CN113856703A - 纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用 - Google Patents

纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN113856703A
CN113856703A CN202111201050.2A CN202111201050A CN113856703A CN 113856703 A CN113856703 A CN 113856703A CN 202111201050 A CN202111201050 A CN 202111201050A CN 113856703 A CN113856703 A CN 113856703A
Authority
CN
China
Prior art keywords
moo
composite photocatalyst
nanoflower
preparation
nanosheet composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111201050.2A
Other languages
English (en)
Other versions
CN113856703B (zh
Inventor
庄华强
刘晓彬
曹宏
徐文涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanzhou Normal University
Original Assignee
Quanzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanzhou Normal University filed Critical Quanzhou Normal University
Priority to CN202111201050.2A priority Critical patent/CN113856703B/zh
Publication of CN113856703A publication Critical patent/CN113856703A/zh
Application granted granted Critical
Publication of CN113856703B publication Critical patent/CN113856703B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • B01J35/23
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

本发明公开了一种纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备方法及其应用,该复合光催化剂是以水热合成法制备出三维的Zn3In2S6纳米花结构,然后再通过二次水热的方法在Zn3In2S6纳米花结构上引入二维的Bi2MoO6纳米片,从而构建出纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂。本发明所得复合光催化剂在可见光的作用下展现了优异的光催化降解四环素性能,且其制备方法简单,易于操作,适合推广应用。

Description

纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制 备方法和应用
技术领域
本发明属于光催化材料制备技术领域,具体涉及一种纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备方法及其应用。
背景技术
环境污染已引起全世界的广泛关注,尤其是抗生素的污染,已经严重危害到生态***以及人类的生存环境。抗生素滥用日益突出,不仅对水生生物产生慢性毒理效应,且易产生耐药性,降低人体免疫力,从而影响人类身体健康。四环素类抗生素具有价格低廉、广谱抗菌等特点,是目前使用最广泛、用量最大的抗生素种类之一,其作用原理是通过阻碍氨酰tRNA与核糖体结合位点的结合来抑制菌体蛋白合成,从而达到抑菌作用。与其它抗生素相比,四环素类抗生素在环境中更稳定,持久性强,难于降解,因而更易残留在环境中,主要是来自畜禽养殖业、医院和药厂排污等的排放。如何解决抗生素污染水体是众多科学家研究的热点之一。近几年,因半导体光催化是一种绿色、安全和无二次污染的技术,已成为解决水体污染的理想技术之一。
Bi2MoO6是钼酸铋中的γ晶型,同时也是钙钛矿层状结构的奥里维里斯(Aurivillius)化合物。Bi2MoO6与钼酸铋的α-Bi2Mo3O12、β-Bi2Mo2O9两种晶型相比具有优异的光催化性能。Bi2MoO6拥有适宜的带隙2.78 eV,其导带和价带位置为0.43 eV和3.21 eV(Chemical Engineering Journal, 2017, 316: 461-470.),以及镶嵌在[Bi2O2]2+层中的八面体片层MoO6形成的特殊结构使光生电子运动不会有阶跃势垒而能快速转移,表现出优异的光催化性能,然而,Bi2MoO6光照时产生的电子与空穴容易复合,导致在光催化过程中的量子产率很低。因此,选择一种合适的半导体与其复合提高光生载流子的分离和转移效率,从而构建一种高效的复合光催化剂。Zn3In2S6是一种三元硫族化合物,其带隙为2.81 eV,导带位置约为-0.9 eV,价带位置约为1.91 eV(ACS Applied Energy Materials, 2020, 3(11): 11275-11284),并具有良好的稳定性、环保、对可见光吸收强等优点,是一种理想的半导体敏化和复合的材料。综上所述,本发明结合半导体Bi2MoO6与Zn3In2S6材料的优势,以及合适的导带、价带位置,构建纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂,并应用于四环素的降解。
发明内容
本发明的目的在于提供一种纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备方法及其应用,其通过简单的水热合成法制备出三维的Zn3In2S6纳米花结构,然后再通过二次水热的方法在Zn3In2S6纳米花结构上引入二维的Bi2MoO6纳米片,所构建出纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂,具有优异的可见光光催化降解四环素的性能。
为实现上述目的,本发明采用如下技术方案:
