CN114481168A - 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用 - Google Patents

3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用 Download PDF

Info

Publication number
CN114481168A
CN114481168A CN202210169081.2A CN202210169081A CN114481168A CN 114481168 A CN114481168 A CN 114481168A CN 202210169081 A CN202210169081 A CN 202210169081A CN 114481168 A CN114481168 A CN 114481168A
Authority
CN
China
Prior art keywords
flower
shaped
heterojunction photocatalyst
deionized water
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210169081.2A
Other languages
English (en)
Other versions
CN114481168B (zh
Inventor
刘雪岩
刘芳邑
张蕾
仁爱娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202210169081.2A priority Critical patent/CN114481168B/zh
Publication of CN114481168A publication Critical patent/CN114481168A/zh
Application granted granted Critical
Publication of CN114481168B publication Critical patent/CN114481168B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用。采用的技术方案是:将Bi(NO3)3·5H2O溶于去离子水和冰醋酸的混合溶液中,混合均匀后,加入Na2WO4·2H2O的水溶液,然后于所得混合溶液中加入Zn3In2S6,搅拌1h,转移至高压釜中进行水热反应,产物洗涤,干燥,得到Zn3In2S6@Bi2WO6。本发明制备的光电催化剂Zn3In2S6@Bi2WO6,用于高效快速生产H2O2,有助于推动光电催化技术在生产清洁能源领域的应用。

Description

3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和 应用
技术领域
本发明属于光电催化领域,特别涉及一种3D花状Z型异质结光电催化剂 Zn3In2S6@Bi2WO6及其制备方法和应用。
背景技术
全球气候变化的影响显然与化石燃料使用产生的二氧化碳的持续产出有关。为了减少目 前对化石燃料的依赖,利用可再生能源生产燃料的廉价而有效的方法已经成为越来越重要的 目标。而过氧化氢(H2O2)作为一种绿色环保产品,被广泛应用于纺织、环保、食品、造纸、 电子、医药等行业,已成为重要的无机化工原料。
目前,生产H2O2的工业路线,如蒽醌工艺或直接合成,通常需要大量的能量输入,并危及环境。因此,需要一种绿色环保的方式合成H2O2。光电催化生产H2O2既可以通过阳 极水氧化(WOR)反应进行(2H2O=H2O2+2H++2e-E(H2O/H2O2)=+1.77V vs.RHE),也 可以通过阴极氧还原(ORR)反应进行(O2+2H++2e-=H2O2 E(O2/H2O2)=+0.68V vs. RHE)。尽管越来越多的光电催化剂被探索出具有通过光电催化产生H2O2的能力,但是 H2O2的中毒、光生电荷的快速复合和牺牲剂的辅助极大地限制了催化剂的发展。因此,需 要设计一种高效、稳定的催化剂来进行光电催化产H2O2
发明内容
为了解决上述存在的技术问题,本发明的目的是提供一种3D花状Z型异质结光电催化 剂Zn3In2S6@Bi2WO6,用于高效快速生产H2O2,有助于推动光电催化技术在生产清洁能源 领域的应用。
本发明采用的技术方案是:3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6,制备方法包括如下步骤:将Bi(NO3)3·5H2O溶于去离子水和冰醋酸的混合溶液中,混合均匀后,加入Na2WO4·2H2O的水溶液,然后于所得混合溶液中加入Zn3In2S6,搅拌1h,转移至高压釜 中进行水热反应,产物洗涤,干燥,得到Zn3In2S6@Bi2WO6
进一步的,去离子水和冰醋酸的混合溶液中,按体积比,去离子水:冰醋酸=5:3。
进一步的,所述水热反应是,于160℃下水热反应16h。
进一步的,所述Zn3In2S6的制备方法包括如下步骤:将ZnSO4·7H2O和硫代乙酰胺溶于 去离子水中后,加入InCl3水溶液,搅拌30-40min,所得混合溶液转移至高压釜中在160℃ 水热反应12h,洗涤,干燥,得到Zn3In2S6
本发明提供的3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6作为催化剂在光电催化 产H2O2中的应用。
进一步的,方法如下:将Zn3In2S6@Bi2WO6涂覆在碳纸上作为工作电极,铂片为对电极,Ag/AgCl为参比电极组成三电极体系,将三电极体系置于电解质溶液中,先在黑暗条件下,向电解质溶液中鼓吹O2 30min,然后在光照下,光电催化产H2O2
进一步的,光电催化条件为:偏压为-0.6V,光源为300W氙灯,λ>420nm,平均光 强为100mW·cm-2
进一步的,以pH=3.0,浓度为0.1mol L-1的Na2SO4为电解质溶液。
本发明的有益效果是:
1、本发明提供的光电催化剂Zn3In2S6@Bi2WO6,为Z型电荷传导模式的异质结,具有高效的光电催化剂。光激发使半导体中的电子从价带(VB)跃迁至导带(CB),形成电子空穴对,并且,一种半导体CB位置的e-与另一半导体VB位置的h+优先结合,实现电荷分离的 同时也在各自半导体上分别保留具有更强氧化/还原能力的光生电荷,保持了其原有的氧化/还原能力。
2、本发明提供的光电催化剂Zn3In2S6@Bi2WO6,所具有的3D花状结构具有丰富的褶皱,增大了催化剂的比表面积,增加了催化剂反应活性位点,有利于催化剂与电解质溶液的物质传递,提高光电催化的性能。
3、本发明提供的光电催化剂Zn3In2S6@Bi2WO6,在光电***里性能远远高于单独的光 催化***和电催化***,达到光电协同作用。
附图说明
图1是Zn3In2S6(a)和Zn3In2S6@Bi2WO6(b)的SEM图。
图2是Bi2WO6,Zn3In2S6和Zn3In2S6@Bi2WO6的XRD图谱。
图3是Bi2WO6,Zn3In2S6和Zn3In2S6@Bi2WO6的光电催化生产过氧化氢的性能对比。
图4是Zn3In2S6@Bi2WO6在纯光、纯电及光电共同作用下的催化效果对比。
图5为Zn3In2S6@Bi2WO6催化过程的动力学曲线。
图6为自由基捕获原理。
图7是推测的O2还原为H2O2反应机理。
具体实施方式
实施例1 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6
(一)制备方法如下
1、Zn3In2S6的制备
0.5865g InCl3·4H2O溶于25mL去离子水,0.8711g ZnSO4·7H2O和0.4545g硫代乙酰胺 溶于45mL去离子水,将两溶液合并后搅拌30min,将所得混合溶液转移至高压釜中在160℃水热反应12h,洗涤,干燥,得到黄色粉末状固体Zn3In2S6
2、Zn3In2S6@Bi2WO6的制备
1.9403g Bi(NO3)3·5H2O溶于25ml去离子水和15ml冰醋酸的混合溶液中,0.6598gNa2WO4·2H2O溶于10ml去离子水中,将两溶液合并后,将0.09g Zn3In2S6加入到上述混合 溶液中,搅拌1h,转移至高压釜中160℃水热反应16h,产物洗涤,干燥后,得到 Zn3In2S6@Bi2WO6
(二)检测
图1是Zn3In2S6(a)和Zn3In2S6@Bi2WO6(b)SEM图。由图1中a可见,Zn3In2S6展 现了良好的3D分级花状结构。由图1中b可见,负载Bi2WO6之后,原本的3D花状分层 结构没有明显的改变,花外缠绕了大量的纳米线。
图2是Bi2WO6,Zn3In2S6和Zn3In2S6@Bi2WO6的XRD图谱。由图2可见,纯的 Bi2WO6的谱图中,2θ=28.30,32.79,47.15,55.82处的衍射峰分别归因于Bi2WO6(131)、 (002)、(202)和(133)晶面(JCPDS no.979-2381)。对于单独的Zn3In2S6样品,在 2θ=26.99,28.23和46.92处的衍射峰归因于Zn3In2S6的(101)、(102)和(110)晶面 (JCPDS no.80-0835)。在Zn3In2S6@Bi2WO6中仅显示了较弱的Bi2WO6的特征峰,这是因为 Bi2WO6在该复合材料中的含量较低。
实施例2 Zn3In2S6@Bi2WO6在光电催化产H2O2中的应用
(一)催化活性评价
方法如下:3mg Zn3In2S6@Bi2WO6涂覆在碳纸上作为工作电极,铂片为对电 极,Ag/AgCl为参比电极,偏压为-0.6V,光源为300W氙灯(λ>420nm),平均光强为 100mW·cm-2,以0.1mol·L-1Na2SO4(pH=3.0)为电解质溶液,向电解质溶液中鼓吹O2。以 H2O2的生产速率表征Zn3In2S6@Bi2WO6的催化活性。电/光开始前,在黑暗中鼓吹O2 30min 以达到O2平衡。采用KI显色法在350nm处的紫外可见吸收进行定量分析,每隔30min测 定一次H2O2浓度。
(二)性能评价
图3是Bi2WO6,Zn3In2S6和Zn3In2S6@Bi2WO6的光电催化生产过氧化氢的性能对比。由图3可见,相比于单独的Bi2WO6和Zn3In2S6,Zn3In2S6@Bi2WO6复合材料展现了明显增 强的光电催化生产过氧化氢的性能,其中Zn3In2S6@Bi2WO6生产过氧化氢的量达到了1600 μmol/L,分别是单独Zn3In2S6和Bi2WO6的四倍和二倍。
图4是Zn3In2S6@Bi2WO6在纯光、纯电及光电共同作用下的催化效果对比。由图4可见,相比于单纯的光催化和电催化,光电催化也展示了明显增强的催化活性,证明了光电的协同作用。光催化与电催化生产过氧化氢的量分别为100μmol/L和50μmol/L,远不及光电催化生产过氧化氢的量。
图5为Zn3In2S6@Bi2WO6催化过程的动力学曲线。由图5可见,该反应过程符合准零级动力学,相比于单独的Bi2WO6和Zn3In2S6,Zn3In2S6@Bi2WO6复合材料展现了更高的速率 常数,反应速率常数为7.78154min-1
(三)催化机理
在催化过程中,通常存在着多种活性离子,包括·O2 -和h+等。为了进一步研究Zn3In2S6@Bi2WO6复合材料光电催化生产过氧化氢的机理,进行了捕获试验(图6)。当在反 应体系中加入硝酸银(e-捕获剂)时,产生的H2O2大幅度的减少,表明H2O2的产生需要e-。 将对苯醌(·O2 -捕获剂)加入到反应体系中时,产生的H2O2同样也大幅度的减少,表明·O2 -是 生成H2O2的主要活性物质。将柠檬酸(h+捕获剂)加入到反应体系中时,H2O2的量有较小的 提升,这可能是因为h+的消耗,促进了电子和空穴的分离,进而产生更多的H2O2。基于产 生活性粒子的标准电极电位(O2/·O2 -(-0.33Ev vs.NHE)),结合捕获实验结果及其带隙结构, Z型传导被认为是该异质结的电荷传导模式(图7)。

Claims (8)

1.3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6,其特征在于,制备方法包括如下步骤:将Bi(NO3)3·5H2O溶于去离子水和冰醋酸的混合溶液中,混合均匀后,加入Na2WO4·2H2O的水溶液,然后于所得混合溶液中加入Zn3In2S6,搅拌1h,转移至高压釜中进行水热反应,产物洗涤,干燥,得到Zn3In2S6@Bi2WO6
2.根据权利要求1所述的3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6,其特征在于,去离子水和冰醋酸的混合溶液中,按体积比,去离子水:冰醋酸=5:3。
3.根据权利要求1所述的3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6,其特征在于,所述水热反应是,于160℃下水热反应16h。
4.根据权利要求1所述的3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6,其特征在于,所述Zn3In2S6的制备方法包括如下步骤:将ZnSO4·7H2O和硫代乙酰胺溶于去离子水中后,加入InCl3水溶液,搅拌30-40min,所得混合溶液转移至高压釜中在160℃水热反应12h,洗涤,干燥,得到Zn3In2S6
5.权利要求1-4任意一项所述的3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6作为催化剂在光电催化产H2O2中的应用。
6.根据权利要求5所述的应用,其特征在于,方法如下:将Zn3In2S6@Bi2WO6涂覆在碳纸上作为工作电极,铂片为对电极,Ag/AgCl为参比电极组成三电极体系,将三电极体系置于电解质溶液中,先在黑暗条件下,向电解质溶液中鼓吹O2 30min,然后在光照下,光电催化产H2O2
7.根据权利要求6所述的应用,其特征在于,光电催化条件为:偏压为-0.6V,光源为300W氙灯,λ>420nm,平均光强为100mW·cm-2
8.根据权利要求6所述的应用,其特征在于,以pH=3.0,浓度为0.1mol L-1的Na2SO4为电解质溶液。
CN202210169081.2A 2022-02-23 2022-02-23 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用 Active CN114481168B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210169081.2A CN114481168B (zh) 2022-02-23 2022-02-23 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210169081.2A CN114481168B (zh) 2022-02-23 2022-02-23 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114481168A true CN114481168A (zh) 2022-05-13
CN114481168B CN114481168B (zh) 2024-03-22

Family

ID=81483711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210169081.2A Active CN114481168B (zh) 2022-02-23 2022-02-23 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114481168B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923779A (zh) * 2012-11-14 2013-02-13 陕西科技大学 一种花球状Bi2MoO6 微晶的制备方法
CN108505062A (zh) * 2018-05-04 2018-09-07 厦门大学 一种电催化还原氧气产生双氧水的方法
CN111261413A (zh) * 2019-12-27 2020-06-09 武汉科技大学 一种Ti掺杂α-Fe2O3纳米棒复合MOFs异质结光阳极及其制备方法与应用
CN111437824A (zh) * 2020-05-18 2020-07-24 辽宁大学 3D层状微花结构CoWO4@Bi2WO6 Z型异质结复合催化剂及其制备方法和应用
CN111437840A (zh) * 2020-05-22 2020-07-24 辽宁大学 3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂及其制备方法和应用
CN113856703A (zh) * 2021-10-15 2021-12-31 泉州师范学院 纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923779A (zh) * 2012-11-14 2013-02-13 陕西科技大学 一种花球状Bi2MoO6 微晶的制备方法
CN108505062A (zh) * 2018-05-04 2018-09-07 厦门大学 一种电催化还原氧气产生双氧水的方法
CN111261413A (zh) * 2019-12-27 2020-06-09 武汉科技大学 一种Ti掺杂α-Fe2O3纳米棒复合MOFs异质结光阳极及其制备方法与应用
CN111437824A (zh) * 2020-05-18 2020-07-24 辽宁大学 3D层状微花结构CoWO4@Bi2WO6 Z型异质结复合催化剂及其制备方法和应用
CN111437840A (zh) * 2020-05-22 2020-07-24 辽宁大学 3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂及其制备方法和应用
CN113856703A (zh) * 2021-10-15 2021-12-31 泉州师范学院 纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WU, YAN等: "Construction of hierarchical 2D-2D Zn3In2S6/fluorinated polymeric carbon nitride nanosheets photocatalyst for boosting photocatalytic degradation and hydrogen production performance", vol. 233, pages 58 - 69 *
许雪棠等: "Fe/Bi_2WO_6水热合成及其光催化性能研究", vol. 48, no. 03, pages 72 - 76 *

Also Published As

Publication number Publication date
CN114481168B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
Chen et al. Photoelectrocatalytic carbon dioxide reduction: fundamental, advances and challenges
Sun et al. Hydrogen spillover effect induced by ascorbic acid in CdS/NiO core-shell pn heterojunction for significantly enhanced photocatalytic H2 evolution
Xie et al. A solar responsive photocatalytic fuel cell with a heterostructured ZnFe2O4/TiO2-NTs photoanode and an air-breathing cathode
Xie et al. Degradation of refractory organic compounds by photocatalytic fuel cell with solar responsive WO3/FTO photoanode and air-breathing cathode
Candia-Onfray et al. An updated review of metal–organic framework materials in photo (electro) catalytic applications: From CO2 reduction to wastewater treatments
Li et al. Simultaneous SO2 removal and CO2 reduction in a nano-BiVO4| Cu-In nanoalloy photoelectrochemical cell
CN107761127B (zh) 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法
CN104549214A (zh) 二氧化锡多级结构纳米球二氧化碳电化学还原催化剂、制备方法及其应用
CN107020075A (zh) 二氧化碳电化学还原单质铋催化剂及其制备和应用
CN109881213B (zh) 一种高效的阳极氧化产次氯酸盐与阴极还原二氧化碳耦合方法
Chen et al. A solar responsive cubic nanosized CuS/Cu2O/Cu photocathode with enhanced photoelectrochemical activity
Wang et al. Integration of zirconium-based metal–organic framework with CdS for enhanced photocatalytic conversion of CO 2 to CO
CN111437840B (zh) 3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂及其制备方法和应用
Chen et al. Copper oxide film in-situ electrodeposited from Cu (II) complex as highly efficient catalyst for water oxidation
Xi et al. Electrochemical CO2 reduction coupled with alternative oxidation reactions: electrocatalysts, electrolytes, and electrolyzers
CN110656348B (zh) 一种电催化析氧电极及其制备和应用
CN114011398B (zh) 3D花状Zn3In2S6@Bi2O4/β-Bi2O3双Z型异质结光电催化剂及应用
Zheng et al. Interaction between InP and SnO2 on TiO2 nanotubes for photoelectrocatalytic reduction of CO2
Savino et al. Tandem devices for simultaneous CO2 reduction at the cathode and added-value products formation at the anode
Ayyob et al. Performance of amine-modified CdS-D@ ZIF-8 nanocomposites for enhanced photocatalytic H2 evolution
Li et al. Efficient electrochemical NO reduction to NH3 over metal-free g-C3N4 nanosheets and the role of interface microenvironment
CN112657515B (zh) 3D花状Z型异质结光电催化剂Zn3In2S6@α-Fe2O3及其制备方法和应用
Chen et al. The design of alternative anodic reactions paired with electrochemical CO 2 reduction
Gong et al. Paired electrosynthesis design strategy for sustainable CO2 conversion and product upgrading
CN111468138B (zh) 一维棒状CuBi2O4@CuBi2S4可见光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant