CN113943932B - 一种石墨烯场致发射源的制备方法 - Google Patents

一种石墨烯场致发射源的制备方法 Download PDF

Info

Publication number
CN113943932B
CN113943932B CN202111198934.7A CN202111198934A CN113943932B CN 113943932 B CN113943932 B CN 113943932B CN 202111198934 A CN202111198934 A CN 202111198934A CN 113943932 B CN113943932 B CN 113943932B
Authority
CN
China
Prior art keywords
graphene
metal
metal substrate
field emission
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111198934.7A
Other languages
English (en)
Other versions
CN113943932A (zh
Inventor
黄世耀
罗理
石雷
楼洪四
汪强
李腾
秦春林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Xinhe Qiyue Technology Co ltd
Original Assignee
Chongqing Xinhe Qiyue Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Xinhe Qiyue Technology Co ltd filed Critical Chongqing Xinhe Qiyue Technology Co ltd
Priority to CN202111198934.7A priority Critical patent/CN113943932B/zh
Publication of CN113943932A publication Critical patent/CN113943932A/zh
Application granted granted Critical
Publication of CN113943932B publication Critical patent/CN113943932B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes

Abstract

本发明的目的在于提供一种石墨烯场致发射源的制备方法,本方法通过高温将含碳气体中的碳原子溶解到金属材料之中,通过阶段性降温的过程将碳析出到金属表面形成石墨烯层,并且对碳源浓度和降温过程的控制可以实现对石墨烯层厚度与规模的控制,石墨烯与其金属基底结合更加的紧密,两者之间电阻远小于通过转移后制备的发射体,在大电流通过结合部位时发热量更小,同时发射尖端露出的金属基底可以有效接收靶材反射的二次电子等,减少石墨烯发射尖端由于电子或离子回轰造成的损伤。在使用本方法制备的石墨烯场致发射源可以有效的提高阴极的发射电流密度,具有很低的开启场和阈值场,稳定性好的特点;同时,其制备方法简单、能耗低、易于实现工业化生产;在制成发射部件后功率更高,稳定性更好,寿命更长。