一种纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备方法及其应用,其通过简单的水热合成法制备出三维的Zn3In2S6纳米花结构,然后再通过二次水热的方法在Zn3In2S6纳米花结构上引入二维的Bi2MoO6纳米片,构建出纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂。其具体包括如下步骤:
1)Zn3In2S6纳米花的制备
将2 mmol InCl3·4H2O、3 mmol ZnCl2、7 mmol CH3CSNH2加入聚四氟乙烯内衬中,向内衬中加入80 mL去离子水,然后将内衬放入超声器超声处理30 min,结束超声后持续搅拌两个小时后把反应釜放置到烘箱中,180 ℃持续反应12 h;待反应结束后先用乙醇洗涤,再用去离子水洗涤,60 ℃烘干12 h,即得三维的Zn3In2S6纳米花结构;
2)纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备
将一定量步骤1)制得的Zn3In2S6纳米花分散到80 mL去离子水中,然后将1 mmolNa2MoO4.2H2O、2 mmol Bi(NO3)3.5H2O、0.05 g C19H42BrN加入聚四氟乙烯内衬中,持续搅拌30 min,然后把混合均匀的溶液移至反应釜中,放置在烘箱中保持100 ℃,反应24 h。待反应结束后先用乙醇洗涤,再用去离子水洗涤,60 ℃烘干12 h,即得三维的Zn3In2S6纳米花结构与Bi2MoO6纳米片复合光催化剂。
优选地,纳米花结构的Zn3In2S6占Zn3In2S6与Bi2MoO6总质量的5-20%。步骤2)中所述一定量步骤1)制得的Zn3In2S6纳米花为0.032 g、0.068 g、0.108 g和0.152 g,即质量分数为5%、10%、15%、20%。Zn3In2S6纳米花是少量的。
所述Zn3In2S6纳米花结构与Bi2MoO6纳米片复合光催化剂在可见光的激发下,可以降解浓度为10 ppm的有机污染物四环素溶液。
本发明的显著优点在于:
本发明针对现有光催化氧化技术存在的问题,特别是Bi2MoO6催化材料存在光生载流子的分离和转移效率低的问题,提供一种通过二次水热制备的Zn3In2S6纳米花结构与Bi2MoO6纳米片复合光催化剂。该复合光催化剂是一种三维的异质复合结构,可以降解浓度为10 ppm的有机污染物四环素溶液,在可见光激发下展现出优异的光催化降解性能,且其制备方法简单,易于操作,适合推广应用。
附图说明
图1(a)为实施例1制得的Zn3In2S6纳米花结构的SEM图;(b)为实施例4制得的Zn3In2S6/Bi2MoO6复合光催化剂的SEM图;
图2为实施例1-实施例6所制得样品的XRD图;
图3为实施例1-实施例6所制得不同催化剂的四环素降解率柱状图;
图4为Zn3In2S6/Bi2MoO6复合光催化剂降解四环素的反应机理。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
Zn3In2S6纳米花的制备
将2 mmol InCl3·4H2O、3 mmol ZnCl2、7 mmol CH3CSNH2加入聚四氟乙烯内衬中,向内衬中加入80 mL去离子水,然后将内衬放入超声器超声处理30 min,结束超声后持续搅拌两个小时后把反应釜放置到烘箱中,180 ℃持续反应12 h;待反应结束后先用乙醇洗涤,再用去离子水洗涤,60 ℃烘干12 h,即得三维的Zn3In2S6纳米花结构,样品编号为1。
实施例2
二维Bi2MoO6纳米片的制备
将1 mmol Na2MoO4.2H2O、2 mmol Bi(NO3)3.5H2O、0.05 g C19H42BrN加入聚四氟乙烯内衬中,向内衬中加入80 mL 去离子水,持续搅拌30 min,然后把混合均匀的溶液移至反应釜中,放置在烘箱中保持100 ℃,反应24 h。待反应结束后先用乙醇洗涤,再用去离子水洗涤,60 ℃烘干12 h,即得二维Bi2MoO6纳米片,样品编号为2。
实施例3
1)Zn3In2S6纳米花的制备
将2 mmol InCl3·4H2O、3 mmol ZnCl2、7 mmol CH3CSNH2加入聚四氟乙烯内衬中,向内衬中加入80 mL去离子水,然后将内衬放入超声器超声处理30 min,结束超声后持续搅拌两个小时后把反应釜放置到烘箱中,180 ℃持续反应12 h;待反应结束后先用乙醇洗涤,再用去离子水洗涤,60 ℃烘干12 h,即得三维的Zn3In2S6纳米花结构;
2)纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备
将0.032g步骤1)制得的Zn3In2S6纳米花分散到80 mL去离子水中,然后将1 mmolNa2MoO4.2H2O、2 mmol Bi(NO3)3.5H2O、0.05 g C19H42BrN加入聚四氟乙烯内衬中,持续搅拌30 min,然后把混合均匀的溶液移至反应釜中,放置在烘箱中保持100 ℃,反应24 h。待反应结束后先用乙醇洗涤,再用去离子水洗涤,60 ℃烘干12 h,即得Zn3In2S6/Bi2MoO6复合光催化剂,样品编号为3。
实施例4
将实施例3步骤3)中Zn3In2S6纳米花加入的质量由0.032 g改为0.068 g,其余步骤同实施例2,所得Zn3In2S6/Bi2MoO6复合光催化剂的样品编号为4。
实施例5
将实施例3步骤3)中Zn3In2S6纳米花加入的质量由0.032 g改为0.108 g,其余步骤同实施例2,所得Zn3In2S6/Bi2MoO6复合光催化剂的样品编号为5。
实施例6
将实施例3步骤3)中Zn3In2S6纳米花加入的质量由0.032 g改为0.152 g,其余步骤同实施例2,所得Zn3In2S6/Bi2MoO6复合光催化剂的样品编号为6。
光催化降解性能的评价
将40毫克催化剂加入到80毫升10 ppm的四环素溶液中,持续搅拌和暗吸附60分钟,以保证催化剂的吸附/脱附平衡。待暗吸附完毕后,开氙灯光照,每隔一定的时间后,取4毫升反应液离心,然后取上清液在紫外可见分光光度计上测试,实验结果见图3。
图1(a)为实施例1制得的Zn3In2S6纳米花结构的SEM图;(b)为实施例4制得的Zn3In2S6/Bi2MoO6复合光催化剂的SEM图。图1(a)展示了纯Zn3In2S6的纳米花状结构,通过二次水热后,在Zn3In2S6花状结构表面引入Bi2MoO6纳米片,构建了Zn3In2S6纳米花结构与Bi2MoO6纳米片复合光催化剂,如图1(b)所示。
图2为实施例1-实施例6所制得样品的XRD图。图中清楚地展示了纯相Bi2MoO6光催化剂在10.54°处的衍射峰对应(020)晶面、28.44°的衍射峰对应(131)晶面、32.72°处的衍射峰对应(200)晶面等特征衍射峰,结果表面制备的纯相Bi2MoO6是正交晶型。另外,引入Zn3In2S6后,构建的Zn3In2S6/Bi2MoO6复合光催化剂同时出现Zn3In2S6和Bi2MoO6的特征衍射峰,说明本发明成功地制备出Zn3In2S6/Bi2MoO6复合光催化剂。
图3为实施例1-实施例6所制得不同催化剂的四环素降解率柱状图。通过该图可知,当Zn3In2S6含量为15%时,其光催化活性最高,经过36 min的可见光激发,其降解率可达77.6%,说明我们制备Zn3In2S6/Bi2MoO6复合光催化剂是一种高效的光催化剂。当Zn3In2S6含量超过20%时,可能是由于过多的Zn3In2S6,覆盖了多数Bi2MoO6纳米片,降低了Zn3In2S6/Bi2MoO6复合光催化剂的吸收效率,导致其光催化降解率降低。
图4为Zn3In2S6/Bi2MoO6复合光催化剂降解四环素可能的反应机理。基于Zn3In2S6和Bi2MoO6的研究报告,Bi2MoO6的导带和价带位置为0.43 eV和3.21 eV,Zn3In2S6的导带和价带位置为-0.9 eV和1.91 eV,该反应的途径可能为Zn3In2S6和Bi2MoO6同时被可见光激发,Zn3In2S6产生的电子还原O2产生超氧自由基(•O2 -),同时Bi2MoO6价带的空穴直接氧化部分的四环素。另外,Bi2MoO6导带电子转移到Zn3In2S6价带,构建成固态的Z型机制,提高光生载流子的转移和分离效率,从而提高其光催化反应效率。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备方法,其特征在于:采用水热合成法制备出三维的Zn3In2S6纳米花结构,然后再通过水热的方法引入Bi2MoO6纳米片,构建出具有纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂。
2.根据权利要求1所述的纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备方法,其特征在于:包括如下步骤:
1)Zn3In2S6纳米花的制备
将InCl3·4H2O、ZnCl2、CH3CSNH2加入聚四氟乙烯内衬中,向内衬中加入去离子水,然后将内衬放入超声器超声处理30 min,结束超声后持续搅拌两个小时后把反应釜放置到烘箱中,180℃持续反应12 h;待反应结束后先用乙醇洗涤,再用去离子水洗涤,60℃烘干12 h,即得三维的Zn3In2S6纳米花结构;
2)纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备
将步骤1)制得的Zn3In2S6纳米片分散到去离子水中并加入聚四氟乙烯内衬中,然后加入Na2MoO4.2H2O、Bi(NO3)3.5H2O、C19H42BrN,持续搅拌30 min,在100℃下反应24h,待反应结束后先用乙醇洗涤,再用去离子水洗涤,60℃烘干12 h,即得纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂。
3.一种如权利要求1-2任一项所述的制备方法制得的纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂其特征在于:纳米花结构的Zn3In2S6占Zn3In2S6与Bi2MoO6总质量的5-20%。
4.一种如权利要求3所述的纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的应用,其特征在于:所述的纳米花结构Zn3In2S6与Bi2MoO6纳米片复合光催化剂应用于可见光降解有机污染物四环素。
CN202111201050.2A 2021-10-15 2021-10-15 纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用 Active CN113856703B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111201050.2A CN113856703B (zh) 2021-10-15 2021-10-15 纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111201050.2A CN113856703B (zh) 2021-10-15 2021-10-15 纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113856703A true CN113856703A (zh) 2021-12-31
CN113856703B CN113856703B (zh) 2023-12-29

Family

ID=78999475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111201050.2A Active CN113856703B (zh) 2021-10-15 2021-10-15 纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113856703B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114481168A (zh) * 2022-02-23 2022-05-13 辽宁大学 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用
CN114950522A (zh) * 2022-04-27 2022-08-30 湖南工商大学 氮化硼/硫化铟锌复合光催化剂及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255246A (ja) * 1988-08-22 1990-02-23 Nippon Sheet Glass Co Ltd 高耐久性熱線遮へいガラスおよびその製造方法
US20120010411A1 (en) * 2009-03-19 2012-01-12 Ecole Polytechnique Federale De Lausanne (Epfl) Modified surface
CN105457658A (zh) * 2015-12-08 2016-04-06 哈尔滨工业大学深圳研究生院 一种模拟光合作用降解污染物同时产氢的z型催化剂及其制备方法
CN107376900A (zh) * 2017-07-26 2017-11-24 福州大学 钼酸铋超薄纳米片光催化材料的制备方法及其应用
CN108404934A (zh) * 2018-04-13 2018-08-17 西北师范大学 一种z型结构的杂化二氧化钛光催化剂的制备及应用
CN108855143A (zh) * 2018-07-09 2018-11-23 河南师范大学 一种Z型结构ZnIn2S4/Ag/Bi2WO6复合光催化剂的制备方法
CN109569735A (zh) * 2018-11-29 2019-04-05 南昌航空大学 一种铋系光催化剂及其制备方法和应用
CN109772369A (zh) * 2019-02-27 2019-05-21 黑龙江大学 一种钼酸铋/硫化铋/二硫化钼三元光电催化薄膜材料电极的制备方法
CN110227516A (zh) * 2019-06-03 2019-09-13 河北地质大学 ZnIn2S4/BiPO4异质结光催化剂、制备方法及其应用
CN112221486A (zh) * 2020-11-06 2021-01-15 生态环境部南京环境科学研究所 一种纳米片RGO-花状多层结构Bi2MOO6异质结可见光催化剂及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255246A (ja) * 1988-08-22 1990-02-23 Nippon Sheet Glass Co Ltd 高耐久性熱線遮へいガラスおよびその製造方法
US20120010411A1 (en) * 2009-03-19 2012-01-12 Ecole Polytechnique Federale De Lausanne (Epfl) Modified surface
CN105457658A (zh) * 2015-12-08 2016-04-06 哈尔滨工业大学深圳研究生院 一种模拟光合作用降解污染物同时产氢的z型催化剂及其制备方法
CN107376900A (zh) * 2017-07-26 2017-11-24 福州大学 钼酸铋超薄纳米片光催化材料的制备方法及其应用
CN108404934A (zh) * 2018-04-13 2018-08-17 西北师范大学 一种z型结构的杂化二氧化钛光催化剂的制备及应用
CN108855143A (zh) * 2018-07-09 2018-11-23 河南师范大学 一种Z型结构ZnIn2S4/Ag/Bi2WO6复合光催化剂的制备方法
CN109569735A (zh) * 2018-11-29 2019-04-05 南昌航空大学 一种铋系光催化剂及其制备方法和应用
CN109772369A (zh) * 2019-02-27 2019-05-21 黑龙江大学 一种钼酸铋/硫化铋/二硫化钼三元光电催化薄膜材料电极的制备方法
CN110227516A (zh) * 2019-06-03 2019-09-13 河北地质大学 ZnIn2S4/BiPO4异质结光催化剂、制备方法及其应用
CN112221486A (zh) * 2020-11-06 2021-01-15 生态环境部南京环境科学研究所 一种纳米片RGO-花状多层结构Bi2MOO6异质结可见光催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUJUAN ZHANG ET AL.: "MoS2/Zn3In2S6 composite photocatalysts for enhancement of visible light-driven hydrogen production from formic acid", vol. 42, pages 196 - 199 *
YAXIN LI ET AL.: "MoS2 as Cocatalyst for Improving Photocatalytic Performance of Bi2MoO6", vol. 4, pages 5222 - 5223 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114481168A (zh) * 2022-02-23 2022-05-13 辽宁大学 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用
CN114481168B (zh) * 2022-02-23 2024-03-22 辽宁大学 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用
CN114950522A (zh) * 2022-04-27 2022-08-30 湖南工商大学 氮化硼/硫化铟锌复合光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN113856703B (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
Liu et al. Photocatalytic removal of tetracycline by a Z-scheme heterojunction of bismuth oxyiodide/exfoliated g-C3N4: performance, mechanism, and degradation pathway
Wang et al. Ag-bridged Z-scheme 2D/2D Bi5FeTi3O15/g-C3N4 heterojunction for enhanced photocatalysis: mediator-induced interfacial charge transfer and mechanism insights
Wei et al. Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: A review on recent progress
Lai et al. Facile synthesis of CeO2/carbonate doped Bi2O2CO3 Z-scheme heterojunction for improved visible-light photocatalytic performance: Photodegradation of tetracycline and photocatalytic mechanism
Luo et al. Facile construction of a fascinating Z-scheme AgI/Zn3V2O8 photocatalyst for the photocatalytic degradation of tetracycline under visible light irradiation
US11345616B2 (en) Heterojunction composite material consisting of one-dimensional IN2O3 hollow nanotube and two-dimensional ZnFe2O4 nanosheet, and application thereof in water pollutant removal
Bafaqeer et al. Indirect Z-scheme assembly of 2D ZnV2O6/RGO/g-C3N4 nanosheets with RGO/pCN as solid-state electron mediators toward visible-light-enhanced CO2 reduction
Zhang et al. Construction of a novel BON-Br-AgBr heterojunction photocatalysts as a direct Z-scheme system for efficient visible photocatalytic activity
Li et al. Engineering the band-edge of Fe2O3/ZnO nanoplates via separate dual cation incorporation for efficient photocatalytic performance
Shang et al. Bi2WO6 nanocrystals with high photocatalytic activities under visible light
Huang et al. In situ fabrication of ultrathin-g-C3N4/AgI heterojunctions with improved catalytic performance for photodegrading rhodamine B solution
Talreja et al. Strategic doping approach of the Fe–BiOI microstructure: An improved photodegradation efficiency of tetracycline
CN113856703A (zh) 纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用
Li et al. Novel 2D SnNb2O6/Ag3VO4 S-scheme heterojunction with enhanced visible-light photocatalytic activity
CN105289657B (zh) 石墨烯‑硫化锑纳米棒复合可见光催化剂的制备方法
CN106607063A (zh) 漂浮型可见光光催化剂及制备方法和应用
Ke et al. In situ fabrication of Bi2O3/C3N4/TiO2@ C photocatalysts for visible-light photodegradation of sulfamethoxazole in water
Hemmati-Eslamlu et al. Anchoring spinel NiCr2O4 nanoparticles on tubular g-C3N4: Efficacious pn heterojunction photocatalysts for removal of tetracycline hydrochloride under visible light
Zhang et al. In situ synthesis of α-Fe2O3/LaFeO3 modified with g-C3N4 and Ti3C2 for construction of multiple Z-scheme/Schottky heterojunctions as an efficient visible-light photocatalyst for Cr (VI) reduction and organic pollutants removal
Li et al. Ultrasonic-assisted synthesis of LaFeO3/CeO2 heterojunction for enhancing the photocatalytic degradation of organic pollutants
Liu et al. Synthesis of N-C3N4/Cu/Cu2O: New strategy to tackle the problem of Cu2O photocorrosion with the help of band engineering
Liu et al. K+-doped ZnO/g-C3N4 heterojunction: controllable preparation, efficient charge separation, and excellent photocatalytic VOC degradation performance
Liu et al. Visible-light induced tetracycline degradation catalyzed by dual Z-scheme InVO4/CuBi2O4/BiVO4 composites: The roles of oxygen vacancies and interfacial chemical bonds
Dai et al. 0D/1D Co3O4 quantum dots/surface hydroxylated g-C3N4 nanofibers heterojunction with enhanced photocatalytic removal of pharmaceuticals and personal care products
Das et al. MoS2 nanoflowers decorated on graphene aerogels for visible-light-driven photocatalytic degradation of tetracycline

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant