CN116759461A - 一种高温稳定性的功率mosfet器件及其制备方法 - Google Patents

一种高温稳定性的功率mosfet器件及其制备方法 Download PDF

Info

Publication number
CN116759461A
CN116759461A CN202311042261.5A CN202311042261A CN116759461A CN 116759461 A CN116759461 A CN 116759461A CN 202311042261 A CN202311042261 A CN 202311042261A CN 116759461 A CN116759461 A CN 116759461A
Authority
CN
China
Prior art keywords
type
layer
region
silicon carbide
mosfet device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311042261.5A
Other languages
English (en)
Inventor
李伟
高苗苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Guanyu Semiconductor Co ltd
Original Assignee
Shenzhen Guanyu Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Guanyu Semiconductor Co ltd filed Critical Shenzhen Guanyu Semiconductor Co ltd
Priority to CN202311042261.5A priority Critical patent/CN116759461A/zh
Publication of CN116759461A publication Critical patent/CN116759461A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种高温稳定性的功率MOSFET器件及其制备方法,功率MOSFET器件包括碳化硅衬底、N‑型碳化硅漂移层、浮空P+型屏蔽环、N型外延层、JFET区、P‑阱区、多晶栅极层、栅极氧化层、N+型掺杂区和P+型屏蔽区等;本发明通过在MOSFET器件的P‑阱区之间的JFET区采用浅槽结构的栅极氧化层,以及注入高浓度的N+型掺杂区,在降低器件开启损耗的基础上降低器件的比导通电阻,提高器件的电流能力;通过加入P+型屏蔽区和P+型屏蔽环,能够大幅降低阻断状态下器件的栅极氧化层的电场应力,提高芯片长期使用的可靠性,有利于延长器件的使用寿命,提高MOSFET器件的工作效率。