Description

一种石墨烯场致发射源的制备方法
技术领域
本发明属于纳米场发射电子材料领域,涉及一种石墨烯场致发射源的制备方法。
背景技术
热电子发射与光电子发射中,分别要用到加热、光照将能量传递给发射体内的电子,当能量足一定时,电子从表面逸出。场致发射则只需在发射体外部加一个电场:压制和降低发射体表面势垒,使势垒的禁带宽度变窄,物体内部自由电子通过隧道效应发射出来。场致发射阴极是性能十分理想的新型电子器件,它能够瞬时启动,理论上可以达到很高的电流密度,既可以实现抗辐射、耐高温、高速度、高频率和大功率,又能做到小体积、高效率、集成化和低成本,在显示器件、新型发光光源、X射线管和负氢离子源等领域都有应用潜力。
石墨烯(Graphene)是一种新型碳材料,它是一种完全由sp2杂化的碳原子构成的厚度仅为单原子层和数个单原子层,具有高透光性和导电性、导热性、高比较面积、高强度及柔韧性等优异的性能。
目前,场致发射阴极代替传统真空电子器件中的热阴极是场致发射阴极发明之后的主要方向,降低场致发射的场强和提高场致发射的电流密度是场致发射阴极研究的主要内容。
CN102021633A公开了一种石墨烯薄膜场发射材料的制备方法,采用将石墨烯与有机溶剂混合后制成带电荷的石墨烯溶液,再经过电泳沉积制备石墨烯薄膜。该种方法操作较为简单,但是对石墨烯原料品质的要求很高,其描述的几种方法都不容易获得符合其标准的原料。另外通过电泳方式沉积在基板的方式,石墨烯与基板结合较差,在场发射大电压大电流下会产生较大热量使得石墨烯与基板分离,导致性能下降。CN106098503B公开了一种石墨烯带状电子注场发射冷阴极,其关键在于在基片上表面后侧还设有一层金属膜电极,在基片和金属膜电极的上表面还设有一层或多层石墨烯薄膜作为场发射体。其石墨烯在管式炉中生长于薄膜上,还需要对石墨烯进行转移。该方法虽然可以增加并联数层石墨烯发射体来提高功率,但是这样会继续增加该结构的复杂程度,能够有效转移完整石墨烯层片大小又关系到最终器件的应用场景,例如在制成X射线管时,该方法的多层结构会造成最终形成的X射线焦点过大等问题。同时石墨烯在需要转移次数越多时,对大面积转移工艺要求越高,不适合大规模的生产应用。
发明内容
本发明的目的在于提供一种石墨烯场致发射源的制备方法,该方法通过高温将含碳气体中的碳原子解离后再溶解到金属材料之中,通过阶段性降温的过程将碳析出到金属表面形成石墨烯层;并且对碳源浓度和降温过程的控制可以实现对石墨烯层厚度与规模的控制。目前所使用冷阴极材料里也以合金为主,其效率也较低,通过对发射尖端的处理与其他类型的边缘发射体相比石墨烯有着更多的发射边缘。同时,石墨烯的厚度在1nm以下,比其他结构的阴极都要薄,其横向尺寸可以达到几十µm,所以石墨烯有更高的长径比,更有利于场发射。
本方法制备的石墨烯层与其金属基底结合更加的紧密,两者之间电阻远小于通过转移后制备的发射体,在大电流通过结合部位时发热量更小,同时发射尖端露出的金属基底可以有效接收靶材反射的二次电子等,减少石墨烯发射尖端因电子或离子回轰造成的损伤。本发明的方法制备的石墨烯场致发射源具有有效提高阴极的发射电流密度、很低的开启场和阈值场和稳定性好的特点;同时,本发明的制备方法简单、能耗低、易于实现工业化生产。在制成发射部件后功率更高,稳定性更好,寿命更长。
为实现本发明的目的,提供如下实施方案。
在一实施方案中,本发明的一种石墨烯场致发射源的制备方法,包括以下步骤:
(1)将金属基材放入金属洗剂、丙酮中清洗,再用去离子水冲洗;
(2)将冲洗后的金属基材在盐酸溶液中浸泡,浸泡后用去离子水冲洗;
(3)将上步冲洗后的金属基材用金属抛光液抛光去除氧化层,用去离子水冲洗,用乙醇脱水,在真空中保存;
(4)将金属基材置于刚玉载具之上,放入CVD腔体之中;
(5)将腔体抽真空,通入气体氢气与含碳气体;
(6)通电对基材进行加热,升温到1100℃~1250℃,优选为1200℃,恒温120min~360min,使碳气体中的碳原子溶解到金属材料中;
(7)然后缓慢降温,通过阶段性降温将溶解到金属材料的碳原子析出到金属材料表面形成石墨烯层,关闭电源降至室温后,取出金属材料;
(8)将金属材料的发射端打磨至露出金属光泽,再用乙醇清洗、干燥,即得石墨烯场致发射源产品。
优选的,上述本发明的方法求1所述的制备方法,步骤(1)中,所述金属基材选自镍、钛、钼、和不锈钢,金属基材的直径100μm~500μm,更优选300μm;步骤(2)中,盐酸溶液的浓度为5%~20%,优选为10%;步骤(3)中,所述金属抛光液为冰醋酸、硝酸、氯化钠的混合物,其中,冰醋酸:硝酸:氯化钠的质量比为100:30:1;步骤(4)中,放置时,金属材料的发射端垂直向上,所述腔体为不锈钢;步骤(5)中,所述真空,其真空度为1.0×10-2Torr~3.0×10- 3Torr;所述含碳气体为CH4,其中,H2:CH4=10:1~10:3,更优选为H2:CH4=10:1;步骤(7)中,所述降温,从恒温温度降至300℃,降温速率为10℃/min~30℃/min,更优选为10℃/min,所述石墨烯层的厚度在1nm以下。
在一具体实施方案中,本发明的一种石墨烯场致发射源的制备方法,包括以下步骤:
(1)将金属基材放入金属洗剂、丙酮中超声波清洗,清洗结束后,用去离子水反复冲洗金属基材;
(2)将冲洗后的金属基材在盐酸溶液中浸泡30min,再用去离子水反复冲洗浸;
(3)将冲洗后金属基材的放入金属抛光液中抛光去除氧化层,用去离子水反复冲洗,再用乙醇脱水,脱水后的金属基材真空中保存;
(4)将金属基材放置于刚玉载具之上,放入CVD腔体之中;
(5)腔体抽真空,在腔体中通入气体氢气与含碳气体;
(6)打开电源,对基材进行加热,升温到1100℃~1250℃,恒温120min~360min,优选180min,使碳气体中的碳原子溶解到金属材料之中;
(7)调整电源降低功率,缓慢降温,通过阶段性降温将溶解到金属材料的碳原子析出到金属材料表面形成石墨烯层,关闭电源降至室温后取出金属材料样品;
(8)将样品固定在夹具上,使用砂纸将金属材料样品的发射端打磨至露出金属光泽,放入乙醇中清洗,取出后干燥,即制得石墨烯场致发射源产品。
优选的,上述本发明的方法求1所述的制备方法,步骤(1)中,所述金属基材选自镍、钛、钼、和不锈钢,优选为镍。金属基材的直径100μm~500μm;步骤(2)中,盐酸溶液的浓度为5%~20%;步骤(3)中,所述金属抛光液为冰醋酸、硝酸、氯化钠的混合物,其中,冰醋酸:硝酸:氯化钠的质量比为100:30:1;步骤(4)中,放置时,金属材料的发射端垂直向上,所述腔体为不锈钢;步骤(5)中,所述真空,其真空度为1.0×10-2Torr~3.0×10-3Torr;所述含碳气体为CH4,其中,H2:CH4=10:1~10:3;步骤(7)中,所述降温,从恒温温度降至300℃,降温速率为10℃/min~30℃/min,所述石墨烯层的厚度在1nm以下。
本发明与现有技术相比,本发明具有以下显著优点:
1)本发明的方法以金属基材、含碳源气体为原料,采用化学气相沉积的方法先将碳原子溶解在金属基材中,再通过阶段性降温将溶解的碳原子碳原子析出到金属材料表面形成石墨烯层。本发明的方法制备的石墨烯层与其金属基底结合更加的紧密,两者之间电阻远小于通过转移后制备的发射体,在大电流通过结合部位时发热量更小,在应用到大功率发射器件时寿命更长。
2)本发明的方法具有发射电流密度大,体积小,较低的开启场和阈值场,稳定性好的特点;同时,其制备方法简单、能耗低、易于实现工业化生产。可作为真空电子器件的阴极,以及投影管以及相关电子器件的阴极。
总之,本发明的不仅解决了石墨烯作为场发射材料是功率偏低的问题。而且直接在金属材料表面析出石墨烯层作为发射源,避免了石墨烯层转移过程中的诸多问题。
附图说明
图1为本发明的方法制备的石墨烯-金属基材复合物的示意图;
图2为本发明的方法制备的石墨烯场致发射源场发射效果测试数据图。
具体实施方式
下面的实施例仅是代表性的,用于进一步理解和说明本发明的实质。但不以任何方式限制本发明的范围。
实施例1 石墨烯场致发射源的制备方法:
(1)将直径为300μm,长度20mm的纯镍基材放入金属洗剂、丙酮中超声波清洗30min,清洗结束后,用去离子水反复冲洗基材;
(2)将冲洗完毕后的纯镍基材在10%盐酸溶液中浸泡30min;
(3)使用去离子水反复冲洗浸泡后的纯镍基材,冲洗后放入冰醋酸、硝酸、氯化钠(质量比为100:30:1)的混合物溶液中抛光10s,去除氧化层,抛光完成后的纯镍基材使用去离子水反复冲洗,冲洗后使用乙醇脱水;
(4)将纯镍基材发射端向上放置于刚玉载具之上,放入CVD不锈钢腔体之中,将腔体内真空抽至1.0×10-2Torr;
(5)向腔体内通入H2与CH4的混合气体(H2:CH4=10:2摩尔比),腔体内压力保持在100Torr;
(6)打开CVD电源,将基材加热到1200℃,恒温180min,将CH4解离后的碳原子溶解在金属基材中;
(7)恒温时间达到后,调整电源降低功率,温度下降速率设定为30℃/min,温度降至300℃,通过阶段性降温将溶解的碳原子碳原子析出到金属材料表面形成石墨烯层,关闭电源降至室温后取出石墨烯纯镍基材样品;
(8)将石墨烯纯镍基材样品固定在夹具上,使用2500目砂纸将样品发射端打磨至露出银色金属光泽,将打磨好的样品放入无水乙醇中浸泡清洗,取出后干燥,即制得石墨烯场致发射源产品(命名sample 1)。
效果测试:
测试实施例1获得的石墨烯场致发射源sample 1,如图1所示,其用于场发射中开启电场为0.72V/μm,当电场为1.89 V/μm时,电流密度达到12.85mA/cm2
实施例2 石墨烯场致发射源的制备
制备参照实施例1的制备工艺,与实施例1不同之处在于石墨烯场致发射源的制备工艺部分的步骤(7)温度下降速率设定为10℃/min。其余步骤和工艺参数相同,制得石墨烯场致发射源产品(命名sample 2)。
效果测试:
测试实施例2获得的石墨烯场致发射源sample 2,如图1所示,其用于场发射中开启电场为0.69V/μm,当电场为1.89 V/μm时,电流密度达到14.57mA/cm2
实施例3 直立式石墨烯碳纤维复合物的制备
制备参照实施例1的工艺,与实施例1不同之处在于直立式石墨烯增强碳纤维制备工艺部分的步骤(5)H2与CH4的混合气体比例为H2:CH4=10:1摩尔比,步骤(7)温度下降速率设定为10℃/min。其余步骤和工艺参数与实施例1相同,制得石墨烯场致发射源样品sample3。
效果测试:
测试实施例2获得的石墨烯场致发射源sample 2,如图1所示,其用于场发射中开启电场为0.67V/μm,当电场为1.89 V/μm时,电流密度达到17.03mA/cm2
为了分析实施例1、2、3获得的石墨烯场致发射源场发射性能,本发明人将三组sample样品分别安装到场发射测试台中进行测试。
实施例1、2、3的石墨烯场致发射源样品场发射性能测试结果见图2。从测试结果可以看到实施例3制备的样品场发射效果最佳,其不仅开启电场更小,仅需0.67 V/μm,并且在测试中稳定性更好,增长率最高,当电场强度在1.89 V/μm时,电流密度高达17.03mA/cm2,远高于来另外两组样品。可以预见随着电场强度增加其电流密度增长率与稳定性也会有良好的表现。
实施例2在测试过程中,前段有一个较大电流密度增长,随后开始趋于平缓,其中段与后段电流密度都明显要小于sample 3。整个测试过程中电流密度几乎没有波动。前段的增长主要是由于在制备该样品时碳浓度较大,金属溶解的碳原子也较多,在降温时析出的石墨烯层片较厚,但随着电压上升,过厚的原子层会在内部消耗过多的能量,导致发射电流不如sample 3。
实施例1制备的样品场发射在电场强度1.0 V/μm时,电流密度有大幅上涨,部分场强下甚至大于实施例3制备的样品,但是其场发射电流密度在电压场强达到1.24 V/μm后增长率开始趋于平缓,后续场强的增加,电流密度也有较大的波动,电压场强1.5 V/μm以后又开始出现波动性的电流密度上涨。出现上述现象只要是在制备该样品时碳浓度较大,金属溶解的碳原子也较多。在后续降温过程中,析出后的石墨烯层也更多,所以在一定的场强下其电流会大量大增加。另外在降温时,降温速率较大,金属析出碳原子的量会因为温度变化较大,形成厚度不均匀的石墨烯层片,这也是其发射性能波动较大的原因。
另取镍基材料,采用传统转移法制备石墨烯镍基材的石墨烯场致发射源样,测试样品,其用于场发射中开启电场为0.98V/μm,当电场为1.89 V/μm时,电流密度达到8.56mA/cm2。表明采用本发明的方法明显优于传统转移法。
以上仅是本发明代表性的具体实施方案,虽然没有一一列举,但可以理解本发明的精神实质,任何在本发明的精神实质下进行的变通和简单的修饰都属于本发明的范围。

Claims (8)

1.一种石墨烯场致发射源的制备方法,包括以下步骤:
(1)将金属基材放入金属洗剂、丙酮中清洗,再用去离子水冲洗;
(2)将冲洗后的金属基材在盐酸溶液中浸泡,浸泡后用去离子水冲洗;
(3)将上步冲洗后的金属基材用金属抛光液抛光去除氧化层,用去离子水冲洗,用乙醇脱水,在真空中保存;
(4)将金属基材置于刚玉载具之上,放入CVD腔体之中;
(5)将腔体抽真空,通入气体氢气与含碳气体;
(6)通电对基材进行加热,升温到1100℃~1250℃,恒温120min~360min,使碳气体中的碳原子溶解到金属材料之中;
(7)然后缓慢降温,通过阶段性降温将溶解到金属材料的碳原子析出到金属材料表面形成石墨烯层,关闭电源降至室温后,取出金属材料;
(8)将金属材料的发射端打磨至露出金属光泽,再用乙醇清洗、干燥,即得石墨烯场致发射源产品,
其中,步骤(5)中,所述含碳气体为CH4,其中,H2:CH4摩尔比=10:1;步骤(7)中所述阶段性降温,从恒温温度降至300℃,所述缓慢降温的降温速率为10℃/min。
2.如权利要求1所述的制备方法,步骤(1)中,所述金属基材选自镍、钛、钼、和不锈钢,金属基材的直径100μm~500μm。
3.如权利要求1所述的制备方法,步骤(2)中,盐酸溶液的浓度为5%~20%。
4.如权利要求1所述的制备方法,步骤(3)中,所述金属抛光液为冰醋酸、硝酸、氯化钠的混合物。
5.如权利要求4所述的制备方法,所述金属抛光液,冰醋酸:硝酸:氯化钠的质量比为100:30:1。
6.如权利要求1所述的制备方法,步骤(4)中,放置时,金属材料的发射端垂直向上,所述腔体为不锈钢。
7.如权利要求1所述的制备方法,步骤(5)中,所述真空,其真空度为1.0×10-2Torr~3.0×10-3Torr。
8.如权利要求1所述的制备方法,步骤(7)中,石墨烯层的厚度在1nm以下。
CN202111198934.7A 2021-10-14 2021-10-14 一种石墨烯场致发射源的制备方法 Active CN113943932B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111198934.7A CN113943932B (zh) 2021-10-14 2021-10-14 一种石墨烯场致发射源的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111198934.7A CN113943932B (zh) 2021-10-14 2021-10-14 一种石墨烯场致发射源的制备方法

Publications (2)

Publication Number Publication Date
CN113943932A CN113943932A (zh) 2022-01-18
CN113943932B true CN113943932B (zh) 2023-10-24

Family

ID=79329874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111198934.7A Active CN113943932B (zh) 2021-10-14 2021-10-14 一种石墨烯场致发射源的制备方法

Country Status (1)

Country Link
CN (1) CN113943932B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098503A (zh) * 2016-07-18 2016-11-09 电子科技大学 一种石墨烯带状电子注场发射冷阴极及其生产方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230028773A1 (en) * 2019-12-19 2023-01-26 Heiq Materials Ag Method for Making Porous Graphene Membranes and Membranes Produced Using the Method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098503A (zh) * 2016-07-18 2016-11-09 电子科技大学 一种石墨烯带状电子注场发射冷阴极及其生产方法

Also Published As

Publication number Publication date
CN113943932A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
CN108172488B (zh) 碳纳米场发射阴极及其制造方法和应用
KR101093657B1 (ko) 열저항가열방식을 이용한 그래핀막 제조 방법
CN105070619A (zh) 一种铁基金属合金衬底上碳纳米管阵列阴极的制备方法
CN102709399A (zh) 一种高效纳米天线太阳能电池的制作方法
CN104851765A (zh) 一种微波氢等离子体处理提升碳纳米管场发射性能的方法
CN108987214B (zh) 一种提升碳纳米管阵列场发射性能的方法
CN113943932B (zh) 一种石墨烯场致发射源的制备方法
CN104882346A (zh) 一种碳纳米颗粒包覆的碳纳米管阵列场发射阴极的制备方法
CN111613496B (zh) 一种石墨烯覆膜钡钨阴极及其制备方法
CN112981364A (zh) 一种快热响应超黑材料及其制备方法
Park et al. X-ray images obtained from cold cathodes using carbon nanotubes coated with gallium-doped zinc oxide thin films
Uh et al. Improved field emission properties from carbon nanotubes grown onto micron-sized arrayed silicon pillars with pyramidal bases
CN108987215B (zh) 一种提升石墨烯片-碳纳米管阵列复合材料场发射性能的方法
CN109518149A (zh) 沿<002>方向择优生长的硒化锑光电薄膜的制备方法
JP5024813B2 (ja) 面発光素子の製造方法
CN104952674A (zh) 一种纳米碳片-碳纳米管复合结构场发射阴极的制备方法
CN205542692U (zh) 基于碳纳米管冷阴极的聚焦型三极结构全封装x射线球管
CN103811240B (zh) 碳纳米管阴极的制备方法
TWI309842B (en) Electron emission source and field emission display device
CN113950172A (zh) 石墨烯基电致红外发射加热装置
LU503066B1 (en) Graphene-based composite material and its preparation method and application
CN110129730A (zh) 一种钼掺杂二氧化钛纳米管阵列薄膜的制备方法
CN100342474C (zh) 一种离子注入提高碳纳米管薄膜电子场发射性能的方法
JP5549028B2 (ja) フレーク状ナノ炭素材料の製造方法及び電子放出素子並びに面発光素子
JP2019071260A (ja) 電子源及び電子線照射装置並びに電子源の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant