间表达式,应用线性二次调节器构建车辆控制优化函数;
将车辆控制优化函数转化为最优控制问题,转化得到二次规划的标准形式,进而将二次规划的标准形式转化为二次最优化形式;
将库恩塔克约束条件的公式代入至所述二次最优化形式进行条件约束,最终求解得到最优前轮转角控制量;
采用分段函数表示所述最优前轮转角控制量,以得到各状态分区以及以状态分区对应的控制显式关系式。
进一步的,所述车辆动力学模型为:
其中,分别为车体坐标系下横向位移、纵向位移的二阶导数,/>为车体坐标系下横向位移、纵向位移的一阶导数;/>为横摆角;/>为横摆角的一阶导数,/>为横摆角的二阶导数;m为车辆质量;Clf、Clr分别为车辆前后轮胎的纵向刚度;Ccf、Ccr分别为车辆前后轮胎的侧偏刚度;sf、sr分别为车辆前后轮胎的滑移率;δf为前轮转角;a为前轴到质心的距离;Iz为z轴转动惯量;b为后轴到质心的距离;/>分别为惯性坐标系下横向位移、纵向位移的一阶导数。
进一步的,所述状态空间表达式为:
其中,为***状态量ξ的一阶导数,/> 分别为惯性坐标系下横向位移、纵向位移;u=δf为***控制量;/>C(t)=(0,0,0,0,1,0)T,且
进一步的,所述车辆控制优化函数为:
J*(ξ(t))=min J(U,ξ(t))*U
s.t.ξt+k+1t=Aξt+kt+But+k k≥0
0≤ξt+k≤ξmax
umin≤uk+t≤umax
其中,J(U,ξ(t))为***控制向量U和***状态向量ξ(t)的车辆控制优化函数,取决于优化问题的***状态向量ξ(t);P、Q、R为常数权重矩阵;ξmax为ξt+k取值的最大值;umin、umax分别为uk+t取值的最小值和最大值;Xt+k|t表示参数X在t时刻对t+k时刻的预测值;Xt+k表示参数X在t+k时刻的实际值。
进一步的,所述二次规划的标准形式为:
s.t.GU≤W+Eξ(t)
其中,Y、H、F、G、W、E是常数参数。
进一步的,所述二次最优化形式为:
s.t.Gz(ξ(t))≤W+Sξ(t)
其中,S=E+GH-1F;z(ξ(t))=U+H- 1FTξ(t)。
进一步的,采用分段函数表示的所述最优前轮转角控制量为:
U*(ξ(t))=Fiξ(t)+Gi i=1,..,Nr
其中,Gi=H-1GT(GH-1GT)-1W,Fi=H-1GT(GH-1GT)-1S-H-1FT,Nr为状态分区的总数目。
本发明还提供了一种无人驾驶车辆跟踪控制装置,包括存储器和处理器,所述处理器用于执行存储在存储器中的指令以实现上述介绍的无人驾驶车辆跟踪控制方法。
附图说明
图1是本发明的车辆三自由度模型示意图;
图2是本发明的无人驾驶车辆跟踪控制方法原理图;
图3是本发明的无人驾驶车辆跟踪控制装置结构图。
具体实施方式
本发明采用显式模型预测控制对自动驾驶车辆进行控制,其主要思想是采用多参数二次规划理论求解线性时不变约束***优化控制问题。该方法将***状态量作为参数,对状态区域进行凸划分,并离线计算各状态分区上的最优状态反馈控制率与状态的控制显式关系式。在每一个采样时刻,根据当前***状态量所在状态分区,查表得到对应的控制显式关系式,得到当前最优前轮转角控制量。显式模型预测控制方法无需反复在线优化,可提高在线的计算速度。下面结合附图及实施例,对本发明的一种无人驾驶车辆跟踪控制方法及一种无人驾驶车辆跟踪该控制装置进行详细说明。
方法实施例:
本发明的一种无人驾驶车辆跟踪控制方法实施例,如图2所示,步骤如下:
步骤一,基于显式模型预测控制,按照如下方法步骤,得到车辆的各状态分区以及各状态分区对应的显式控制关系式,以完成离线预处理。具体的:
1、建立车辆动力学模型。在进行车辆动力学通用化建模时,只需要考虑纵向、横向、横摆三个自由度上的运动。
车辆的三自由度模型如图1所示,o为车辆质心位置,车辆受到的纵向力、侧向力以及横摆力矩为:
其中,m为车辆质量;x、y分别为车体坐标系下横向位移、纵向位移;为车体坐标系下纵向坐标的一阶导数;/>分别为车体坐标系下横向位移、纵向位移的二阶导数;δ为转向角;/>为转向角的一阶导数;Iz为z轴转动惯量;/>为横摆角;/>为横摆角的二阶导数;Fx为车辆所受总的纵向力;Fy为车辆所受总的横向力;Mz为车辆所受总的横摆力矩;Fcf、Fcr分别为车辆前后轮胎所受侧向力;Flf、Flr分别为车辆前后轮胎所受纵向力;Fxf、Fxr分别为车辆前后轮胎在x方向所受力;Fyf、Fyr分别为车辆前后轮胎在y方向所受力;δf为前轮转角;a为前轴到质心的距离;b为后轴到质心的距离。
车辆的轮胎力可以表示成:
其中,Ccf、Ccr分别为车辆前后轮胎的侧偏刚度;Clf、Clr分别为车辆前后轮胎的纵向刚度;sf、sr分别为车辆前后轮胎的滑移率;为横摆角的一阶导数;/>为车体坐标系下横向位移的一阶导数。
综合式(1)和式(2),可以得到车辆动力学模型为:
其中,分别为惯性坐标系下横向位移、纵向位移的一阶导数。
2、选取为***状态量,u=δf为***控制量,经过线性化处理后,公式(3)的状态空间表达式可表示为:
其中,C(t)=(0,0,0,0,1,0)T,且:
3、应用线性二次调节器(linear-quadratic-regulator,LQR)理论构建车辆跟踪控制优化函数,表达式如下:
其中,P、Q、R为常数权重矩阵。
将公式(4)转化为如下形式:
4、将车辆控制优化函数转化为最优控制问题,从而将公式(5)转化为二次规划的标准形式:
其中,是优化控制向量,取决于优化问题的***状态向量ξ(t);Y、H、F、G、W、E都是常数参数;这里定义:
z(ξ(t))=U+H-1FTξ(t) (8)
5、将公式(7)转化为二次最优化形式:
其中,S=E+GH-1F;
6、求解公式(7)时,附加上库恩塔克(Karush-Kuhn-Tucker,KKT)最优化条件作为约束条件,KKT公式如下:
Hz+GTλ=0 (10)
λi(Gz-W-Sξ)=0,i=1,...,N (11)
其中,λ≥0,N≥1。
由公式(10)可得z=-H-1GTλ,并代入至公式(11)中可得:
λ(-GH-1GTλ-W-Sξ)=0 (12)
由公式(12)可得:
λ=-(GH-1GT)-1(W+Sξ) (13)
z=H-1GT(GH-1GT)-1(W+Sξ) (14)
将公式(14)代入到公式(8)可得最优控制向量,即最优前轮转角控制向量:
U*=H-1GT(GH-1GT)-1(W+Sξ)-H-1FTξ (15)
7、对于当前***状态ξ(t),最优前轮转角控制向量U*(ξ(t))可以由公式(15)转换为ξ(t)的分段仿射函数表示:
U*(ξ(t))=Fiξ(t)+Gi i=1,..,Nr (16)
其中,Gi=H-1GT(GH-1GT)-1W,Fi=H-1GT(GH-1GT)-1S-H-1FT,Nr为状态分区的总数目。
至此,便完成离线预处理,将划分的状态分区以及对应的控制显式关系式存储在***运行空间中供在线计算使用。
步骤二,在车辆运行过程中,获取车辆当前***状态量,包括车体坐标系下纵向位移的一阶导数车体坐标系下横向位移的一阶导数/>横摆角/>横摆角的一阶导数/>惯性坐标系下纵向位移Y、以及惯性坐标系下横向位移X,根据当前***状态量所在状态分区,确定与***状态分区对应的控制显式关系式。
步骤三,将车辆当前***状态量构成的***状态向量代入至公式(16)中,得到与当前***状态量对应的当前最优前轮转角控制量。根据得到的当前最优前轮转角控制量,对车辆进行控制,以使车辆跟踪预设轨迹。
本发明的无人驾驶车辆跟踪控制方法,在每个控制周期里,只需根据当前***状态量所在状态分区,确定对应的控制率(控制显式关系式),最终得到最优前轮转角控制量。相对于反复在线优化方法,该方法能够在保证跟踪精度的同时,避免复杂的在线计算量,提升实时可操作性,且具备车速扰动抗干扰能力,满足复杂场景下无人驾驶***跟踪控制实时性高、变化速率快的需求。
装置实施例:
本发明的一种无人驾驶车辆跟踪控制装置实施例,如图3所示,包括存储器、处理器和内部总线,处理器、存储器之间通过内部总线完成相互间的通信和数据交互。存储器包括至少一个存储于存储器中的软件功能模块,处理器通过运行存储在存储器中的软件程序以及模块,执行各种功能应用以及数据处理,实现本发明的方法实施例中介绍的一种无人驾驶车辆跟踪控制方法。
其中,处理器可以为微处理器MCU、可编程逻辑器件FPGA等处理装置。存储器用于存储程序,处理器在接收到执行指令后,执行程序。
存储器可为利用电能方式存储信息的各式存储器,RAM、ROM等;利用磁能方式存储信息的各式存储器,例如硬盘、软盘、磁带、磁芯存储器、磁泡存储器、U盘等;利用光学方式存储信息的各式存储器,例如CD、DVD等。当然,还有其他方式的存储器,例如量子存储器、石墨烯存储器等。

Claims (7)

1.一种无人驾驶车辆跟踪控制方法,其特征在于,包括如下步骤:
1)获取车辆当前***状态量,根据当前***状态量所在状态分区,确定与***状态分区对应的控制显式关系式;
其中,采用显式模型预测控制方法得到所述状态分区以及状态分区对应的控制显式关系式;且所述显式模型预测控制方法的***状态量包括车体坐标系下纵向位移的一阶导数、车体坐标系下横向位移的一阶导数、横摆角、横摆角的一阶导数、惯性坐标系下纵向位移、以及惯性坐标系下横向位移,***控制量为前轮转角;
2)将当前***状态量代入至所述控制显式关系式中,得到与所述当前***状态量对应的当前最优前轮转角控制量;
3)参照所述当前最优前轮转角控制量,控制车辆运行,以使车辆跟踪预设轨迹;
采用显式模型预测控制方法得到所述状态分区以及状态分区对应的控制显式关系式包括:
建立车辆动力学模型,并将动力学模型转化为状态空间表达式;
基于所述状态空间表达式,应用线性二次调节器构建车辆控制优化函数;
将车辆控制优化函数转化为最优控制问题,转化得到二次规划的标准形式,进而将二次规划的标准形式转化为二次最优化形式;
将库恩塔克约束条件的公式代入至所述二次最优化形式进行条件约束,最终求解得到最优前轮转角控制量;
采用分段函数表示所述最优前轮转角控制量,以得到各状态分区以及以状态分区对应的控制显式关系式;所述车辆控制优化函数为:
J*(ξ(t))=minJ(U,ξ(t))*U
s.t.ξt+k+1|t=Aξt+k|t+But+k k≥0
0≤ξt+k≤ξmax
umin≤uk+t≤umax
其中,J*(U,ξ(t))为基于***控制向量U和***状态向量ξ(t)的车辆控制优化函数,取决于优化问题的***状态向量ξ(t);P、Q、R为常数权重矩阵;ξmax为ξt+k取值的最大值;umin、umax分别为uk+t取值的最小值和最大值;Xt+k|t表示参数X在t时刻对t+k时刻的预测值;Xt+k表示参数X在t+k时刻的实际值。
2.根据权利要求1所述的无人驾驶车辆跟踪控制方法,其特征在于,所述车辆动力学模型为:
其中,分别为车体坐标系下横向位移、纵向位移的二阶导数,/>为车体坐标系下横向位移、纵向位移的一阶导数;/>为横摆角;/>为横摆角的一阶导数,/>为横摆角的二阶导数;m为车辆质量;Clf、Clr分别为车辆前后轮胎的纵向刚度;Ccf、Ccr分别为车辆前后轮胎的侧偏刚度;sf、sr分别为车辆前后轮胎的滑移率;δf为前轮转角;a为前轴到质心的距离;Iz为z轴转动惯量;b为后轴到质心的距离;/>分别为惯性坐标系下横向位移、纵向位移的一阶导数。
3.根据权利要求2所述的无人驾驶车辆跟踪控制方法,其特征在于,所述状态空间表达式为:
其中,为***状态量ξ的一阶导数,/>分别为惯性坐标系下横向位移、纵向位移;u=δf为***控制量;/>C(t)=(0,0,0,0,1,0)T,且:
4.根据权利要求1所述的无人驾驶车辆跟踪控制方法,其特征在于,所述二次规划的标准形式为:
s.t.GU≤W+Eξ(t)
其中,Y、H、F、G、W、E是常数参数。
5.根据权利要求4所述的无人驾驶车辆跟踪控制方法,其特征在于,所述二次最优化形式为:
s.t.Gz(ξ(t))≤W+Sξ(t)
其中,S=E+GH-1F;z(ξ(t))=U+H-1FTξ(t)。
6.根据权利要求1所述的无人驾驶车辆跟踪控制方法,其特征在于,采用分段函数表示的所述最优前轮转角控制量为:
U*(ξ(t))=Fiξ(t)+Gi i=1,..,Nr
其中,Gi=H-1GT(GH-1GT)-1W,Fi=H-1GT(GH-1GT)-1S-H-1FT,Nr为状态分区的总数目;U*(ξ(t))为最优前轮转角控制量;ξ(t)为***状态量。
7.一种无人驾驶车辆跟踪控制装置,其特征在于,包括存储器和处理器,所述处理器用于执行存储在存储器中的指令以实现如权利要求1~6任一项所述的无人驾驶车辆跟踪控制方法。
CN202011231921.0A 2020-11-06 2020-11-06 一种无人驾驶车辆跟踪控制方法及装置 Active CN114442601B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011231921.0A CN114442601B (zh) 2020-11-06 2020-11-06 一种无人驾驶车辆跟踪控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011231921.0A CN114442601B (zh) 2020-11-06 2020-11-06 一种无人驾驶车辆跟踪控制方法及装置

Publications (2)

Publication Number Publication Date
CN114442601A CN114442601A (zh) 2022-05-06
CN114442601B true CN114442601B (zh) 2024-06-18

Family

ID=81361867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011231921.0A Active CN114442601B (zh) 2020-11-06 2020-11-06 一种无人驾驶车辆跟踪控制方法及装置

Country Status (1)

Country Link
CN (1) CN114442601B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109318905A (zh) * 2018-08-22 2019-02-12 江苏大学 一种智能汽车路径跟踪混合控制方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2623233C2 (ru) * 2012-04-27 2017-06-23 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Пестицидные композиции и относящиеся к ним способы
WO2014202146A1 (en) * 2013-06-20 2014-12-24 Abb Technology Ltd Control method and system utilising parallel piecewise control
US9958840B2 (en) * 2015-02-25 2018-05-01 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling system using a control signal for transitioning a state of the system from a current state to a next state using different instances of data with different precisions
CN206585493U (zh) * 2016-12-27 2017-10-24 哈尔滨理工大学 一种基于显式模型预测控制的永磁同步电机控制***
CN106864445B (zh) * 2017-03-01 2018-05-04 中南大学 新型分布式网络控制制动机电子制动阀
CN108428095A (zh) * 2017-08-12 2018-08-21 中民筑友科技投资有限公司 一种基于bim模型构件信息跟踪显示方法及装置
US10759519B2 (en) * 2017-10-31 2020-09-01 The Boeing Company Adaptive feedback control of force fighting in hybrid actuation systems
CN110006419B (zh) * 2018-01-04 2021-11-19 郑州宇通客车股份有限公司 一种基于预瞄的车辆轨迹跟踪点确定方法
CN110531746B (zh) * 2018-05-23 2023-06-02 宇通客车股份有限公司 一种自动驾驶车辆控制方法及***、车辆
CN108973769B (zh) * 2018-06-15 2020-01-17 吉林大学 一种全线控电动汽车路径跟踪控制方法
CN110768389A (zh) * 2018-07-25 2020-02-07 郑州宇通客车股份有限公司 一种无线充电***及其频率跟踪控制方法、装置
CN109795502B (zh) * 2018-09-27 2021-05-04 吉林大学 智能电动汽车路径跟踪模型预测控制方法
DE102018125250B4 (de) * 2018-10-12 2020-10-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuereinheit zur Führung eines Fahrzeugs
CN110618686B (zh) * 2019-10-30 2023-04-07 江苏科技大学 一种基于显式模型预测控制的无人船航迹控制方法
CN110780594B (zh) * 2019-11-22 2022-04-01 中国科学院电工研究所 一种智能车的路径跟踪方法及***
CN111413966B (zh) * 2020-03-12 2022-04-29 天津大学 一种递进式模型预测无人驾驶规划跟踪协同控制方法
CN111258323B (zh) * 2020-03-30 2021-10-26 华南理工大学 一种智能车辆轨迹规划与跟踪的联合控制方法
CN111824146A (zh) * 2020-06-19 2020-10-27 武汉理工大学 一种路径跟随模型预测控制方法、***、装置及存储介质

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109318905A (zh) * 2018-08-22 2019-02-12 江苏大学 一种智能汽车路径跟踪混合控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
显式模型预测控制及在运动体控制的应用;秦婷;中国优秀硕士学位论文全文数据库信息科技辑(第第3期期);第I140-472页 *

Also Published As

Publication number Publication date
CN114442601A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
Xu et al. Preview path tracking control with delay compensation for autonomous vehicles
Hu et al. Integral sliding mode-based composite nonlinear feedback control for path following of four-wheel independently actuated autonomous vehicles
CN110377039B (zh) 一种车辆避障轨迹规划与跟踪控制方法
CN110780594B (zh) 一种智能车的路径跟踪方法及***
CN106372758B (zh) 一种辅助泊车***的路径跟随方法及装置
Zhai et al. MPC-based integrated control of trajectory tracking and handling stability for intelligent driving vehicle driven by four hub motor
CN113753080B (zh) 一种自动驾驶汽车横向运动自适应参数控制方法
CN111873985A (zh) 一种四轮驱动电动汽车的集成底盘控制方法
CN113126623B (zh) 一种考虑输入饱和的自适应动态滑模自动驾驶车辆路径跟踪控制方法
Pan et al. Fault-tolerant multiplayer tracking control for autonomous vehicle via model-free adaptive dynamic programming
Lin et al. Improved model predictive control path tracking strategy based an online updating algorithm with cosine similarity and a horizon factor
Gu et al. Genetic algorithm based LQR control for AGV path tracking problem
Saccon et al. A virtual rider for motorcycles: An approach based on optimal control and maneuver regulation
CN114442601B (zh) 一种无人驾驶车辆跟踪控制方法及装置
Yang et al. Trajectory tracking for autonomous vehicles based on Frenet frame
Yin et al. Framework of integrating trajectory replanning with tracking for self-driving cars
Wu et al. Design of ugv trajectory tracking controller in ugv-uav cooperation
CN115675459A (zh) 一种智能车辆及其路径跟踪的控制方法、装置和存储介质
Li et al. Path tracking control based on the prediction of tire state stiffness using the optimized steering sequence
Ma et al. Adaptive Path-Tracking Control With Passivity-Based Observer by Port-Hamiltonian Model for Autonomous Vehicles
Sun et al. A novel path tracking system for autonomous vehicle based on model predictive control
Kapsalis et al. LPV/LFT control design equipped with a command governor for different steering scenarios
Doumiati et al. Dynamics control of an in-wheel electric vehicle with steer-by-wire
Lu et al. Path Preview Tracking for Autonomous Vehicles Based on Model Predictive Control
Huang et al. Cascade optimization control of unmanned vehicle path tracking under harsh driving conditions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Country or region after: China

Address after: No. 6, Yutong Road, Guancheng Hui District, Zhengzhou, Henan 450061

Applicant after: Yutong Bus Co.,Ltd.

Address before: No.1, Shibali Heyu Road, Guancheng Hui District, Zhengzhou City, Henan Province

Applicant before: ZHENGZHOU YUTONG BUS Co.,Ltd.

Country or region before: China

CB02 Change of applicant information
GR01 Patent grant