Description

一种高温稳定性的功率MOSFET器件及其制备方法
技术领域
本发明涉及半导体器件制造领域,尤其是一种高温稳定性的功率MOSFET器件及其制备方法。
背景技术
碳化硅(SiC)是新型宽禁带半导体材料,具有出色的物理、化学和电性能。碳化硅的击穿电场强度是传统硅的10倍,导热率是硅的3倍,且具有更高的开关频率,可减小电路中储能元件的损耗和体积。理论上,SiC器件可以在600℃以上的高温环境下工作,且具有优异的抗辐射性能,大大提高了其高温稳定性。这使得基于碳化硅的功率半导体器件,在大功率和高温应用环境中非常具有吸引力和应用前景。其中,碳化硅金属氧化物半导体场效应管具有低导通电阻、开关速度快、耐高温等特点,在高压变频、新能源汽车、轨道交通等领域具有巨大的应用优势。
碳化硅功率器件在阻断状态时,由于碳化硅材料的高击穿电场,碳化硅功率器件的栅氧层承受着更高的电场应力,会损害器件的通流能力,导致芯片的导通电阻增大、导通损耗增大,不利于器件使用的长期可靠性;其次,中低压碳化硅MOSFET的比导通电阻受限于器件反型层沟道的电子迁移率,从而制约器件的电流能力。
发明内容
本发明为了解决上述存在的“碳化硅功率器件的栅氧层承受着更高的电场应力,会损害器件的通流能力,导致芯片的导通电阻增大、导通损耗增大,不利于器件使用的长期可靠性;以及中低压碳化硅MOSFET的比导通电阻受限于器件反型层沟道的电子迁移率,从而制约器件的电流能力”的技术问题,提供一种高温稳定性的功率MOSFET器件及其制备方法。
本发明的技术方案是这样实现的:
一种高温稳定性的功率MOSFET器件,包括:
碳化硅衬底;
N-型碳化硅漂移层,所述N-型碳化硅漂移层设于所述碳化硅衬底上方;所述N-型碳化硅漂移层中设有若干浮空P+型屏蔽环;
N型外延层,所述N型外延层设于所述N-型碳化硅漂移层上方;所述N型外延层中部设有JFET区,所述JFET区两侧分别设有P-阱区,所述P-阱区中设有N++源区和P++增强区,所述N++源区和所述P++增强区连接;
多晶栅极层,所述多晶栅极层设于所述N型外延层上方;所述多晶栅极层底部设为向下凹陷的浅槽结构;所述多晶栅极层底部设有栅极氧化层,所述栅极氧化层设为向下凹陷的浅槽结构;
N+型掺杂区,所述N+型掺杂区设于所述栅极氧化层下方;
P+型屏蔽区,所述P+型屏蔽区设于所述N+型掺杂区下方,所述P+型屏蔽区设于所述JFET区上方;所述P+型屏蔽区不与所述P-阱区接触;
以及漏极金属层,所述漏极金属层设于所述碳化硅衬底下方;源极金属层,所述源极金属层设于所述多晶栅极层上方。
作为优选,所述浮空P+型屏蔽环包括的各个屏蔽环宽度从中间到两边逐渐减小。
作为优选,所述N型外延层的掺杂浓度大于所述N-型碳化硅漂移层的掺杂浓度;所述P+型屏蔽区的掺杂浓度大于所述N型外延层的掺杂浓度。
作为优选,所述N型外延层高度为2~6μm;所述栅极氧化层深度为200~300nm。
一种高温稳定性的功率MOSFET器件的制备方法,包括:
S1.提供碳化硅衬底,在所述碳化硅衬底上形成N-型碳化硅漂移层;
S2.在所述N-型碳化硅漂移层中制备出具有设定宽度和间距的若干浮空P+型屏蔽环;
S3.采用外延工艺,在所述N-型碳化硅漂移层上方制作N型外延层,通过刻蚀做出光刻标记;
S4.在所述N型外延层上两侧制造P-阱区,在所述P-阱区表面进行离子注入形成N++源区和P++增强区,在所述P-阱区之间形成JFET区;
S5.在所述JFET区制造深度为200nm的浅槽氧化层,在所述浅槽氧化层下方注入高掺杂的N+型掺杂区;在所述N+型掺杂区下方形成P+型屏蔽区;所述P+型屏蔽区与所述P-阱区不接触;
S6.进行栅养生长;在所述浅槽氧化层上淀积多晶硅层,采用CMP法将所述多晶硅层进行表面平坦化处理,形成多晶栅极层;
S7.在所述多晶栅极层上方形成源极金属层;在所述碳化硅衬底下方形成漏极金属层。
作为优选,所述碳化硅衬底具有主水平表面、相对面和介电区域;所述介电区域设于所述碳化硅衬底中并且与所述主水平表面和所述相对面隔开。
作为优选,所述N型外延层表面进行热氧化处理,以形成牺牲氧化层;通过湿法刻蚀将所述牺牲氧化层去除。
作为优选,所述P-阱区采用外延或离子注入的方法制作;所述离子注入包括在所述N型外延层上制作图形化掩膜,注入第二导电类型杂质,去除掩膜后于1400℃~2000℃下退火3~30min。
作为优选,所述离子注入的注入倾角为20°~50°。
作为优选,所述浅槽氧化层的制造环境温度为500℃~800℃。
与现有技术相比,本发明的有益效果是:
本发明通过在器件的P-阱区之间的JFET区采用浅槽结构的栅极氧化层,以及注入高浓度的N+型掺杂区,在降低器件开启损耗的基础上降低器件的比导通电阻,提高器件的电流能力;通过加入P+型屏蔽区和P+型屏蔽环,能够大幅降低阻断状态下器件的栅极氧化层的电场应力,提高芯片长期使用的可靠性,有利于延长器件的使用寿命,提高MOSFET器件的工作效率。
附图说明
图1是本发明一种高温稳定性的功率MOSFET器件的结构示意图;
图2是本发明一种高温稳定性的功率MOSFET器件的制备方法的流程图。
1-碳化硅衬底;2-N型外延层;3-P-阱区;4-P++增强区;5-多晶栅极层;6-栅极氧化层;7-N+型掺杂区;8-P+型屏蔽区;9-源极金属层;10-N++源区;11-N-型碳化硅漂移层;12-漏极金属层;13-JFET区;14-浮空P+型屏蔽环。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置的例子。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1所示,一种高温稳定性的功率MOSFET器件,包括:
碳化硅衬底1;
N-型碳化硅漂移层11,所述N-型碳化硅漂移层11设于所述碳化硅衬底1上方;所述N-型碳化硅漂移层11中设有若干浮空P+型屏蔽环14,所述浮空P+型屏蔽环14包括的各个屏蔽环宽度从中间到两边逐渐减小,多个浮空P+型屏蔽环14的宽度和间距可根据实际需要进行设定,可以保证正向导通时,电流在浮空P+型屏蔽环14之间流过,减小对导通电阻的影响;
N型外延层2,所述N型外延层2设于所述N-型碳化硅漂移层11上方,所述N型外延层2高度为2~6μm;所述N型外延层2的掺杂浓度大于所述N-型碳化硅漂移层11的掺杂浓度,所述N型外延层2的掺杂浓度至少是N-型碳化硅漂移层11的4倍,从而二者结合可以降低导通损耗;所述N型外延层2中部设有JFET区13,所述JFET区13两侧分别设有P-阱区3,所述P-阱区3中设有N++源区10和P++增强区4,所述N++源区10和所述P++增强区4连接;
所述N++源区10为第一导电类型的源区,位于所述P-阱区3表面内,所述N++源区10的上表面与所述P-阱区3的上表面相平齐,所述N++源区10的离子掺杂浓度大于所述碳化硅衬底1的离子掺杂浓度,所述N++源区10的宽度小于所述P-阱区3的宽度;
所述P++增强区4为第二导电类型的掺杂区,所述P++增强区4与所述N++源区10并排设于所述P-阱区3内,所述P++增强区4的上表面与所述P-阱区3的上表面相平齐,所述P++增强区4的离子掺杂浓度大于所述P-阱区3的离子掺杂浓度,所述P++增强区4的深度小于或等于所述P-阱区3的深度;
多晶栅极层5,所述多晶栅极层5设于所述N型外延层2上方;所述多晶栅极层5底部设为向下凹陷的浅槽结构;所述多晶栅极层5底部设有栅极氧化层6,所述栅极氧化层6设为向下凹陷的浅槽结构,所述栅极氧化层6深度为200~300nm;
N+型掺杂区7,所述N+型掺杂区7设于所述栅极氧化层6下方;
在器件导通时,电子电流经所述N+型掺杂区7流向漏极,由于所述N+型掺杂区7不会被耗尽,低压导通时,该区域的电位与漏极电压保持线性相关;由于所述多晶栅极层5下方电子积累层低的电阻,加载在所述栅极氧化层6上的电压完全由所述N+型掺杂区7的电位支配,而不受所述N+型掺杂区7与所述P-阱区3之间的结型场效应晶体管效应影响,因此在低压导通时,所述浅槽结构的栅极氧化层6上的电压相比于平面栅MOSFET更高,器件的电流能力更强;
P+型屏蔽区8,所述P+型屏蔽区8设于所述N+型掺杂区7下方,所述P+型屏蔽区8设于所述JFET区13上方;所述P+型屏蔽区8的掺杂浓度大于所述N型外延层2的掺杂浓度;所述P+型屏蔽区8不与所述P-阱区3接触;所述P+型屏蔽区8为第二导电类型的掺杂区,所述P+型屏蔽区8的设置能够大幅降低阻断态下器件的栅极氧化层6的电场应力,大幅提高芯片长期使用的可靠性;
以及漏极金属层12,所述漏极金属层12设于所述碳化硅衬底1下方;源极金属层9,所述源极金属层9设于所述多晶栅极层5上方。
对应地,第一导电类型和第二导电类型相反。例如,第一导电类型为N型时,第二导电类型为P型;第一导电类型为P型时,第二导电类型为N型。
本实施例提供一种高温稳定性的功率MOSFET器件,通过在器件的P-阱区3之间的JFET区13采用浅槽结构的栅极氧化层6,以及高浓度的N+型掺杂区7,在降低器件开启损耗的基础上降低器件的比导通电阻,提高器件的电流能力;通过加入P+型屏蔽区8和P+型屏蔽环,能够大幅降低阻断状态下器件的栅极氧化层6的电场应力,对器件导通特性的影响很小,可实现良好的栅极氧化层6的电场应力和导通电阻之间的折中关系,提高芯片长期使用的可靠性,有利于延长器件的使用寿命,提高MOSFET器件的工作效率。
实施例2
如图2所示,在实施例1的基础上,本实施例提供一种高温稳定性的功率MOSFET器件的制备方法,包括:
S1.提供碳化硅衬底1,所述碳化硅衬底1具有主水平表面、相对面和介电区域;所述介电区域设于所述碳化硅衬底1中并且与所述主水平表面和所述相对面隔开;在所述碳化硅衬底1上形成N-型碳化硅漂移层11;
S2.在所述N-型碳化硅漂移层11中制备出具有设定宽度和间距的若干浮空P+型屏蔽环14;
S3.采用外延工艺,在所述N-型碳化硅漂移层11上方制作N型外延层2,通过刻蚀做出光刻标记;所述N型外延层2表面进行热氧化处理,以形成牺牲氧化层;通过湿法刻蚀将所述牺牲氧化层去除;
S4.在所述N型外延层2上两侧制造P-阱区3,所述P-阱区3采用外延或离子注入的方法制作;所述离子注入包括在所述N型外延层2上制作图形化掩膜,注入导电类型杂质,去除掩膜后于1400℃~2000℃下退火3~30min;在所述P-阱区3表面进行离子注入形成N++源区10和P++增强区4,在所述P-阱区3之间形成JFET区13;所述离子注入的注入倾角为20°~50°;
S5.在所述JFET区13制造深度为200nm的浅槽氧化层,所述浅槽氧化层的制造环境温度为500℃~800℃;在所述浅槽氧化层下方注入高掺杂的N+型掺杂区7;在所述N+型掺杂区7下方形成P+型屏蔽区8;所述P+型屏蔽区8与所述P-阱区3不接触;
S6.进行栅养生长;在所述浅槽氧化层上淀积多晶硅层,采用CMP法将所述多晶硅层进行表面平坦化处理,形成多晶栅极层5;
S7.在所述多晶栅极层5上方形成源极金属层9;在所述碳化硅衬底1下方形成漏极金属层12。
本实施例提供一种高温稳定性的功率MOSFET器件的制备方法,通过在器件的P-阱区3之间的JFET区13采用浅槽氧化层,以及注入高掺杂浓度的N+型掺杂区7,在降低器件开启损耗的基础上降低器件的比导通电阻,提高器件的电流能力;通过加入P+型屏蔽区8和P+型屏蔽环,能够大幅降低阻断状态下器件的栅极氧化层6的电场应力,对器件导通特性的影响很小,可实现良好的栅极氧化层6的电场应力和导通电阻之间的折中关系,提高芯片长期使用的可靠性,有利于延长器件的使用寿命,提高MOSFET器件的工作效率。
前述的实例仅是说明性的,用于解释本发明所述方法的一些特征。所附的权利要求旨在要求可以设想的尽可能广的范围,且本文所呈现的实施例仅是根据所有可能的实施例的组合的选择的实施方式的说明。因此,申请人的用意是所附的权利要求不被说明本发明的特征的示例的选择限制。在权利要求中所用的一些数值范围也包括了在其之内的子范围,这些范围中的变化也应在可能的情况下解释为被所附的权利要求覆盖。

Claims (10)

1.一种高温稳定性的功率MOSFET器件,其特征在于:包括:
碳化硅衬底(1);
N-型碳化硅漂移层(11),所述N-型碳化硅漂移层(11)设于所述碳化硅衬底(1)上方;所述N-型碳化硅漂移层(11)中设有若干浮空P+型屏蔽环(14);
N型外延层(2),所述N型外延层(2)设于所述N-型碳化硅漂移层(11)上方;所述N型外延层(2)中部设有JFET区(13),所述JFET区(13)两侧分别设有P-阱区(3),所述P-阱区(3)中设有N++源区(10)和P++增强区(4),所述N++源区(10)和所述P++增强区(4)连接;
多晶栅极层(5),所述多晶栅极层(5)设于所述N型外延层(2)上方;所述多晶栅极层(5)底部设为向下凹陷的浅槽结构;所述多晶栅极层(5)底部设有栅极氧化层(6),所述栅极氧化层(6)设为向下凹陷的浅槽结构;
N+型掺杂区(7),所述N+型掺杂区(7)设于所述栅极氧化层(6)下方;
P+型屏蔽区(8),所述P+型屏蔽区(8)设于所述N+型掺杂区(7)下方,所述P+型屏蔽区(8)设于所述JFET区(13)上方;所述P+型屏蔽区(8)不与所述P-阱区(3)接触;
以及漏极金属层(12),所述漏极金属层(12)设于所述碳化硅衬底(1)下方;源极金属层(9),所述源极金属层(9)设于所述多晶栅极层(5)上方。
2.根据权利要求1所述的一种高温稳定性的功率MOSFET器件,其特征在于:所述浮空P+型屏蔽环(14)包括的各个屏蔽环宽度从中间到两边逐渐减小。
3.根据权利要求1所述的一种高温稳定性的功率MOSFET器件,其特征在于:所述N型外延层(2)的掺杂浓度大于所述N-型碳化硅漂移层(11)的掺杂浓度;所述P+型屏蔽区(8)的掺杂浓度大于所述N型外延层(2)的掺杂浓度。
4.根据权利要求1所述的一种高温稳定性的功率MOSFET器件,其特征在于:所述N型外延层(2)高度为2~6μm;所述栅极氧化层(6)深度为200~300nm。
5.一种高温稳定性的功率MOSFET器件的制备方法,其特征在于:包括以下步骤:
S1.提供碳化硅衬底(1),在所述碳化硅衬底(1)上形成N-型碳化硅漂移层(11);
S2.在所述N-型碳化硅漂移层(11)中制备出具有设定宽度和间距的若干浮空P+型屏蔽环(14);
S3.采用外延工艺,在所述N-型碳化硅漂移层(11)上方制作N型外延层(2),通过刻蚀做出光刻标记;
S4.在所述N型外延层(2)上两侧制造P-阱区(3),在所述P-阱区(3)表面进行离子注入形成N++源区(10)和P++增强区(4),在所述P-阱区(3)之间形成JFET区(13);
S5.在所述JFET区(13)制造深度为200nm的浅槽氧化层,在所述浅槽氧化层下方注入高掺杂的N+型掺杂区(7);在所述N+型掺杂区(7)下方形成P+型屏蔽区(8);所述P+型屏蔽区(8)与所述P-阱区(3)不接触;
S6.进行栅养生长;在所述浅槽氧化层上淀积多晶硅层,采用CMP法将所述多晶硅层进行表面平坦化处理,形成多晶栅极层(5);
S7.在所述多晶栅极层(5)上方形成源极金属层(9);在所述碳化硅衬底(1)下方形成漏极金属层(12)。
6.根据权利要求5所述的一种高温稳定性的功率MOSFET器件的制备方法,其特征在于:所述碳化硅衬底(1)具有主水平表面、相对面和介电区域;所述介电区域设于所述碳化硅衬底(1)中并且与所述主水平表面和所述相对面隔开。
7.根据权利要求5所述的一种高温稳定性的功率MOSFET器件的制备方法,其特征在于:所述N型外延层(2)表面进行热氧化处理,以形成牺牲氧化层;通过湿法刻蚀将所述牺牲氧化层去除。
8.根据权利要求5所述的一种高温稳定性的功率MOSFET器件的制备方法,其特征在于:所述P-阱区(3)采用外延或离子注入的方法制作;所述离子注入包括在所述N型外延层(2)上制作图形化掩膜,注入第二导电类型杂质,去除掩膜后于1400℃~2000℃下退火3~30min。
9.根据权利要求5所述的一种高温稳定性的功率MOSFET器件的制备方法,其特征在于:所述离子注入的注入倾角为20°~50°。
10.根据权利要求5所述的一种高温稳定性的功率MOSFET器件的制备方法,其特征在于:所述浅槽氧化层的制造环境温度为500℃~800℃。
CN202311042261.5A 2023-08-18 2023-08-18 一种高温稳定性的功率mosfet器件及其制备方法 Pending CN116759461A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311042261.5A CN116759461A (zh) 2023-08-18 2023-08-18 一种高温稳定性的功率mosfet器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311042261.5A CN116759461A (zh) 2023-08-18 2023-08-18 一种高温稳定性的功率mosfet器件及其制备方法

Publications (1)

Publication Number Publication Date
CN116759461A true CN116759461A (zh) 2023-09-15

Family

ID=87953689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311042261.5A Pending CN116759461A (zh) 2023-08-18 2023-08-18 一种高温稳定性的功率mosfet器件及其制备方法

Country Status (1)

Country Link
CN (1) CN116759461A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117393585A (zh) * 2023-12-07 2024-01-12 深圳市冠禹半导体有限公司 一种高驱动能力的mosfet器件及其驱动电路
CN117712146A (zh) * 2023-12-22 2024-03-15 深圳平湖实验室 一种碳化硅晶体管、其制作方法及电子器件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364688A (zh) * 2011-11-09 2012-02-29 电子科技大学 一种垂直双扩散金属氧化物半导体场效应晶体管
US20140367771A1 (en) * 2013-06-18 2014-12-18 Monolith Semiconductor, Inc. High voltage semiconductor devices and methods of making the devices
CN105161533A (zh) * 2015-07-02 2015-12-16 电子科技大学 一种碳化硅vdmos器件及其制作方法
CN111933685A (zh) * 2020-06-24 2020-11-13 株洲中车时代半导体有限公司 碳化硅mosfet器件的元胞结构、其制备方法及碳化硅mosfet器件
CN114122139A (zh) * 2021-11-30 2022-03-01 电子科技大学 具有集成二极管的碳化硅mosfet器件及制造方法
CN114267739A (zh) * 2022-01-05 2022-04-01 北京昕感科技有限责任公司 一种双沟槽型SiC MOSFET元胞结构、器件及制造方法
CN115241283A (zh) * 2021-04-22 2022-10-25 万国半导体国际有限合伙公司 集成的平面-沟道栅极功率mosfet
CN116072710A (zh) * 2023-04-04 2023-05-05 北京昕感科技有限责任公司 双沟槽型SiC MOSFET元胞结构、器件及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364688A (zh) * 2011-11-09 2012-02-29 电子科技大学 一种垂直双扩散金属氧化物半导体场效应晶体管
US20140367771A1 (en) * 2013-06-18 2014-12-18 Monolith Semiconductor, Inc. High voltage semiconductor devices and methods of making the devices
CN105161533A (zh) * 2015-07-02 2015-12-16 电子科技大学 一种碳化硅vdmos器件及其制作方法
CN111933685A (zh) * 2020-06-24 2020-11-13 株洲中车时代半导体有限公司 碳化硅mosfet器件的元胞结构、其制备方法及碳化硅mosfet器件
CN115241283A (zh) * 2021-04-22 2022-10-25 万国半导体国际有限合伙公司 集成的平面-沟道栅极功率mosfet
CN114122139A (zh) * 2021-11-30 2022-03-01 电子科技大学 具有集成二极管的碳化硅mosfet器件及制造方法
CN114267739A (zh) * 2022-01-05 2022-04-01 北京昕感科技有限责任公司 一种双沟槽型SiC MOSFET元胞结构、器件及制造方法
CN116072710A (zh) * 2023-04-04 2023-05-05 北京昕感科技有限责任公司 双沟槽型SiC MOSFET元胞结构、器件及制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117393585A (zh) * 2023-12-07 2024-01-12 深圳市冠禹半导体有限公司 一种高驱动能力的mosfet器件及其驱动电路
CN117393585B (zh) * 2023-12-07 2024-04-05 深圳市冠禹半导体有限公司 一种高驱动能力的mosfet器件及其驱动电路
CN117712146A (zh) * 2023-12-22 2024-03-15 深圳平湖实验室 一种碳化硅晶体管、其制作方法及电子器件

Similar Documents

Publication Publication Date Title
US10727330B2 (en) Semiconductor device with diode region
US10236372B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP6759563B2 (ja) 半導体装置および半導体装置の製造方法
TWI441340B (zh) 無需利用附加遮罩來製造的積體有肖特基二極體的平面mosfet及其佈局方法
JP5433352B2 (ja) 半導体装置の製造方法
JP5002693B2 (ja) 半導体装置
KR101396611B1 (ko) 반도체 장치
JP2008016747A (ja) トレンチmos型炭化珪素半導体装置およびその製造方法
JP6802454B2 (ja) 半導体装置およびその製造方法
CN116759461A (zh) 一种高温稳定性的功率mosfet器件及其制备方法
US11961904B2 (en) Semiconductor device including trench gate structure and buried shielding region and method of manufacturing
US10622446B2 (en) Silicon carbide based power semiconductor device with low on voltage and high speed characteristics
CN106571394B (zh) 功率器件及其制造方法
KR101802419B1 (ko) 트렌치형 필러 옥사이드를 이용한 탄화규소 슈퍼정션 모스펫 및 그 제조방법
US20200020775A1 (en) Semiconductor device and manufacturing method of the same
CN110993691A (zh) 双沟道横向超结双扩散金属氧化物宽带隙半导体场效应管及其制作方法
JP4948784B2 (ja) 半導体装置及びその製造方法
CN108899369B (zh) 一种石墨烯沟道碳化硅功率半导体晶体管
JP6250938B2 (ja) 半導体装置及びその製造方法
CN108336133B (zh) 一种碳化硅绝缘栅双极型晶体管及其制作方法
JP2012079945A (ja) 半導体装置
CN111261713B (zh) 沟槽型igbt器件结构
JP5556862B2 (ja) トレンチmos型炭化珪素半導体装置の製造方法
CN116613210A (zh) 一种高耐压碳化硅umosfet器件及其制备方法
JP6771433B2 (ja) 半導体装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination