CN113525535A - 一种基于模糊控制的驾驶室半主动悬置控制方法及装置 - Google Patents

一种基于模糊控制的驾驶室半主动悬置控制方法及装置 Download PDF

Info

Publication number
CN113525535A
CN113525535A CN202110916218.1A CN202110916218A CN113525535A CN 113525535 A CN113525535 A CN 113525535A CN 202110916218 A CN202110916218 A CN 202110916218A CN 113525535 A CN113525535 A CN 113525535A
Authority
CN
China
Prior art keywords
vehicle
suspension
controlled
cab
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110916218.1A
Other languages
English (en)
Other versions
CN113525535B (zh
Inventor
唐振天
邓聚才
陈钟
周上奎
周文
许恩永
冯哲
周志斌
栗广生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfeng Liuzhou Motor Co Ltd
Original Assignee
Dongfeng Liuzhou Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfeng Liuzhou Motor Co Ltd filed Critical Dongfeng Liuzhou Motor Co Ltd
Priority to CN202110916218.1A priority Critical patent/CN113525535B/zh
Publication of CN113525535A publication Critical patent/CN113525535A/zh
Application granted granted Critical
Publication of CN113525535B publication Critical patent/CN113525535B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D33/00Superstructures for load-carrying vehicles
    • B62D33/06Drivers' cabs
    • B62D33/0604Cabs insulated against vibrations or noise, e.g. with elastic suspension

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

本发明公开了一种基于模糊控制的驾驶室半主动悬置控制方法及装置,通过获取待控制车辆底盘减振器上下两端的距离,根据所述距离,计算所述待控制车辆的车辆载重系数;获取所述待控制车辆驾驶室悬置上下两端的速度,根据所述速度,计算所述待控制车辆驾驶室悬置上下两端的相对速度;对所述速度和所述相对速度依次进行模糊化处理和反模糊化处理;获取所述反模糊化处理后得到的电流值,根据所述电流值与所述车辆载重系数,计算所述待控制车辆减振器的控制电流值;根据所述控制电流值输出相应电流控制所述减振器阻尼力,从而控制所述待控制车辆驾驶室半主动悬置。本发明通过降低车载重量对减震效果的影响,提高驾驶的舒适性。

Description

一种基于模糊控制的驾驶室半主动悬置控制方法及装置
技术领域
本发明涉及半主动悬置的技术领域,特别是涉及一种基于模糊控制的驾驶室半主动悬置控制方法及装置。
背景技术
随着汽车产业的不断发展,商用车不仅是作为运输工具,人们对商用车的舒适性的要求也越来越高。汽车的振动是影响汽车行驶性能的重要因素,它不仅降低了汽车的行驶平顺性,还影响汽车的接地安全性和操纵稳定性。随着减振器技术的进步,磁流变MRC减振器和连续阻尼可调CDC减振器被陆续研发出来并投入到实际运用中,但由于商用车辆的载重的不同会对车辆底盘的减振效果造成影响,从而使驾驶室悬置下方激振的频率和幅值发生一定改变,无法满足人们对商用车的舒适性的需求。
发明内容
本发明要解决的技术问题是:一种基于模糊控制的驾驶室半主动悬置控制方法及装置,通过降低车载重量对减震效果的影响,提高驾驶的舒适性。
为了解决上述技术问题,本发明提供了一种基于模糊控制的驾驶室半主动悬置控制方法及装置,包括:
获取待控制车辆底盘减振器上下两端的距离,根据所述距离,计算所述待控制车辆的车辆载重系数;
获取所述待控制车辆驾驶室悬置上下两端的速度,根据所述速度,计算所述待控制车辆驾驶室悬置上下两端的相对速度;
对所述速度和所述相对速度依次进行模糊化处理和反模糊化处理;
获取所述反模糊化处理后得到的电流值,根据所述电流值与所述车辆载重系数,计算所述待控制车辆减振器的控制电流值;
根据所述控制电流值输出相应电流控制所述减振器阻尼力,从而控制所述待控制车辆驾驶室半主动悬置。
进一步地,在所述根据所述控制电流值输出相应电流控制所述减振器阻尼力之后,还包括:
当控制所述减振器阻尼力的持续控制时间达到预设时间阈值时,持续所述减振器的阻尼力控制,并返回步骤“获取待控制车辆驾驶室悬置上下两端的加速度和速度”,执行下一个循环。
进一步地,所述获取待控制车辆底盘减振器上下两端的距离,根据所述距离,计算所述待控制车辆的车辆载重系数,具体为:
通过获取设置在所述待控制车辆底盘减振器处的测距传感器测量的悬架上下两端的距离,根据所述距离,计算车载重量的大小,并将所述车载重量的大小代入到车辆载重系数计算公式中,计算对应的车辆载重系数;其中,所述车辆载重系数计算公式为:
λ=f(M);
式中,M为车载重量,λ为车辆载重系数。
进一步地,所述获取待控制车辆驾驶室悬置上下两端的速度,根据所述速度,计算所述待控制车辆驾驶室悬置上下两端的相对速度,具体为:
获取设置在驾驶室悬置上下两端的加速度传感器测量的加速度,同时获取积分电路输出端电压,根据所述加速度和所述积分电路输出端电压,计算所述待控制车辆驾驶室悬置上下两端的速度,将所述待控制车辆驾驶室悬置上下两端的速度代入到悬置相对速度计算公式中,计算所述待控制车辆驾驶室悬置上下两端的相对速度,其中,所述悬置相对速度计算公式为:
Figure BDA0003204841560000031
式中,
Figure BDA0003204841560000032
为所述待控制车辆驾驶室悬置上下两端的相对速度,
Figure BDA0003204841560000033
为待控制车辆驾驶室悬置上端的速度,
Figure BDA0003204841560000034
为待控制车辆驾驶室悬置下端的速度。
进一步地,所述对所述速度和所述相对速度依次进行模糊化处理和反模糊化处理,具体为:
将获取到的待控制车辆驾驶室悬置上端的速度和所述相对速度根据隶属度函数进行模糊化处理,判断所述待控制车辆驾驶室悬置上端的速度和所述相对速度所属的模糊子集,将所述模糊子集代入查询表中,获取模糊化的阻尼控制电流,并对所述模糊化的阻尼控制电流采用最大隶属度法进行反模糊化处理。
进一步地,本发明还提供了一种基于模糊控制的驾驶室半主动悬置控制装置,其特征在于,包括:第一获取模块、第二获取模块、处理模块、计算模块和控制模块;
其中,所述第一获取模块用于获取待控制车辆底盘减振器上下两端的距离,根据所述距离,计算所述待控制车辆的车辆载重系数;
所述第二获取模块用于获取所述待控制车辆驾驶室悬置上下两端的速度,根据所述速度,计算所述待控制车辆驾驶室悬置上下两端的相对速度;
所述处理模块用于对所述速度和所述相对速度依次进行模糊化处理和反模糊化处理;
所述计算模块用于获取所述反模糊化处理后得到的电流值,根据所述电流值与所述车辆载重系数,计算所述待控制车辆减振器的控制电流值;
所述处理模块根据所述控制电流值输出相应电流控制所述减振器阻尼力,从而控制所述待控制车辆驾驶室半主动悬置。
进一步地,还包括循环模块,具体为:
所述循环模块用于当控制所述减振器阻尼力的持续控制时间达到预设时间阈值时,持续所述减振器的阻尼力控制,并返回步骤“获取待控制车辆驾驶室悬置上下两端的加速度和速度”,执行下一个循环。
进一步地,第一获取模块用于所述获取待控制车辆底盘减振器上下两端的距离,根据所述距离,计算所述待控制车辆的车辆载重系数,具体为:
通过获取设置在所述待控制车辆底盘减振器处的测距传感器测量的悬架上下两端的距离,根据所述距离,计算车载重量的大小,并将所述车载重量的大小代入到车辆载重系数计算公式中,计算对应的车辆载重系数;其中,所述车辆载重系数计算公式为:
λ=f(M);
式中,M为车载重量,λ为车辆载重系数。
进一步地,所述第二获取模块用于获取待控制车辆驾驶室悬置上下两端的速度,根据所述速度,计算所述待控制车辆驾驶室悬置上下两端的相对速度,具体为:
获取设置在驾驶室悬置上下两端的加速度传感器测量的加速度,同时获取积分电路输出端电压,根据所述加速度和所述积分电路输出端电压,计算所述待控制车辆驾驶室悬置上下两端的速度,将所述待控制车辆驾驶室悬置上下两端的速度代入到悬置相对速度计算公式中,计算所述待控制车辆驾驶室悬置上下两端的相对速度,其中,所述悬置相对速度计算公式为:
Figure BDA0003204841560000051
式中,
Figure BDA0003204841560000052
为所述待控制车辆驾驶室悬置上下两端的相对速度,
Figure BDA0003204841560000053
为待控制车辆驾驶室悬置上端的速度,
Figure BDA0003204841560000054
为待控制车辆驾驶室悬置下端的速度。
进一步地,所述处理模块用于对所述速度和所述相对速度依次进行模糊化处理和反模糊化处理,具体为:
将获取到的待控制车辆驾驶室悬置上端的速度和所述相对速度根据隶属度函数进行模糊化处理,判断所述待控制车辆驾驶室悬置上端的速度和所述相对速度所属的模糊子集,将所述模糊子集代入查询表中,获取模糊化的阻尼控制电流,并对所述模糊化的阻尼控制电流采用最大隶属度法进行反模糊化处理。
本发明实施例一种基于模糊控制的驾驶室半主动悬置控制方法及装置,与现有技术相比,具有如下有益效果:
由于商用车辆的载重的不同会影响到车辆底盘的减振效果,因此本发明通过获取待控制车辆底盘减振器上下两端的距离,根据所述距离,计算所述待控制车辆的车辆载重系数,从而判断车载重量的大小,同时为了获得更好的减振效果,根据不同的载重进行不同的模糊化处理,通过获取所述待控制车辆驾驶室悬置上下两端的速度,根据所述速度,计算所述待控制车辆驾驶室悬置上下两端的相对速度;根据控制对象的特点,对所述速度和所述相对速度依次进行模糊化处理和反模糊化处理;获取所述反模糊化处理后得到的电流值,根据所述电流值与所述车辆载重系数,计算所述待控制车辆减振器的控制电流值;最后根据所述控制电流值输出相应电流控制所述减振器阻尼力,使得减振器的振动情况得到优化,从而控制所述待控制车辆驾驶室半主动悬置,提高驾驶的舒适性。
附图说明
图1是本发明提供的基于模糊控制的驾驶室半主动悬置控制方法的一种实施例的流程示意图;
图2是本发明提供的基于模糊控制的驾驶室半主动悬置控制方法的一种实施例的悬置上端速度隶属度函数图像示意图;
图3是本发明提供的基于模糊控制的驾驶室半主动悬置控制方法的一种实施例的悬置相对速度隶属度函数图像示意图;
图4是本发明提供的基于模糊控制的驾驶室半主动悬置控制方法的一种实施例的模糊控制规则示意图;
图5是本发明提供的基于模糊控制的驾驶室半主动悬置控制方法的一种实施例的模糊化的阻尼控制电流隶属度函数图像示意图;
图6是本发明提供的基于模糊控制的驾驶室半主动悬置控制装置的一种实施例的结构示意图。
具体实施方式
下面将结合本发明中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
参见图1,图1是本发明提供的基于模糊控制的驾驶室半主动悬置控制方法的一种实施例的流程示意图,如图1所示,该方法包括步骤101-步骤105,具体如下:
步骤101:获取待控制车辆底盘减振器上下两端的距离,根据所述距离,计算所述待控制车辆的车辆载重系数。
本实施例中,在获取待控制底盘减振器上下两端的距离前,确保车辆处于静止状态,通过获取设置在所述待控制车辆底盘减振器处的测距传感器测量的悬架上下两端的距离,将测距传感器测量的悬架上下两端的距离与预设的初始悬架距离作对比,测距传感器测量的悬架上下两端的距离越小,车载重量越大,从而得到悬架压缩量,判断车载重量的大小,并将车载重量的大小代入到车辆载重系数计算公式中,计算对应的车辆载重系数;其中,所述车辆载重系数计算公式为:
λ=f(M);
式中,M为车载重量,λ为车辆载重系数。
作为本实施例的一种优选案例,在待控制车辆底盘减振器悬架处设置的测距传感器的数量可根据需求增加或减少,本实施例中,设置测距传感器的数量为4个。
步骤102:获取所述待控制车辆驾驶室悬置上下两端的速度,根据所述速度,计算所述待控制车辆驾驶室悬置上下两端的相对速度。
本实施例中,在待控制车辆驾驶室各个悬置上端设置1个加速度传感器,在待控制车辆驾驶室各个悬置下端设置1个加速度传感器,用以分别获取待控制车辆驾驶室悬置上端的加速度和待控制车辆驾驶室悬置下端的加速度,同时获取待控制车辆驾驶室中积分电路的输出端电压,将获取到的待控制车辆驾驶室悬置上端的加速度代入到积分电路中,结合积分电路输出端电压,获得待控制车辆驾驶室悬置上端的速度,将获取到的待控制车辆驾驶室悬置下端的加速度代入到积分电路中,结合积分电路输出端电压,获得待控制车辆驾驶室悬置下端的速度,将所述待控制车辆驾驶室悬置上下两端的速度代入到悬置相对速度计算公式中,计算所述待控制车辆驾驶室悬置上下两端的相对速度,其中,所述悬置相对速度计算公式为:
Figure BDA0003204841560000081
式中,
Figure BDA0003204841560000091
为所述待控制车辆驾驶室悬置上下两端的相对速度,
Figure BDA0003204841560000092
为待控制车辆驾驶室悬置上端的速度,
Figure BDA0003204841560000093
为待控制车辆驾驶室悬置下端的速度。
作为本实施例的一种优选案例,在待控制车辆驾驶室悬置处设置的加速度传感器的数量可根据需求增加或减少,本实施例中,设置加速度传感器的数量为4个,其中,加速度传感器设置在驾驶室的四个角落处。
步骤103:对所述速度和所述相对速度依次进行模糊化处理和反模糊化处理。
本实施例中,将获取到的待控制车辆驾驶室悬置上端的速度和悬置相对速度根据对应的隶属度函数图像进行模糊化处理,其中,待控制车辆驾驶室悬置上端的速度隶属度函数图像如图2所示,悬置相对速度隶属度函数图像如图3所示,图2和图3中,Vsmi和Vsumi分别为第i个减振器悬置上端速度和悬置相对速度由大转小的临界值。由于待控制车辆驾驶室悬置上端的速度和悬置相对速度有正负之分,故将其分别分为四个等级,分别为负大(NB)、负小(NS)、正小(PS)、正大(PB),将获取的待控制车辆驾驶室悬置上端的速度和悬置相对速度分别对应待控制车辆驾驶室悬置上端的速度隶属度函数、悬置相对速度隶属度函数图像,得到待控制车辆驾驶室悬置上端的速度和悬置相对速度分别对应的等级,作为本实施例中的一种举例,如待控制车辆驾驶室悬置上端的速度为
Figure BDA0003204841560000094
此时PS的占比较大,则待控制车辆驾驶室悬置上端的速度被模糊为等级PS,PS则为待控制车辆驾驶室悬置上端的速度的模糊子集,同理,如悬置相对速度为
Figure BDA0003204841560000101
此时PB的占比较大,则悬置相对速度被模糊为等级PB,PB则为悬置相对速度的模糊子集;将待控制车辆驾驶室悬置上端的速度和悬置相对速度模糊化后的模糊子集代入模糊控制查询表中,其中,模糊控制查询表如图4所示,得到模糊化后的阻尼控制电流,其中,阻尼控制电流为减振器的阻尼控制电流,因减振器为连续阻尼可调CDC减振器,且无负数,故分为五级,分别为最大(MB)、大(PB)、中(PZ)、小(PM)、最小(MS),作为本实施例中的一种举例,如待控制车辆驾驶室悬置上端的速度的模糊子集为NS,悬置相对速度的模糊子集为NB,代入模糊控制查询表可得模糊化的阻尼控制电流为大(PB);并对得到的模糊化的阻尼控制电流根据对应的隶属度函数图像进行反模糊化处理,其中,模糊化的阻尼控制电流隶属度函数图像如图5所示,其中IVi、ILi、IMi、ISi分别为最大、大、中、小、最小的临界值。
步骤104:获取所述反模糊化处理后得到的电流值,根据所述电流值与所述车辆载重系数,计算所述待控制车辆减振器的控制电流值。
本实施例中,根据图5所示的模糊化的阻尼控制电流隶属度函数图像,获取反模糊化处理后得到的电流值,作为本实施例的一种举例,如得到的模糊化的阻尼控制电流为大(PB),代入反模糊化的阻尼控制电流隶属度函数图像中,则取PB区间的左端点,即Ivi,其中,Ivi就是所要获取反模糊化处理后得到的电流值。
本实施例中,将获取的反模糊化处理后得到的电流值与步骤101中获取到的车辆载重系数相乘,得到各个减振器最终的阻尼控制电流值,及待控制车辆各个减振器的控制电流值。
步骤105:根据所述控制电流值输出相应电流控制所述减振器阻尼力,从而控制所述待控制车辆驾驶室半主动悬置。
本实施例中,根据步骤104中得到的带控制车辆减振器的控制电流值控制待控制车辆驾驶室的方法电路输出电流控制减振器的阻尼力,当控制所述减振器阻尼力的持续控制时间达到预设时间阈值时,持续所述减振器的阻尼力控制,并返回步骤“获取待控制车辆驾驶室悬置上下两端的加速度和速度”,执行下一个循环,从而控制待控制车辆驾驶室半主动悬置,作为本实施例中的一种举例,预设时间阈值为每10ms中断一次。
本实施例中,利用步骤101-步骤105中任意一项所述的基于模糊控制的驾驶室半主动悬置控制方法,在仿真软件中,结合动力学原理建立整车动力学模型,其中,整车动力学模型包括轮胎-底盘减振***-车架-驾驶室悬置***-驾驶室。驾驶室质心原点为O,X为前进方向,Y为横向,Z为垂向,悬置上端位移表示为zsi,速度表示为
Figure BDA0003204841560000111
加速度表示为
Figure BDA0003204841560000112
悬置下端位移表示为zui,速度表示为
Figure BDA0003204841560000113
加速度表示为
Figure BDA0003204841560000114
令悬置相对速度为
Figure BDA0003204841560000115
令减振器阻尼控制电流为Ii;本实施例中,i的取值范围为1-4任意一个整数。以某型商用车参数为动力学模型参数,随机路面数据为模型的路面输入,分别将利用上述模糊控制的驾驶室半主动悬置控制方法的半主动悬置和原车被动悬置进行仿真,对比得出,在随机路面中,搭载控制方法的半主动悬置与原车搭载被动悬置进行对比,垂直方向的加速度均方根值优化了17%,振动得到改善,驾驶室舒适性能得到进一步提升。
参见图6,图6是本发明提供的基于模糊控制的驾驶室半主动悬置控制装置的一种实施例的结构示意图,如图6所示,该结构包括第一获取模块601,第二获取模块602、处理模块603、计算模块604和控制模块605,具体如下:
其中,第一获取模块601用于获取待控制车辆底盘减振器上下两端的距离,根据所述距离,计算所述待控制车辆的车辆载重系数。
本实施例中,第一获取模块601获取待控制车辆底盘减振器上下两端的距离前,确保车辆处于静止状态,通过获取设置在所述待控制车辆底盘减振器处的测距传感器测量的悬架上下两端的距离,将测距传感器测量的悬架上下两端的距离与预设的初始悬架距离作对比,测距传感器测量的悬架上下两端的距离越小,车载重量越大,从而得到悬架压缩量,判断车载重量的大小,并将车载重量的大小代入到车辆载重系数计算公式中,计算对应的车辆载重系数;其中,所述车辆载重系数计算公式为:
λ=f(M);
式中,M为车载重量,λ为车辆载重系数。
作为本实施例的一种优选案例,在待控制车辆底盘减振器处设置的测距传感器的数量可根据需求增加或减少,本实施例中,设置测距传感器的数量为4个。
第二获取模块602用于获取所述待控制车辆驾驶室悬置上下两端的速度,根据所述速度,计算所述待控制车辆驾驶室悬置上下两端的相对速度。
本实施例中,在待控制车辆驾驶室各个悬置上端设置1个加速度传感器,在待控制车辆驾驶室各个悬置下端设置1个加速度传感器,第二获取模块602用以分别获取待控制车辆驾驶室悬置上端的加速度和待控制车辆驾驶室悬置下端的加速度,同时获取待控制车辆驾驶室中积分电路的输出端电压,将获取到的待控制车辆驾驶室悬置上端的加速度代入到积分电路中,结合积分电路输出端电压,获得待控制车辆驾驶室悬置上端的速度,将获取到的待控制车辆驾驶室悬置下端的加速度代入到积分电路中,结合积分电路输出端电压,获得待控制车辆驾驶室悬置下端的速度,将所述待控制车辆驾驶室悬置上下两端的速度代入到悬置相对速度计算公式中,计算所述待控制车辆驾驶室悬置上下两端的相对速度,其中,所述悬置相对速度计算公式为:
Figure BDA0003204841560000131
式中,
Figure BDA0003204841560000132
为所述待控制车辆驾驶室悬置上下两端的相对速度,
Figure BDA0003204841560000133
为待控制车辆驾驶室悬置上端的速度,
Figure BDA0003204841560000134
为待控制车辆驾驶室悬置下端的速度。
作为本实施例的一种优选案例,在待控制车辆驾驶室悬置处设置的加速度传感器的数量可根据需求增加或减少,本实施例中,设置加速度传感器的数量为4个,其中,加速度传感器设置在驾驶室的四个角落处。
处理模块603用于对所述速度和所述相对速度依次进行模糊化处理和反模糊化处理。
本实施例中,处理模块603将获取到的待控制车辆驾驶室悬置上端的速度和悬置相对速度根据对应的隶属度函数图像进行模糊化处理,其中,待控制车辆驾驶室悬置上端的速度隶属度函数图像如图2所示,悬置相对速度隶属度函数图像如图3所示,图2和图3中,Vsmi和Vsumi分别为第i个减振器悬置上端速度和悬置相对速度由大转小的临界值。由于待控制车辆驾驶室悬置上端的速度和悬置相对速度有正负之分,故将其分别分为四个等级,分别为负大(NB)、负小(NS)、正小(PS)、正大(PB),将获取的待控制车辆驾驶室悬置上端的速度和悬置相对速度分别对应待控制车辆驾驶室悬置上端的速度隶属度函数、悬置相对速度隶属度函数图像,得到待控制车辆驾驶室悬置上端的速度和悬置相对速度分别对应的等级。作为本实施例中的一种举例,如待控制车辆驾驶室悬置上端的速度为
Figure BDA0003204841560000141
此时PS的占比较大,则待控制车辆驾驶室悬置上端的速度被模糊为等级PS,PS则为待控制车辆驾驶室悬置上端的速度的模糊子集,同理,如悬置相对速度为
Figure BDA0003204841560000142
此时PB的占比较大则悬置相对速度被模糊为等级PB,PB则为悬置相对速度的模糊子集;将待控制车辆驾驶室悬置上端的速度和悬置相对速度模糊化后的模糊子集代入模糊控制查询表中,其中,模糊控制查询表如图4所示,得到模糊化后的阻尼控制电流,其中,阻尼控制电流为减振器的阻尼控制电流,因减振器为连续阻尼可调CDC减振器,且无负数,故分为五级,分别为最大(MB)、大(PB)、中(PZ)、小(PM)、最小(MS),作为本实施例中的一种举例,如待控制车辆驾驶室悬置上端的速度的模糊子集为NS,悬置相对速度的模糊子集为NB,代入模糊控制查询表可得模糊化的阻尼控制电流为大(PB);并对得到的模糊化的阻尼控制电流根据对应的隶属度函数图像进行反模糊化处理,其中,模糊化的阻尼控制电流隶属度函数图像如图5所示,其中IVi、ILi、IMi、ISi分别为最大、大、中、小、最小的临界值。
计算模块604用于获取所述反模糊化处理后得到的电流值,根据所述电流值与所述车辆载重系数,计算所述待控制车辆减振器的控制电流值。
本实施例中,根据图5所示的模糊化的阻尼控制电流隶属度函数图像,获取反模糊化处理后得到的电流值,作为本实施例的一种举例,如得到的模糊化的阻尼控制电流为大(PB),代入反模糊化的阻尼控制电流隶属度函数图像中,则取PB区间的左端点,即Ivi,其中,Ivi就是所要获取反模糊化处理后得到的电流值。
本实施例中,计算模块604将获取的反模糊化处理后得到的电流值与第一获取模块601中获取到的车辆载重系数相乘,得到各个减振器最终的阻尼控制电流值,及待控制车辆各个减振器的控制电流值。
处理模块605根据所述控制电流值输出相应电流控制所述减振器阻尼力,从而控制所述待控制车辆驾驶室半主动悬置。
本实施例中,根据计算模块604中得到的带控制车辆减振器的控制电流值控制待控制车辆驾驶室的方法电路输出电流控制减振器的阻尼力,当控制所述减振器阻尼力的持续控制时间达到预设时间阈值时,持续所述减振器的阻尼力控制,并返回步骤“获取待控制车辆驾驶室悬置上下两端的加速度和速度”,执行下一个循环,从而控制待控制车辆驾驶室半主动悬置,作为本实施例中的一种举例,预设时间阈值为每10ms中断一次。
本实施例中,待控制车辆驾驶室悬置采用连续可变阻尼CDC减振器减振器,利用CDC减振器阻尼可调的性能,结合模糊控制方法,充分发挥了CDC阻尼连续可调的特点,同时考虑到车辆载重对减振效果的影响,故引入载重系数,使驾驶室舒适性与传统模糊控制方法相比得到显著提高。该方法实现方式简单,对芯片计算能力要求较低,更易于实际应用。
综上,本发明一种基于模糊控制的驾驶室半主动悬置控制方法及装置,通过获取待控制车辆底盘减振器上下两端的距离,根据所述距离,计算所述待控制车辆的车辆载重系数;获取所述待控制车辆驾驶室悬置上下两端的速度,根据所述速度,计算所述待控制车辆驾驶室悬置上下两端的相对速度;对所述速度和所述相对速度依次进行模糊化处理和反模糊化处理;获取所述反模糊化处理后得到的电流值,根据所述电流值与所述车辆载重系数,计算所述待控制车辆减振器的控制电流值;根据所述控制电流值输出相应电流控制所述减振器阻尼力,从而控制所述待控制车辆驾驶室半主动悬置。本发明通过降低车载重量对减震效果的影响,提高驾驶的舒适性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (10)

1.一种基于模糊控制的驾驶室半主动悬置控制方法,其特征在于,包括:
获取待控制车辆底盘减振器上下两端的距离,根据所述距离,计算所述待控制车辆的车辆载重系数;
获取所述待控制车辆驾驶室悬置上下两端的速度,根据所述速度,计算所述待控制车辆驾驶室悬置上下两端的相对速度;
对所述速度和所述相对速度依次进行模糊化处理和反模糊化处理;
获取所述反模糊化处理后得到的电流值,根据所述电流值与所述车辆载重系数,计算所述待控制车辆减振器的控制电流值;
根据所述控制电流值输出相应电流控制所述减振器阻尼力,从而控制所述待控制车辆驾驶室半主动悬置。
2.如权利要求1所述的一种基于模糊控制的驾驶室半主动悬置控制方法,其特征在于,在所述根据所述控制电流值输出相应电流控制所述减振器阻尼力之后,还包括:
当控制所述减振器阻尼力的持续控制时间达到预设时间阈值时,持续所述减振器的阻尼力控制,并返回步骤“获取待控制车辆驾驶室悬置上下两端的加速度和速度”,执行下一个循环。
3.如权利要求1所述的一种基于模糊控制的驾驶室半主动悬置控制方法,其特征在于,所述获取待控制车辆底盘减振器上下两端的距离,根据所述距离,计算所述待控制车辆的车辆载重系数,具体为:
通过获取设置在所述待控制车辆底盘减振器处的测距传感器测量的悬架上下两端的距离,根据所述距离,计算车载重量的大小,并将所述车载重量的大小代入到车辆载重系数计算公式中,计算对应的车辆载重系数;其中,所述车辆载重系数计算公式为:
λ=f(M);
式中,M为车载重量,λ为车辆载重系数。
4.如权利要求1所述的一种基于模糊控制的驾驶室半主动悬置控制方法,其特征在于,所述获取待控制车辆驾驶室悬置上下两端的速度,根据所述速度,计算所述待控制车辆驾驶室悬置上下两端的相对速度,具体为:
获取设置在驾驶室悬置上下两端的加速度传感器测量的加速度,同时获取积分电路输出端电压,根据所述加速度和所述积分电路输出端电压,计算所述待控制车辆驾驶室悬置上下两端的速度,将所述待控制车辆驾驶室悬置上下两端的速度代入到悬置相对速度计算公式中,计算所述待控制车辆驾驶室悬置上下两端的相对速度,其中,所述悬置相对速度计算公式为:
Figure FDA0003204841550000021
式中,
Figure FDA0003204841550000022
为所述待控制车辆驾驶室悬置上下两端的相对速度,
Figure FDA0003204841550000023
为待控制车辆驾驶室悬置上端的速度,
Figure FDA0003204841550000024
为待控制车辆驾驶室悬置下端的速度。
5.如权利要求4所述的一种基于模糊控制的驾驶室半主动悬置控制方法,其特征在于,所述对所述速度和所述相对速度依次进行模糊化处理和反模糊化处理,具体为:
将获取到的待控制车辆驾驶室悬置上端的速度和所述相对速度根据隶属度函数进行模糊化处理,判断所述待控制车辆驾驶室悬置上端的速度和所述相对速度所属的模糊子集,将所述模糊子集代入查询表中,获取模糊化的阻尼控制电流,并对所述模糊化的阻尼控制电流采用最大隶属度法进行反模糊化处理。
6.一种基于模糊控制的驾驶室半主动悬置控制装置,其特征在于,包括:第一获取模块、第二获取模块、处理模块、计算模块和控制模块;
其中,所述第一获取模块用于获取待控制车辆底盘减振器上下两端的距离,根据所述距离,计算所述待控制车辆的车辆载重系数;
所述第二获取模块用于获取所述待控制车辆驾驶室悬置上下两端的速度,根据所述速度,计算所述待控制车辆驾驶室悬置上下两端的相对速度;
所述处理模块用于对所述速度和所述相对速度依次进行模糊化处理和反模糊化处理;
所述计算模块用于获取所述反模糊化处理后得到的电流值,根据所述电流值与所述车辆载重系数,计算所述待控制车辆减振器的控制电流值;
所述处理模块根据所述控制电流值输出相应电流控制所述减振器阻尼力,从而控制所述待控制车辆驾驶室半主动悬置。
7.如权利要求6所述的一种基于模糊控制的驾驶室半主动悬置控制装置,其特征在于,还包括循环模块,具体为:
所述循环模块用于当控制所述减振器阻尼力的持续控制时间达到预设时间阈值时,持续所述减振器的阻尼力控制,并返回步骤“获取待控制车辆驾驶室悬置上下两端的加速度和速度”,执行下一个循环。
8.如权利要求6所述的一种基于模糊控制的驾驶室半主动悬置控制装置,其特征在于,第一获取模块用于所述获取待控制车辆底盘减振器上下两端的距离,根据所述距离,计算所述待控制车辆的车辆载重系数,具体为:
通过获取设置在所述待控制车辆底盘减振器处的测距传感器测量的悬架上下两端的距离,根据所述距离,计算车载重量的大小,并将所述车载重量的大小代入到车辆载重系数计算公式中,计算对应的车辆载重系数;其中,所述车辆载重系数计算公式为:
λ=f(M);
式中,M为车载重量,λ为车辆载重系数。
9.如权利要求6所述的一种基于模糊控制的驾驶室半主动悬置控制装置,其特征在于,所述第二获取模块用于获取待控制车辆驾驶室悬置上下两端的速度,根据所述速度,计算所述待控制车辆驾驶室悬置上下两端的相对速度,具体为:
获取设置在驾驶室悬置上下两端的加速度传感器测量的加速度,同时获取积分电路输出端电压,根据所述加速度和所述积分电路输出端电压,计算所述待控制车辆驾驶室悬置上下两端的速度,将所述待控制车辆驾驶室悬置上下两端的速度代入到悬置相对速度计算公式中,计算所述待控制车辆驾驶室悬置上下两端的相对速度,其中,所述悬置相对速度计算公式为:
Figure FDA0003204841550000051
式中,
Figure FDA0003204841550000052
为所述待控制车辆驾驶室悬置上下两端的相对速度,
Figure FDA0003204841550000053
为待控制车辆驾驶室悬置上端的速度,
Figure FDA0003204841550000054
为待控制车辆驾驶室悬置下端的速度。
10.如权利要求9所述的一种基于模糊控制的驾驶室半主动悬置控制装置,其特征在于,所述处理模块用于对所述速度和所述相对速度依次进行模糊化处理和反模糊化处理,具体为:
将获取到的待控制车辆驾驶室悬置上端的速度和所述相对速度根据隶属度函数进行模糊化处理,判断所述待控制车辆驾驶室悬置上端的速度和所述相对速度所属的模糊子集,将所述模糊子集代入查询表中,获取模糊化的阻尼控制电流,并对所述模糊化的阻尼控制电流采用最大隶属度法进行反模糊化处理。
CN202110916218.1A 2021-08-10 2021-08-10 一种基于模糊控制的驾驶室半主动悬置控制方法及装置 Active CN113525535B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110916218.1A CN113525535B (zh) 2021-08-10 2021-08-10 一种基于模糊控制的驾驶室半主动悬置控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110916218.1A CN113525535B (zh) 2021-08-10 2021-08-10 一种基于模糊控制的驾驶室半主动悬置控制方法及装置

Publications (2)

Publication Number Publication Date
CN113525535A true CN113525535A (zh) 2021-10-22
CN113525535B CN113525535B (zh) 2023-01-06

Family

ID=78122286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110916218.1A Active CN113525535B (zh) 2021-08-10 2021-08-10 一种基于模糊控制的驾驶室半主动悬置控制方法及装置

Country Status (1)

Country Link
CN (1) CN113525535B (zh)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4324289A1 (de) * 1993-07-20 1995-01-26 Iveco Magirus Verfahren und Vorrichtung zur Reduzierung von Schwingungen einer gefederten Masse
JPH10218041A (ja) * 1997-02-04 1998-08-18 Hino Motors Ltd キャブのサスペンション装置
JPH1191623A (ja) * 1997-09-18 1999-04-06 Unisia Jecs Corp キャブサスペンション制御装置
US5899288A (en) * 1997-11-12 1999-05-04 Case Corporation Active suspension system for a work vehicle
US6105420A (en) * 1994-06-27 2000-08-22 Bridgestone Corporation Electro-rheological fluid damper control system
CN1485224A (zh) * 2002-08-21 2004-03-31 株式会社万都 用于防车尾下座控制的电子控制悬挂装置
CN1760565A (zh) * 2005-11-17 2006-04-19 哈尔滨工业大学 主动与半主动悬架用能量回馈型电磁阻尼装置
JP2008080851A (ja) * 2006-09-26 2008-04-10 Hino Motors Ltd サスペンション装置
CN101269618A (zh) * 2008-04-25 2008-09-24 江苏大学 一种电子控制空气悬架三档可调减振器阻尼值的控制方法
JP2009234323A (ja) * 2008-03-26 2009-10-15 Honda Motor Co Ltd 車両用サスペンションシステム
US20120277953A1 (en) * 2011-04-29 2012-11-01 Savaresi Sergio M Control of a suspension system of a vehicle provided with four semi-active suspensions
CN103225668A (zh) * 2013-04-02 2013-07-31 江苏大学 一种感载变阻尼电磁减振***
CN103754081A (zh) * 2013-12-27 2014-04-30 广西科技大学 车辆非线性悬架***的最优模糊复合控制方法
CN205780534U (zh) * 2016-07-20 2016-12-07 洛阳理工学院 一种具有可变阻尼减震器的汽车减震装置
CN108547910A (zh) * 2018-04-24 2018-09-18 辽宁工业大学 一种阻尼可变汽车液压减震器及其控制方法
CN108725123A (zh) * 2017-04-24 2018-11-02 通用汽车环球科技运作有限责任公司 悬架***和控制方法
CN108891221A (zh) * 2018-07-24 2018-11-27 山东大学 一种基于模态能量分配法的主动悬架***及其工作方法
US20200386292A1 (en) * 2019-06-07 2020-12-10 GM Global Technology Operations LLC Control of real-time damper in a sprung mass system
CN112339517A (zh) * 2020-11-13 2021-02-09 成都九鼎科技(集团)有限公司 一种半主动悬架控制方法及控制***
CN112566838A (zh) * 2018-08-16 2021-03-26 曼卡车和巴士欧洲股份公司 商用车辆的驾驶室悬架、商用车辆和调节驾驶室悬架的阻尼的方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4324289A1 (de) * 1993-07-20 1995-01-26 Iveco Magirus Verfahren und Vorrichtung zur Reduzierung von Schwingungen einer gefederten Masse
US6105420A (en) * 1994-06-27 2000-08-22 Bridgestone Corporation Electro-rheological fluid damper control system
JPH10218041A (ja) * 1997-02-04 1998-08-18 Hino Motors Ltd キャブのサスペンション装置
JPH1191623A (ja) * 1997-09-18 1999-04-06 Unisia Jecs Corp キャブサスペンション制御装置
US5899288A (en) * 1997-11-12 1999-05-04 Case Corporation Active suspension system for a work vehicle
CN1485224A (zh) * 2002-08-21 2004-03-31 株式会社万都 用于防车尾下座控制的电子控制悬挂装置
CN1760565A (zh) * 2005-11-17 2006-04-19 哈尔滨工业大学 主动与半主动悬架用能量回馈型电磁阻尼装置
JP2008080851A (ja) * 2006-09-26 2008-04-10 Hino Motors Ltd サスペンション装置
JP2009234323A (ja) * 2008-03-26 2009-10-15 Honda Motor Co Ltd 車両用サスペンションシステム
CN101269618A (zh) * 2008-04-25 2008-09-24 江苏大学 一种电子控制空气悬架三档可调减振器阻尼值的控制方法
US20120277953A1 (en) * 2011-04-29 2012-11-01 Savaresi Sergio M Control of a suspension system of a vehicle provided with four semi-active suspensions
CN103225668A (zh) * 2013-04-02 2013-07-31 江苏大学 一种感载变阻尼电磁减振***
CN103754081A (zh) * 2013-12-27 2014-04-30 广西科技大学 车辆非线性悬架***的最优模糊复合控制方法
CN205780534U (zh) * 2016-07-20 2016-12-07 洛阳理工学院 一种具有可变阻尼减震器的汽车减震装置
CN108725123A (zh) * 2017-04-24 2018-11-02 通用汽车环球科技运作有限责任公司 悬架***和控制方法
CN108547910A (zh) * 2018-04-24 2018-09-18 辽宁工业大学 一种阻尼可变汽车液压减震器及其控制方法
CN108891221A (zh) * 2018-07-24 2018-11-27 山东大学 一种基于模态能量分配法的主动悬架***及其工作方法
CN112566838A (zh) * 2018-08-16 2021-03-26 曼卡车和巴士欧洲股份公司 商用车辆的驾驶室悬架、商用车辆和调节驾驶室悬架的阻尼的方法
US20200386292A1 (en) * 2019-06-07 2020-12-10 GM Global Technology Operations LLC Control of real-time damper in a sprung mass system
CN112339517A (zh) * 2020-11-13 2021-02-09 成都九鼎科技(集团)有限公司 一种半主动悬架控制方法及控制***

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
李柯 等: "基于平顺性的载货汽车刚度及阻尼参数影响分析及优化", 《企业科技与发展》 *
殷祥超: "《振动理论与测试技术》", 24 March 2017 *
胡国良 等: "车辆磁流变半主动悬架混合阻尼模糊电流控制研究", 《现代制造工程》 *
陈龙等: "车辆半主动悬架阻尼多模式切换控制研究", 《振动与冲击》 *

Also Published As

Publication number Publication date
CN113525535B (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
Yi et al. A new adaptive sky-hook control of vehicle semi-active suspensions
CN101269618B (zh) 一种电子控制空气悬架三档可调减振器阻尼值的控制方法
Ren et al. State observer-based sliding mode control for semi-active hydro-pneumatic suspension
Caponetto et al. A soft computing approach to fuzzy sky-hook control of semiactive suspension
Čorić et al. Optimisation of active suspension control inputs for improved vehicle ride performance
US5483450A (en) Apparatus for controlling a suspension system disposed between a wheel and the body of an automotive vehicle
JP4609767B2 (ja) システムの最適制御方法
Li et al. Fuzzy control of vehicle semi-active suspension with MR damper
CN103116273A (zh) 工程运输车行驶综合性能控制***及方法
CN113525535B (zh) 一种基于模糊控制的驾驶室半主动悬置控制方法及装置
CN115099035B (zh) 随机位移激励下含负刚度和惯容协作的悬架减振设计方法
CN113525534A (zh) 一种基于分频控制的驾驶室半主动悬置控制方法及装置
Wong et al. Design of a fuzzy preview active suspension system for automobiles
Liu et al. Multi-Objective Control of Dynamic Chassis Considering Road Roughness Class Recognition
Abdelhady A fuzzy controller for automotive active suspension systems
CN110765554A (zh) 一种基于ts模型的汽车半主动悬架***的智能控制方法
CN117962538A (zh) 预瞄式半主动悬架的控制方法、装置、设备及存储介质
Vargas et al. Stochastic stability of switching linear systems with application to an automotive powertrain model
CN117325952A (zh) 一种基于俯仰振动控制的商用车驾驶室半主动悬置控制方法
Nan et al. Control of an active suspension based on fuzzy logic
CN116278573B (zh) 基于线性矩阵不等式的磁流变半主动悬架抗干扰控制方法
CN111007754B (zh) 一种生鲜运输物流箱的智能防损控制***及其控制方法
Hasbullah et al. An evaluation of LQR and fuzzy logic controllers for active suspension using half car model
CN117984773A (zh) 加速意图的识别方法、装置、电子设备和可读存储介质
CN117331312A (zh) 整车半主动悬架多重深度神经模糊网络控制方法及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant