CN113990744A - 带深l形基区的单侧斜面栅碳化硅mosfet器件及其制备方法 - Google Patents

带深l形基区的单侧斜面栅碳化硅mosfet器件及其制备方法 Download PDF

Info

Publication number
CN113990744A
CN113990744A CN202111322446.2A CN202111322446A CN113990744A CN 113990744 A CN113990744 A CN 113990744A CN 202111322446 A CN202111322446 A CN 202111322446A CN 113990744 A CN113990744 A CN 113990744A
Authority
CN
China
Prior art keywords
region
silicon carbide
gate
ohmic contact
base region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111322446.2A
Other languages
English (en)
Inventor
董志华
刘辉
刘国华
程知群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou University Of Electronic Science And Technology Fuyang Institute Of Electronic Information Co ltd
Hangzhou Dianzi University
Original Assignee
Hangzhou University Of Electronic Science And Technology Fuyang Institute Of Electronic Information Co ltd
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou University Of Electronic Science And Technology Fuyang Institute Of Electronic Information Co ltd, Hangzhou Dianzi University filed Critical Hangzhou University Of Electronic Science And Technology Fuyang Institute Of Electronic Information Co ltd
Priority to CN202111322446.2A priority Critical patent/CN113990744A/zh
Publication of CN113990744A publication Critical patent/CN113990744A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了带深L形基区的单侧斜面栅碳化硅MOSFET器件及其制备方法,其中主要步骤为S80,为得到栅槽,对碳化硅进行第一次刻蚀,一次刻蚀所用掩膜包含一种低刻蚀选择比和一种较高刻蚀选择比的两种掩膜,分别用于形成栅槽下半部分的斜面和垂直面结构;S90,为得到栅槽,对碳化硅进行第二次刻蚀,刻蚀掩膜为刻蚀选择比较高的掩膜,用于形成两侧都为垂直面的槽;S100,高温干氧氧化形成栅介质。本发明保证栅氧化层的可靠性,在器件反向阻断时,栅氧化层的电场强度能降低到很低,并且施加保护结构后也不影响器件的正向导通性能,保证导通电阻不会增加,电流输出能力不会降低。

Description

带深L形基区的单侧斜面栅碳化硅MOSFET器件及其制备方法
技术领域
本发明属于功率半导体器件技术领域,特别涉及带深L形基区的单侧斜面栅碳化硅MOSFET器件及其制备方法。
背景技术
碳化硅(SiC)是第三代宽禁带半导体之一,它具有很多出众和独特的电学特性、机械特性和化学特性,包括:大的禁带宽度、高电子和空穴迁移率、极高的硬度、高耐磨性、高品质因素Q、高热导率以及高耐化学腐蚀性等,使其在大功率、高温及高频电力电子领域具有广阔的应用前景。
而SiC UMOSFET结构的特点是存在一个“U”的沟槽栅,并且沟道与器件表面垂直,有力的消除了器件内部的JFET电阻。在相同的条件下,UMOS结构器件的导通电阻会有显著降低。另外,UMOS结构的沟道区和源区都可以利用通过外延生长的方式来形成,可以避免由于离子注入的方法所带来的不利影响,使得碳化硅UMOS结构更有优势并能够获得更小的导通电阻。
碳化硅UMOSFET结构也存在一个很重要的自身问题,就是在器件阻断状态下,UMOS凹槽槽底部处的氧化层的电场强度非常之高,大约是其PN结峰值电场强度的2.5倍,而凹槽底部拐角处由于二维效应使得电场在这里更加集中,其电场强度会更高,这使得碳化硅UMOSFET器件在槽栅拐角处的栅氧化层更容易首先发生击穿,从而引起器件的可靠性下降。
现有技术中有以下4种典型方案:
1、将P型电场屏蔽结构放置并贴紧沟槽底部,在反向阻断时P型屏蔽层能很好的保护栅介质,使得栅槽角的电场强度不至于过大,而导致器件失效。但是当器件处于正向导通时,会形成新的JFET区,使电流的导通通道变窄,增加导通电阻,从而降低电流的导通能力。
2、将一侧的P型基区向下延伸并将栅结构一侧和部分栅底包围,这种结构可以保证器件的栅氧可靠性,但是同时也牺牲了一半的沟道,导致器件的电流输出能力降低了太多。
3、一种含内置浮空区的低导通电阻碳化硅MOSFET器件与制备方法。通过在栅结构下方一定距离的漂移区中增加3个P+浮空屏蔽层,克服了带第二导电类型栅氧保护区的碳化硅MOSFET结构导通电阻较大的缺陷,同时,第二导电类型浮空区引入新电场峰,增加了器件的击穿电压。
4、将传统的垂直栅结构改成V型栅结构,即用倾斜的晶面替代垂直的面。该半导体器件能够抑制沟槽栅极型半导体器件的沟道电阻,并且实现导通电阻的进一步减小。
发明内容
基于此,有必要提供一种技术方案,能够保证栅氧化层的可靠性,在器件反向阻断时,栅氧化层的电场强度能降低到很低,并且施加保护结构后也不影响器件的正向导通性能,保证导通电阻不会增加,电流输出能力也保持在较高水平。
为达到上述目的,本发明提供了带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法,包括以下步骤:包括以下步骤:
S10,在碳化硅N+衬底上外延生长N-漂移层;
S20,在N-漂移层上通过离子注入形成P+屏蔽层;
S30,之后再外延生长N-漂移层;
S40,在所述N-漂移层上离子注入形成N型电流扩展层;
S50,在所述N-漂移区上离子注入形成P型基区;
S60,在所述N-漂移区上离子注入形成N+欧姆接触区;
S70,在所述N-漂移区上离子注入形成P+欧姆接触区;
S80,为得到栅槽,对碳化硅进行第一次刻蚀,一次刻蚀所用掩膜包含一种低刻蚀选择比和一种较高刻蚀选择比的两种掩膜,分别用于形成栅槽下半部分的斜面和垂直面结构,其中,低刻蚀选择比的掩膜是指碳化硅与掩膜刻蚀选择比在0.2:1到1:1之间掩膜;较高刻蚀选择比的掩膜是指碳化硅与掩膜刻蚀选择比大于2:1的掩膜;
S90,为得到栅槽,对碳化硅进行第二次刻蚀,刻蚀掩膜为刻蚀选择比较高的掩膜,用于形成两侧都为垂直面的槽,其中,较高刻蚀选择比的掩膜是指碳化硅与掩膜刻蚀选择比大于2:1的掩膜;
S100,高温干氧氧化形成栅介质,所述高温为1100℃到1500℃;
S110,高掺杂的多晶硅填充栅槽,所述高掺杂具体为掺杂离子为硼离子或磷离子,掺杂范围在1×1019cm-3到×1020cm-3之间;
S120,在所述多晶硅上表面制备形成栅极,在第一P+欧姆接触区和第一N+欧姆接触区上方形成第一源极,在第二P+欧姆接触区和第二N+欧姆接触区上方形成第二源极,在衬底层下表面制备形成漏极。
优选地,所述S10,在碳化硅N+衬底上外延生长N-漂移层,其中N-漂移层为氮、磷掺杂,掺杂浓度在5×1015cm-3到8×1015cm-3之间。
优选地,所述S20,在N-漂移层上通过离子注入形成P+屏蔽层,其中P+屏蔽层掺杂为铝、硼掺杂,掺杂浓度在1×1019cm-3到2×1019cm-3之间,掺杂区厚度为0.2到0.5μm。
优选地,所述S30,之后再外延生长N-漂移层,具体为通过外延的方式在上述结构的上方生长与N-漂移区掺杂浓度相同的N-漂移层,生长的厚度3.5到4.5μm,掺杂方式同S10中下层的N-漂移层。
优选地,所述S40,在所述N-漂移层上离子注入形成N型电流扩展层,具体为通过氮或磷离子注入的方式形成N型电流扩展区,掺杂浓度在1×1017cm-3到2×1017cm-3,掺杂区厚度为0.15到0.25μm之间。
优选地,所述S50,在所述N-漂移区上离子注入形成P型基区,为先通过铝或者硼离子注入的方式形成L型的第二P型基区,掺杂浓度在1×1017cm-3到1×1018cm-3;再通过铝或者硼离子注入的方式形成第一P型基区,掺杂浓度为1×1017cm-3到2×1017cm-3,掺杂区厚度为0.5到1μm之间。
优选地,所述S60,在所述N-漂移区上离子注入形成N+欧姆接触区,具体为通过氮或者磷离子注入的方式形成第一N+欧姆接触区和第二N+欧姆接触区,掺杂浓度为1×1019cm-3到1×1020cm-3,掺杂区厚度为0.2到0.25μm之间。
优选地,所述S70,在所述N-漂移区上离子注入形成P+欧姆接触区,具体为通过铝或者硼离子注入的方式形成第一P+欧姆接触区和第二P+欧姆接触区,掺杂浓度为1×1019cm-3到1×1020cm-3,掺杂区厚度为0.2到0.25μm之间。
基于上述目的,本发明还提供了一种带深L形基区的单侧斜面栅碳化硅MOSFET器件,采用上述制备方法,包括从下至上依次为漏极金属、漏极金属上方的碳化硅N+衬底、N+衬底上的N-漂移区、N-漂移层中的P+屏蔽层、N-漂移层上方的栅结构、N-漂移层上方的栅结构左侧的第一P型基区、N-漂移层上方的栅结构右侧的第二P型基区、第一P型基区上方左侧为第一P+欧姆接触区、上方右侧为第一N+欧姆接触区,第一P型基区下方的N型电流扩展层,第二P型基区上方左侧的第二N+欧姆接触区、上方右侧的第二P+欧姆接触区;所述第一P+欧姆接触区和第一N+欧姆接触区上方设有第一源极金属;所述第二P+欧姆接触区和第二N+欧姆接触区上方设有第二源极金属;所述栅结构包括多晶硅、包围多晶硅底部和侧壁的栅介质以及设于多晶硅上方的栅极金属。
优选地,所述栅结构底部为斜面状的一侧,其斜面与水平的夹角为30°-60°;所述P+屏蔽层的顶部距离栅结构最底部的间距为0.5到2μm。
本发明的有益效果至少包括:
1、现有对栅氧介质的保护结构要么是P+屏蔽层,要么是深L型P型基区。本发明通过P+屏蔽层和深L型P型基区的组合结构,在器件反向阻断时,能够最大程度上保护栅氧介质,保证栅氧介质处的电场强度远低于3MV/cm,提高了器件的长期可靠性;
2、现有栅结构两侧多为垂直面,槽角为直角结构,这容易引起槽角的电场强度过大。本发明栅结构一侧底部为斜面结构,一定程度上降低了栅氧介质上电场集中的现象,并且器件在正向导通时,P+屏蔽层和栅结构底部特殊的斜面结构之间电场强度会更大些,如此电子在其中的漂移速度会增大,电流密度会增大。如此在对栅氧介质保护的同时,我们特殊的结构也能很好的保证导通电阻不会增大,电流导通能力保持在较高水平。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明实施例的带深L形基区的单侧斜面栅碳化硅MOSFET器件的整体结构剖视图;
图2为本发明实施例的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法的S10后器件结构图;
图3为本发明实施例的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法的S20后器件结构图;
图4为本发明实施例的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法的S30后器件结构图;
图5为本发明实施例的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法的S51后器件结构图;
图6为本发明实施例的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法的S40后器件结构图;
图7为本发明实施例的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法的S52后器件结构图;
图8为本发明实施例的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法的S60后器件结构图;
图9为本发明实施例的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法的S70后器件结构图;
图10为本发明实施例的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法的S80后器件结构图;
图11为本发明实施例的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法的S90后器件结构图;
图12为本发明实施例的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法的S100后器件结构图;
图13为本发明实施例的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法的S110后器件结构图;
图14为本发明实施例的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法的S120后器件结构图。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法,包括以下步骤:
S10,在N+衬底上外延生长一定厚度的N-漂移层,漂移层为氮、磷掺杂,掺杂浓度在5×1015cm-3到8×1015cm-3之间。
S20,在N-漂移层内部通过铝离子注入的方式形成P+屏蔽层,其中P+屏蔽层掺杂为铝、硼掺杂,掺杂浓度在1×1019cm-3到2×1019cm-3之间,掺杂区厚度为0.2到0.5μm。
S30,在N-漂移层上方,通过外延的方式在上述结构的上方生长与N-漂移区掺杂浓度相同的N-漂移层,生长的厚度3.5到4.5μm,掺杂方式同下层的N-漂移层一样。
S51,在N-漂移层上方,通过铝或者硼离子注入的方式形成L型的第二P型基区,掺杂浓度在1×1017cm-3到1×1018cm-3
S40,在N-漂移层上方,通过氮或磷离子注入的方式形成N型电流扩展层,掺杂浓度在1×1017cm-3到2×1017cm-3,掺杂区厚度为0.15到0.25μm之间。
S52,在N-漂移层上方,通过铝或者硼离子注入的方式形成第一P型基区,掺杂浓度为1×1017cm-3到2×1017cm-3,掺杂区厚度为0.5到1μm之间。
S60,在N-漂移层上方,通过氮或者磷离子注入的方式形成第一N+欧姆接触区和第二N+欧姆接触区,掺杂浓度为1×1019cm-3到1×1020cm-3,掺杂区厚度为0.2到0.25μm之间。
S70,在N-漂移层上方,通过铝或者硼离子注入的方式形成第一P+欧姆接触区和第二P+欧姆接触区,掺杂浓度为1×1019cm-3到1×1020cm-3,掺杂区厚度为0.2到0.25μm之间。
S80,对碳化硅进行第一次刻蚀,形成一侧斜面结构和一侧垂直结构的栅槽,其中低刻蚀选择比的掩膜是指碳化硅与掩膜刻蚀选择比在0.2:1到1:1之间掩膜,例如:光刻胶,较高刻蚀选择比的掩膜是指碳化硅与掩膜刻蚀选择比大于2:1的掩膜,例如:二氧化硅、氧化铝、镍、铜、铬等;具体实施例中,一次刻蚀用到两种掩膜,所用低选择比的掩膜为光刻胶,所用较高刻蚀选择比的掩膜为二氧化硅或者氧化铝,低刻蚀比的掩膜由于发生横向刻蚀较为严重,可用于形成斜面,较高刻蚀选择比的硬掩膜横向刻蚀作用较小,可用于形成垂直面,刻蚀深度在1.5到2μm之间。
S90,对碳化硅进行第二次刻蚀,形成两侧都为垂直结构的栅槽的上半部分,其中,较高刻蚀选择比的掩膜是指碳化硅与掩膜刻蚀选择比大于2:1的掩膜,例如:二氧化硅、氧化铝、镍、铜、铬等;具体实施例中,所用的较高刻蚀选择比掩膜为二氧化硅或者氧化铝,刻蚀深度为1到1.5μm之间。
S100,进行干氧氧化,氧化温度在1100℃到1500℃之间,用于形成栅介质二氧化硅,在栅结构两侧垂直面上形成45到55nm厚度二氧化硅。
S110,在刻蚀形成的栅槽内进行多晶硅淀积,并进行P型掺杂,所掺杂离子为硼离子或磷离子等,掺杂范围在1×1019cm-3到×1020cm-3之间;之后进行高温退货激活,高温范围在1000℃到1200℃之间。
S120,在所述多晶硅上表面制备形成栅极,所用金属为Al。在第一P+欧姆接触区和第一N+欧姆接触区上方形成第一源极,所用金属为Ni/Al、Ni/Ti、Al/Ti/Ni等。在第二P+欧姆接触区和第二N+欧姆接触区上方形成第二源极,所用金属为Ni/Al、Ni/Ti、Al/Ti/Ni等。在衬底层下表面制备形成漏极,所用金属为Ni、Ni/Ti/Ag等,长完金属进行高温退火的温度在750℃到1050℃之间。
经过本发明带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法得到的器件剖面图参见图1,包括从下至上依次为漏极金属12;漏极金属12上方的碳化硅N+衬底11;N+衬底11上的N-漂移区10;N-漂移层中的P+屏蔽层9;所述N-漂移层10上方的栅结构,N-漂移层10上方的栅结构左侧的第一P型基区5、N-漂移层10上方的栅结构右侧的第二P型基区51,第一P型基区5上方左侧为第一P+欧姆接触区3、上方右侧为第一N+欧姆接触区4,第一P型基区5下方的N型电流扩展层6,第二P型基区51上方左侧的第二N+欧姆接触区41、上方右侧的第二P+欧姆接触区31;所述第一P+欧姆接触区3和第一N+欧姆接触区4上方设有第一源极金属2;所述第二P+欧姆接触区31和第二N+欧姆接触区41上方设有第二源极金属21;所述栅结构包括多晶硅7、包围多晶硅7底部和侧壁的栅介质8以及设于多晶硅6上方的栅极金属1;其中α表示栅结构底部斜面部分与器件表面的夹角,范围为30°到60°;h表示P+屏蔽层的顶部距离栅结构最底部的间距,范围为0.5到2μm。。
参见图2,为S10后的器件结构图,S10,在N+衬底11上外延生长一定厚度的N-漂移层10,漂移层为氮、磷掺杂,掺杂浓度在5×1015cm-3到8×1015cm-3之间。
参见图3,为S20后的器件结构图,S20,在N-漂移层10内部通过铝离子注入的方式形成P+屏蔽层9,其中P+屏蔽层9掺杂为铝、硼掺杂,掺杂浓度在1×1019cm-3到2×1019cm-3之间,掺杂区厚度为0.2到0.5μm。
参见图4,为S30后的器件结构图,S30,在N-漂移层10上方,通过外延的方式在上述结构的上方生长与N-漂移区10掺杂浓度相同的N-漂移层10,生长的厚度3.5到4.5μm,掺杂方式同下层的N-漂移层10一样。
参见图5,为S51后的器件结构图,S51,在N-漂移层10上方,通过铝或者硼离子注入的方式形成L型的第二P型基区51,掺杂浓度在1×1017cm-3到1×1018cm-3
参见图6,为S40后的器件结构图,S40,在N-漂移层10上方,通过氮或磷离子注入的方式形成N型电流扩展层6,掺杂浓度在1×1017cm-3到2×1017cm-3,掺杂区厚度为0.15到0.25μm之间。
参见图7,为S52后的器件结构图,S52,在N-漂移层10上方,通过铝或者硼离子注入的方式形成第一P型基区5,掺杂浓度为1×1017cm-3到2×1017cm-3,掺杂区厚度为0.5到1μm之间。
参见图8,为S60后的器件结构图,S60,在N-漂移层10上方,通过氮或者磷离子注入的方式形成第一N+欧姆接触区4和第二N+欧姆接触区41,掺杂浓度为1×1019cm-3到1×1020cm-3,掺杂区厚度为0.2到0.25μm之间。
参见图9,为S70后的器件结构图,S70,在N-漂移层10上方,通过铝或者硼离子注入的方式形成第一P+欧姆接触区3和第二P+欧姆接触区31,掺杂浓度为1×1019cm-3到1×1020cm-3,掺杂区厚度为0.2到0.25μm之间。
参见图10,为S80后的器件结构图,S80,对碳化硅进行第一次刻蚀,形成一侧斜面结构和一侧垂直结构的栅槽,其中低刻蚀选择比的掩膜是指碳化硅与掩膜刻蚀选择比在0.2:1到1:1之间掩膜,例如:光刻胶,较高刻蚀选择比的掩膜是指碳化硅与掩膜刻蚀选择比大于2:1的掩膜,例如:二氧化硅、氧化铝、镍、铜、铬等;具体实施例中,一次刻蚀用到两种掩膜,所用低选择比的掩膜为光刻胶,所用较高刻蚀选择比的掩膜为二氧化硅或者氧化铝,如图11所示,低刻蚀比的掩膜由于发生横向刻蚀较为严重,可用于形成斜面,较高刻蚀选择比的硬掩膜横向刻蚀作用较小,可用于形成垂直面,刻蚀深度在1.5到2μm之间。
参见图11,为S90后的器件结构图,S90,对碳化硅进行第二次刻蚀,形成两侧都为垂直结构的栅槽的上半部分,其中,较高刻蚀选择比的掩膜是指碳化硅与掩膜刻蚀选择比大于2:1的掩膜,例如:二氧化硅、氧化铝、镍、铜、铬等;具体实施例中,所用的较高刻蚀选择比掩膜为二氧化硅或者氧化铝,刻蚀深度为1到1.5μm之间。
参见图12,为S100后的器件结构图,S100,进行干氧氧化,氧化温度在1100℃到1500℃之间,用于形成栅介质二氧化硅,在栅结构两侧垂直面上形成45到55nm厚度二氧化硅。
参见图13,为S110后的器件结构图,S110,在刻蚀形成的栅槽内进行多晶硅淀积,并进行P型掺杂,所掺杂离子为硼离子或磷离子等,掺杂范围在1×1019cm-3到×1020cm-3之间;之后进行高温退货激活,高温范围在1000℃到1200℃之间。
参见图14,为S120后的器件结构图,S120,在所述多晶硅7上表面制备形成栅极金属1,所用金属为Al。在第一P+欧姆接触区3和第一N+欧姆接触区4上方形成第一源极金属2,所用金属为Ni/Al、Ni/Ti、Al/Ti/Ni等。在第二P+欧姆接触区31和第二N+欧姆接触区41上方形成第二源极金属21,所用金属为Ni/Al、Ni/Ti、Al/Ti/Ni等。在衬底层下表面制备形成漏极金属12,所用金属为Ni、Ni/Ti/Ag等,长完金属进行高温退火的温度在750℃到1050℃之间。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其做出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (10)

1.一种带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法,其特征在于,包括以下步骤:
S10,在碳化硅N+衬底上外延生长N-漂移层;
S20,在N-漂移层上通过离子注入形成P+屏蔽层;
S30,之后再外延生长N-漂移层;
S40,在所述N-漂移层上离子注入形成N型电流扩展层;
S50,在所述N-漂移区上离子注入形成P型基区;
S60,在所述N-漂移区上离子注入形成N+欧姆接触区;
S70,在所述N-漂移区上离子注入形成P+欧姆接触区;
S80,为得到栅槽,对碳化硅进行第一次刻蚀,一次刻蚀所用掩膜包含一种低刻蚀选择比和一种较高刻蚀选择比的两种掩膜,分别用于形成栅槽下半部分的斜面和垂直面结构,其中,低刻蚀选择比的掩膜是指碳化硅与掩膜刻蚀选择比在0.2:1到1:1之间掩膜;较高刻蚀选择比的掩膜是指碳化硅与掩膜刻蚀选择比大于2:1的掩膜;
S90,为得到栅槽,对碳化硅进行第二次刻蚀,刻蚀掩膜为刻蚀选择比较高的掩膜,用于形成两侧都为垂直面的槽,其中,较高刻蚀选择比的掩膜是指碳化硅与掩膜刻蚀选择比大于2:1的掩膜;
S100,高温干氧氧化形成栅介质,所述高温为1100℃到1500℃;
S110,高掺杂的多晶硅填充栅槽,所述高掺杂具体为掺杂离子为硼离子或磷离子,掺杂范围在1×1019cm-3到×1020cm-3之间;
S120,在所述多晶硅上表面制备形成栅极,在第一P+欧姆接触区和第一N+欧姆接触区上方形成第一源极,在第二P+欧姆接触区和第二N+欧姆接触区上方形成第二源极,在衬底层下表面制备形成漏极。
2.根据权利要求1所述的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法,其特征在于,所述S10,在碳化硅N+衬底上外延生长N-漂移层,其中N-漂移层为氮、磷掺杂,掺杂浓度在5×1015cm-3到8×1015cm-3之间。
3.根据权利要求1所述的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法,其特征在于,所述S20,在N-漂移层上通过离子注入形成P+屏蔽层,其中P+屏蔽层掺杂为铝、硼掺杂,掺杂浓度在1×1019cm-3到2×1019cm-3之间,掺杂区厚度为0.2到0.5μm。
4.根据权利要求2所述的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法,其特征在于,所述S30,之后再外延生长N-漂移层,具体为通过外延的方式在上述结构的上方生长与N-漂移区掺杂浓度相同的N-漂移层,生长的厚度3.5到4.5μm,掺杂方式同S10中下层的N-漂移层。
5.根据权利要求1所述的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法,其特征在于,所述S40,在所述N-漂移层上离子注入形成N型电流扩展层,具体为通过氮或磷离子注入的方式形成N型电流扩展区,掺杂浓度在1×1017cm-3到2×1017cm-3,掺杂区厚度为0.15到0.25μm之间。
6.根据权利要求1所述的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法,其特征在于,所述S50,在所述N-漂移区上离子注入形成P型基区,为先通过铝或者硼离子注入的方式形成L型的第二P型基区,掺杂浓度在1×1017cm-3到1×1018cm-3;再通过铝或者硼离子注入的方式形成第一P型基区,掺杂浓度为1×1017cm-3到2×1017cm-3,掺杂区厚度为0.5到1μm之间。
7.根据权利要求1所述的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法,其特征在于,所述S60,在所述N-漂移区上离子注入形成N+欧姆接触区,具体为通过氮或者磷离子注入的方式形成第一N+欧姆接触区和第二N+欧姆接触区,掺杂浓度为1×1019cm-3到1×1020cm-3,掺杂区厚度为0.2到0.25μm之间。
8.根据权利要求1所述的带深L形基区的单侧斜面栅碳化硅MOSFET器件的制备方法,其特征在于,所述S70,在所述N-漂移区上离子注入形成P+欧姆接触区,具体为通过铝或者硼离子注入的方式形成第一P+欧姆接触区和第二P+欧姆接触区,掺杂浓度为1×1019cm-3到1×1020cm-3,掺杂区厚度为0.2到0.25μm之间。
9.一种采用权利要求1-8之一所述制备方法制备的带深L形基区的单侧斜面栅碳化硅MOSFET器件,其特征在于,包括从下至上依次为漏极金属、漏极金属上方的碳化硅N+衬底、N+衬底上的N-漂移区、N-漂移层中的P+屏蔽层、N-漂移层上方的栅结构、N-漂移层上方的栅结构左侧的第一P型基区、N-漂移层上方的栅结构右侧的第二P型基区、第一P型基区上方左侧为第一P+欧姆接触区、上方右侧为第一N+欧姆接触区,第一P型基区下方的N型电流扩展层,第二P型基区上方左侧的第二N+欧姆接触区、上方右侧的第二P+欧姆接触区;所述第一P+欧姆接触区和第一N+欧姆接触区上方设有第一源极金属;所述第二P+欧姆接触区和第二N+欧姆接触区上方设有第二源极金属;所述栅结构包括多晶硅、包围多晶硅底部和侧壁的栅介质以及设于多晶硅上方的栅极金属。
10.根据权利要求1所述的带深L形基区的单侧斜面栅碳化硅MOSFET器件,其特征在于,所述栅结构底部斜面状的一侧,其斜面与水平的夹角为30°-60°;所述P+屏蔽层的顶部距离栅结构最底部的间距为0.5到2μm。
CN202111322446.2A 2021-11-09 2021-11-09 带深l形基区的单侧斜面栅碳化硅mosfet器件及其制备方法 Pending CN113990744A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111322446.2A CN113990744A (zh) 2021-11-09 2021-11-09 带深l形基区的单侧斜面栅碳化硅mosfet器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111322446.2A CN113990744A (zh) 2021-11-09 2021-11-09 带深l形基区的单侧斜面栅碳化硅mosfet器件及其制备方法

Publications (1)

Publication Number Publication Date
CN113990744A true CN113990744A (zh) 2022-01-28

Family

ID=79747497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111322446.2A Pending CN113990744A (zh) 2021-11-09 2021-11-09 带深l形基区的单侧斜面栅碳化硅mosfet器件及其制备方法

Country Status (1)

Country Link
CN (1) CN113990744A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118136681A (zh) * 2024-05-08 2024-06-04 南京第三代半导体技术创新中心有限公司 不对称沟槽型碳化硅mosfet功率器件及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118136681A (zh) * 2024-05-08 2024-06-04 南京第三代半导体技术创新中心有限公司 不对称沟槽型碳化硅mosfet功率器件及其制备方法

Similar Documents

Publication Publication Date Title
US10784338B2 (en) Field effect transistor devices with buried well protection regions
US9722017B2 (en) Silicon carbide semiconductor device
JP5665912B2 (ja) 半導体装置及びその製造方法
US9306061B2 (en) Field effect transistor devices with protective regions
US11961904B2 (en) Semiconductor device including trench gate structure and buried shielding region and method of manufacturing
CN116469923B (zh) 高可靠性沟槽型碳化硅mosfet器件及其制造方法
JP2012033618A (ja) バイポーラ半導体素子
JP2013062397A (ja) 炭化珪素半導体装置の製造方法
CN113990919A (zh) 碳化硅半导体结构、器件及制备方法
CN116759461A (zh) 一种高温稳定性的功率mosfet器件及其制备方法
CN115148820A (zh) 一种SiC沟槽MOSFET器件及其制造方法
JP5870672B2 (ja) 半導体装置
CN113990744A (zh) 带深l形基区的单侧斜面栅碳化硅mosfet器件及其制备方法
CN103681256A (zh) 一种新型碳化硅mosfet器件及其制作方法
CN117577688A (zh) 一种沟槽型碳化硅mosfet器件及其制造方法
EP3637474B1 (en) Silicon carbide switch device and manufacturing method therefor
CN216213476U (zh) 带深l形基区的单侧斜面栅碳化硅mosfet器件
JP3637052B2 (ja) SiC−MISFET及びその製造方法
CN116072698A (zh) 一种锥形栅mosfet器件结构及其制作方法
CN113972261A (zh) 碳化硅半导体器件及制备方法
CN110556415B (zh) 一种高可靠性外延栅的SiC MOSFET器件及其制备方法
CN215069992U (zh) 新型SiC MOSFET功率器件
CN117894846B (zh) 低功耗平面栅型碳化硅mosfet功率器件及其制造方法
CN117317026B (zh) 一种半导体器件及其制造方法
JP7331393B2 (ja) 炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Country or region after: China

Address after: 310018 Xiasha Higher Education Zone, Hangzhou, Zhejiang

Applicant after: HANGZHOU DIANZI University

Applicant after: Hangzhou University of Electronic Science and Technology Fuyang Institute of Electronic Information Co.,Ltd.

Address before: 311400 3rd floor, building 3, Yinhu Huayuan, Yinhu street, Fuyang District, Hangzhou City, Zhejiang Province

Applicant before: Hangzhou University of Electronic Science and Technology Fuyang Institute of Electronic Information Co.,Ltd.

Country or region before: China

Applicant before: HANGZHOU DIANZI University

CB02 Change of applicant information