CN113667375B - 一种屏蔽中子和γ射线的纳米稀土氧化物复合粉体及其复合材料以及制备方法 - Google Patents

一种屏蔽中子和γ射线的纳米稀土氧化物复合粉体及其复合材料以及制备方法 Download PDF

Info

Publication number
CN113667375B
CN113667375B CN202110876124.6A CN202110876124A CN113667375B CN 113667375 B CN113667375 B CN 113667375B CN 202110876124 A CN202110876124 A CN 202110876124A CN 113667375 B CN113667375 B CN 113667375B
Authority
CN
China
Prior art keywords
rare earth
metal oxide
composite powder
earth oxide
oxide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110876124.6A
Other languages
English (en)
Other versions
CN113667375A (zh
Inventor
吴晓宏
李杨
崔凯
秦伟
卢松涛
洪杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202110876124.6A priority Critical patent/CN113667375B/zh
Publication of CN113667375A publication Critical patent/CN113667375A/zh
Application granted granted Critical
Publication of CN113667375B publication Critical patent/CN113667375B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • G21F1/103Dispersions in organic carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

一种屏蔽中子和γ射线的纳米稀土氧化物复合粉体及其复合材料以及制备方法;属于辐照屏蔽材料制备及其应用领域。本发明解决传统稀土金属氧化物受到辐照易产生二次辐射、易在有机树脂基体中团聚、浸润性差、对中子屏蔽性能差等缺点,与树脂基底形成复合涂层材料时强度差等缺点。本发明的纳米粉体材料呈核壳结构;稀土金属氧化物纳米颗粒为核,低Z金属氧化物包覆层为壳,由稀土金属氧化物纳米颗粒外表面均匀沉积低Z金属氧化物薄膜组成。将其与树脂混合,均匀的分散到有机树脂基体中,形成涂层或者块状结构。本发明可提高航天器集成电路封装的可靠性,免受γ射线、中子辐射的影响,还可应用于核辐射防护、医学X射线防护等领域。

Description

一种屏蔽中子和γ射线的纳米稀土氧化物复合粉体及其复合 材料以及制备方法
技术领域
本发明属于辐照屏蔽材料制备及其应用领域。
背景技术
空间环境中存在不同水平的辐射,航天器的电子器件以及芯片暴露于超出集成电路芯片总耐受剂量辐射下,导致电子器件和芯片性能受到影响,甚至使得电子器件及其集成电路无法工作。稀土氧化物纳米颗粒复合涂层作为一种新型的辐射屏蔽材料,在一定范围内能够有效吸收辐射粒子,将电子器件及芯片受到的空间辐射降低至总耐受剂量辐射之下。
近年来,由于稀土纳米颗粒对γ射线的屏蔽效果比硼等低Z元素明显,此外,稀土元素原子结构特殊,具有弥补铅的"弱吸收区"的优势、而且其对热中子的n、γ反应截面的面积高出硼几十倍,与慢中子和中能中子的反应截面同样比硼高数倍。众多优势使稀土防辐射材料设计和制备成为防辐射材料的研究重点。但稀土纳米颗粒存在一定的二次放射性(与β粒子产生轫致辐射、与中子易产生γ辐射),且在与树脂基底成膜时的易团聚,浸润性差等缺点,因此需要对稀土纳米颗粒进行改性。
发明内容
本发明旨在解决传统稀土金属氧化物受到辐照易产生二次辐射、易在有机树脂基体中团聚、浸润性差、对中子屏蔽性能差等缺点,与树脂基底形成复合涂层材料时强度差等缺点,提供了一种高度可控、在有机树脂基体中分散性好、浸润性强、能增强有机树脂基体强度、有效降低二次辐射,且提高了对X、γ辐射屏蔽性能、增强了对中子屏蔽能力的改性稀土氧化物纳米颗粒粉体。成形后的粉体材料与有机树脂基体混合,均匀分散在有机树脂中可形成涂层、块状结构。
本发明提供了一种屏蔽中子和γ射线的纳米稀土氧化物复合粉体呈核壳结构;稀土金属氧化物纳米颗粒为核,低Z金属氧化物包覆层为壳,由稀土金属氧化物纳米颗粒外表面均匀沉积低Z金属氧化物薄膜组成。将其与树脂混合,均匀的分散到有机树脂基体中,形成涂层或者块状结构。图1为本发明制得的涂层结构示意图。
进一步地限定,所述低Z金属氧化物包覆层选自TiO2、Al2O3、ZnO中的任意一种或至少两种的组合,优选ZnO。采用ZnO可以更有效降低稀土金属氧化物收到辐射时产生的二次辐射粒子,且能更好的降低粉体团聚,增强稀土金属氧化物在有机树脂基体中的浸润性和有机树脂基体的强度。
进一步地限定,所属有机树脂基体选自氰酸酯、环氧树脂、聚氨酯或高含氢聚乙烯等。
在本发明中屏蔽中子和γ射线的纳米稀土氧化物复合粉体是采用原子层沉积法制备的;具体是按下述步骤进行的:
步骤一、稀土金属氧化物纳米颗粒转移至原子层沉积装置腔体内;
步骤二、通入氧源进行沉积,沉积完成后用清洗气体吹扫管路和腔体内的残余反应物和副产物;
步骤三、再通入反应前驱体沉积低Z金属氧化物,然后用清洗气体吹扫管路和腔体内的残余反应物和副产物;
步骤四、重复步骤二至三的操作;即得到所述纳米稀土氧化物复合粉体。
进一步地限定,步骤二中以高纯度水、去离子水或者臭氧作为氧源,在0.10-0.20torr真空环境中,反应温度为150℃-200℃,脉冲时间为0.02s,反应时间为6S。
进一步地限定,步骤三中以二乙基锌、三甲基铝、四异丙醇钛中的一种或者多种作为反应前驱体,在0.10-0.20torr真空环境中,反应温度为150℃-200℃,脉冲时间为0.02s,反应时间为6S。
反应温度可以控制在150℃、160℃、170℃、180℃、190℃、200℃。
清洗气体必须是不与稀土金属氧化物纳米颗粒和反应前驱体相互反应的气体物质;本反应采用的清洗气体可采用高纯度的氮气(99.999%)。
本发明可以通过重复步骤二至三的次数来控制稀土金属氧化物纳米颗粒外包覆的低Z金属氧化物厚度。所述的低Z金属氧化物包覆层平均厚度为6-50nm。优选地,低Z金属氧化物包覆层的厚度为6nm-30nm,例如6nm、9nm、20nm、25nm、40nm、50nm等。
进一步限定,重复步骤二至三的操作29次-299次,重复操作次数可为49次、99次、149次、199次、249次等。
本发明中屏蔽中子和γ射线的复合材料的制备方法包括以下步骤:
步骤(A)将屏蔽中子和γ射线的稀土金属氧化物改性的纳米稀土氧化物复合粉体与有机树脂基体混合,在三锟研磨机上搅拌5min-10min;
步骤(B)然后通过刮涂、旋涂或喷涂在基体上,或者制备成块状材料。
步骤(C)然后在真空干燥箱中以温度为30℃-80℃干燥3小时-8小时,干燥温度可以控制在30℃、40℃、50℃、60℃、70℃、80℃,干燥时间可以控制在3、4、5、6、7、8小时。
进一步地,所述的纳米稀土氧化物复合粉体的质量分数为10%~70%,优选为20%、30%、40%、50%、60%。
本发明利用低Z材料包覆改性纳米颗粒,核壳纳米颗粒之间组成微观多层叠加结构,可以有效降低稀土纳米颗粒的二次放射性,提高稀土纳米颗粒在树脂中的浸润性,有效降低稀土纳米颗粒的团聚,核壳纳米填料还能提高稀土氧化物颗粒对辐射的屏蔽性能,核壳纳米填料还对树脂基体起到增强作用,并且在稀土金属氧化物纳米颗粒粉末中加入低Z金属氧化物能提高该材料对中子的吸收能力。
本发明方法可以有效控制包覆改性膜的厚度;包覆在稀土氧化物纳米颗粒的薄膜致密均匀;在稀土氧化物纳米颗粒表面形成的低Z包覆层纯度高,无其他杂质;在纳米粉体表面进行原位气相生长,可以有效避免粉体的团聚现象;可通过改变沉积速度、沉积循环数、沉积温度等工艺条件该表沉积物的比例和用量。
本发明通过ALD工艺在稀土氧化物纳米颗粒沉积一层致密且厚度可控的低Z金属氧化物,有利于该涂层对中子的吸收与屏蔽;
本发明核壳纳米颗粒之间可组成微观多层叠加结构,可有效屏蔽中子和γ辐照,且有效屏蔽和减少二次粒子;
本发明的核壳纳米填料对树脂基体起到增强作用。
本发明提高航天器集成电路封装的可靠性,免受γ辐射、中子辐射的影响,此材料还可应用于核辐射防护、医学X射线防护等。
附图说明
图1是本发明制得的涂层结构示意图;
图2是氧化钆改性前后的线性衰减系数图;
图3是结合力测试前照片;
图4是结合力测试后照片。
具体实施方式
实施例1:将纳米氧化钆转移至原子层沉积装置腔体内,对纳米氧化钆进行低Z金属氧化物包覆改性;具体是按下述步骤进行的:反应温度应控制在150℃,反应过程中压力应该控制在0.15torr,以高纯度水作为氧源,脉冲时间为0.02s,反应时间为6S,脉冲反应完成后用高纯氮气(99.999%)吹扫管路和腔体内的残余反应物和副产物40s;低Z金属氧化物源为二乙基锌,脉冲时间为0.02s,反应时间为6s,脉冲、反应完成后用高纯氮气(99.999%)吹扫管路和腔体内的残余反应物和副产物40s。然后氧源与低Z金属氧化物源交替通入反应腔体内作为一个循环周期。一共循环50次即可得到纳米稀土氧化物复合粉体。
纳米稀土氧化物复合粉体与环氧树脂混合,其中粉体质量分数为50%,环氧树脂质量分数为50%。将混合后的粉体与树脂倒入三锟研磨机中,研磨搅拌10min。然后将搅拌均匀的浆液采用刮涂的方式刮涂在聚酰亚胺薄膜上。再在真空干燥箱中以30℃干燥3h即可得到薄膜材料。
实施例2:将纳米氧化钆转移至原子层沉积装置腔体内,对纳米氧化钆进行低Z金属氧化物包覆改性;具体是按下述步骤进行的:反应温度应控制在150℃,反应过程中压力应该控制在0.15torr,以高纯度水作为氧源,脉冲时间为0.02s,反应时间为6S,脉冲反应完成后用高纯氮气(99.999%)吹扫管路和腔体内的残余反应物和副产物40s;低Z金属氧化物源为二乙基锌,脉冲时间为0.02s,反应时间为6s,脉冲、反应完成后用高纯氮气(99.999%)吹扫管路和腔体内的残余反应物和副产物40s。然后氧源与低Z金属氧化物源交替通入反应腔体内作为一个循环周期。一共循环150次即可得到纳米稀土氧化物复合粉体。
纳米稀土氧化物复合粉体与环氧树脂混合,其中粉体质量分数为50%,环氧树脂质量分数为50%。将混合后的粉体与树脂倒入三锟研磨机中,研磨搅拌10min。然后将搅拌均匀的浆液采用刮涂的方式刮涂在聚酰亚胺薄膜上。再在真空干燥箱中以30℃干燥3h即可得到薄膜材料。
实施例3:将纳米氧化钆转移至原子层沉积装置腔体内,对纳米氧化钆进行低Z金属氧化物包覆改性;具体是按下述步骤进行的:反应温度应控制在150℃,反应过程中压力应该控制在0.15torr,以高纯度水作为氧源,脉冲时间为0.02s,反应时间为6S,脉冲反应完成后用高纯氮气(99.999%)吹扫管路和腔体内的残余反应物和副产物40s;低Z金属氧化物源为二乙基锌,脉冲时间为0.02s,反应时间为6s,脉冲、反应完成后用高纯氮气(99.999%)吹扫管路和腔体内的残余反应物和副产物40s。然后氧源与低Z金属氧化物源交替通入反应腔体内作为一个循环周期。一共循环300次即可得到纳米稀土氧化物复合粉体。
纳米稀土氧化物复合粉体与环氧树脂混合,其中粉体质量分数为50%,环氧树脂质量分数为50%。将混合后的粉体与树脂倒入三锟研磨机中,研磨搅拌10min。然后将搅拌均匀的浆液采用刮涂的方式刮涂在聚酰亚胺薄膜上。再在真空干燥箱中以30℃干燥3h即可得到薄膜材料。
本发明通过线性衰减系数来评判抗辐照能力,单一能量的γ射线或X射线在目标材料的线性衰减如下:
I=I0exp(-μx)
I和I0分别是投射光强度和入射光强度,x是材料的厚度,μ是线性衰减系数。对于γ射线来说,μ是γ射线穿过屏蔽材料的线性衰减系数,它表明屏蔽材料对于γ射线总的吸收系数,相当于材料对γ射线的宏观吸收截面,μ的量纲为长度的倒数,显然μ直接指出了材料对于γ射线的屏蔽能力。μ越大说明该材料对于伽马射线吸收越强,衰减伽马射线地能力越强。
从图2可以看出未被低Z金属氧化物未包覆改性地氧化钆线性衰减系数未5.348,而被低Z金属氧化物未包覆改性地氧化钆线性衰减系数均大于5.348。说明了包覆改性后地氧化钆吸收伽马射线地能力明显优于未包覆改性地氧化钆。且半包覆(50cy)时线性衰减系数高达6.609,优于全包覆(150cy、300cy)。
本发明通过画格法来评判涂层的结合力。参考ISO 2409标准,该实验膜厚度为170um,故间隔3mm用单刃刀具划线。然后用胶带粘,抓着胶带一头,在0.5-1.0s内,以接近60°角撕开胶带。检查切割部位的状态,如图3和图4所示。参考ISO 12944-6中规定,达到0级或1级为合格。参考标准说明制备的涂层与聚酰亚胺基体结合力为1级,结合力合格。

Claims (10)

1.一种屏蔽中子和γ射线的纳米稀土氧化物复合粉体,其特征在于所述纳米稀土氧化物复合粉体呈核壳结构;稀土金属氧化物纳米颗粒为核,低Z金属氧化物包覆层为壳;
其中,所述纳米稀土氧化物复合粉体的制备方法是采用原子层沉积法制备的;具体是按下述步骤进行的:
步骤一、稀土金属氧化物纳米颗粒转移至原子层沉积装置腔体内;
步骤二、通入氧源进行沉积,沉积完成后用清洗气体吹扫管路和腔体内的残余反应物和副产物;
步骤三、再通入反应前驱体沉积低Z金属氧化物,然后用清洗气体吹扫管路和腔体内的残余反应物和副产物;
步骤四、重复步骤二至三的操作;即得到所述纳米稀土氧化物复合粉体。
2.根据权利要求1所述的纳米稀土氧化物复合粉体,其特征在于所述低Z金属氧化物包覆层是由TiO2、Al2O3、ZnO中的任意一种或至少两种的任意比组合。
3.根据权利要求1所述的纳米稀土氧化物复合粉体,其特征在于低Z金属氧化物包覆层平均厚度为6nm-50nm。
4.如权利要求1、2或3所述的纳米稀土氧化物复合粉体的制备方法,其特征在于所述制备方法是采用原子层沉积法制备的;具体是按下述步骤进行的:
步骤一、稀土金属氧化物纳米颗粒转移至原子层沉积装置腔体内;
步骤二、通入氧源进行沉积,沉积完成后用清洗气体吹扫管路和腔体内的残余反应物和副产物;
步骤三、再通入反应前驱体沉积低Z金属氧化物,然后用清洗气体吹扫管路和腔体内的残余反应物和副产物;
步骤四、重复步骤二至三的操作;即得到所述纳米稀土氧化物复合粉体。
5.根据权利要求4所述的制备方法,其特征在于步骤二中以高纯度水、去离子水或者臭氧作为氧源,在0.10-0.20torr真空环境中,反应温度为150℃-200℃,脉冲时间为0.02s,反应时间为6s;步骤三中以二乙基锌、三甲基铝、四异丙醇钛中的一种或者多种作为前驱体,在0.10torr-0.20torr真空环境中,反应温度为150℃-200℃,脉冲时间为0.02s,反应时间为6s。
6.根据权利要求4所述的制备方法,其特征在于重复步骤二至三的操作29次-299次。
7.屏蔽中子和γ射线的复合材料,其特征在于所述复合材料是将权利要求1-3任意一项所述的纳米稀土氧化物复合粉体或者权利要求4-6任意一项所述方法制备的纳米稀土氧化物复合粉体均匀分散到有机树脂基体中,形成涂层或者块状结构。
8.根据权利要求7所述的复合材料,其特征在于有机树脂基体为氰酸酯、环氧树脂、聚氨酯、高含氢聚乙烯中的一种。
9.根据权利要求7所述的复合材料,其特征在于所述的纳米稀土氧化物复合粉体的质量分数为10%~70%。
10.如权利要求7、8或9所述复合材料的制备方法,其特征在于:
步骤(A)将屏蔽中子和γ射线的纳米稀土氧化物复合粉体与有机树脂基体混合,在三锟研磨机上搅拌5-10min;
步骤(B)然后通过刮涂、旋涂或喷涂在基体上,或者制备成块状材料;
步骤(C)然后在真空干燥箱中以温度为30℃-80℃干燥3-8小时。
CN202110876124.6A 2021-07-30 2021-07-30 一种屏蔽中子和γ射线的纳米稀土氧化物复合粉体及其复合材料以及制备方法 Active CN113667375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110876124.6A CN113667375B (zh) 2021-07-30 2021-07-30 一种屏蔽中子和γ射线的纳米稀土氧化物复合粉体及其复合材料以及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110876124.6A CN113667375B (zh) 2021-07-30 2021-07-30 一种屏蔽中子和γ射线的纳米稀土氧化物复合粉体及其复合材料以及制备方法

Publications (2)

Publication Number Publication Date
CN113667375A CN113667375A (zh) 2021-11-19
CN113667375B true CN113667375B (zh) 2022-06-14

Family

ID=78540956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110876124.6A Active CN113667375B (zh) 2021-07-30 2021-07-30 一种屏蔽中子和γ射线的纳米稀土氧化物复合粉体及其复合材料以及制备方法

Country Status (1)

Country Link
CN (1) CN113667375B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276992A (ja) * 1998-03-27 1999-10-12 Dainippon Printing Co Ltd 日射遮蔽膜およびその製造方法
JP4826126B2 (ja) * 2005-04-20 2011-11-30 住友金属鉱山株式会社 日射遮蔽膜形成用塗布液および日射遮蔽膜ならびに日射遮蔽機能を有する基材
CN101570606B (zh) * 2009-06-15 2011-01-05 北京化工大学 一种全无铅x射线屏蔽橡胶复合材料
US20130161564A1 (en) * 2011-12-22 2013-06-27 International Scientific Technologies, Inc. NanoStructured Additives to High-Performance Polymers for Use in Radiation Shielding, Protection Against Atomic Oxygen and in Structural Applications
US11279656B2 (en) * 2017-10-27 2022-03-22 Applied Materials, Inc. Nanopowders, nanoceramic materials and methods of making and use thereof
CN108690285A (zh) * 2018-05-28 2018-10-23 安徽顺彤包装材料有限公司 一种抗寒防辐射复合材料

Also Published As

Publication number Publication date
CN113667375A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
TWI500045B (zh) 輻射吸收材料與其製備方法以及輻射屏蔽複合材料與其製備方法
KR20100047510A (ko) 나노 크기의 방사선 차폐물질을 포함하는 방사선 차폐재 및이의 제조방법
Azman et al. Feasibility of nanomaterial tungsten carbide as lead-free nanomaterial-based radiation shielding
KR101589692B1 (ko) 텅스텐 또는 보론 나노 입자를 포함하는 방사선 차폐재 및 이의 제조방법
CN115376716B (zh) 一种屏蔽中子和γ射线的高熵陶瓷氧化物涂层及其制备方法
CN113990540B (zh) 一种抗重离子单粒子效应的flash器件及其制备方法
CN113667375B (zh) 一种屏蔽中子和γ射线的纳米稀土氧化物复合粉体及其复合材料以及制备方法
Yu et al. Lightweight polyester fabric with elastomeric bismuth titanate composite for high-performing lead-free X-ray shielding
CN115231571B (zh) 一种屏蔽中子和γ射线的Mxene-金属/稀土氧化物-硼化物复合材料及其制备方法
Hannachi et al. Correlation between the structure, grain size distribution and radiation shielding peculiarities of YBCO ceramics prepared by two different milling methods
CN113969078B (zh) 一种硼基材料改性的稀土氧化物空间n-γ混合场辐射屏蔽的复合涂层及其制备方法
CN113943531B (zh) 一种抗辐射封装加固的cmos器件及其制备方法
Hannachi et al. Experimental study on the radiation protecting ability of composites containing barium titanate and nanospinel ferrite
CN111961383B (zh) 一种抗γ射线辐照的高储氢复合防护膜层及其制备方法
Cui et al. Construction of MAPbBr3/EP composites with blocking path for high-performance gamma-rays shielding
Manjunatha et al. Effect of zinc doping on the radiation shielding properties of calcium ferrite nanoparticles synthesized via green extract approach
CN113903483A (zh) 一种防护X/γ射线的多层柔性复合材料及其制备方法
Cui et al. Crystal plane engineering of MAPbI 3 in epoxy-based materials for superior gamma-ray shielding performance
KR101272883B1 (ko) 나노 크기의 중성자 흡수물질을 포함하는 방사선 흡수재 및 이의 제조방법
CN113956846B (zh) 一种用于空间带电粒子辐射防护的稀土氧化物纳米颗粒掺杂Mxene材料及复合涂层以及制备方法
Vagheian et al. On an experimental study of the electron generation property of thin gold films
KR101460691B1 (ko) 나노 크기의 방사선 차폐물질을 포함하는 방사선 차폐재 및 이의 제조방법
Mohammed et al. Impact of growth temperature of lead-oxide nanostructures on the attenuation of gamma radiation
KR101478161B1 (ko) 보론 입자의 처리장치 및 코팅방법
RU2807842C1 (ru) Композиционный материал на основе полиэтилена, модифицированного наночастицами ZrO2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant