CN113224645B - Sealed parallel plane trigger spark gap switch and manufacturing method thereof - Google Patents

Sealed parallel plane trigger spark gap switch and manufacturing method thereof Download PDF

Info

Publication number
CN113224645B
CN113224645B CN202110394775.1A CN202110394775A CN113224645B CN 113224645 B CN113224645 B CN 113224645B CN 202110394775 A CN202110394775 A CN 202110394775A CN 113224645 B CN113224645 B CN 113224645B
Authority
CN
China
Prior art keywords
substrate
electrode
spark gap
manufacturing
gap switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110394775.1A
Other languages
Chinese (zh)
Other versions
CN113224645A (en
Inventor
朱朋
初青芸
杨智
汪柯
沈瑞琪
叶迎华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202110394775.1A priority Critical patent/CN113224645B/en
Publication of CN113224645A publication Critical patent/CN113224645A/en
Application granted granted Critical
Publication of CN113224645B publication Critical patent/CN113224645B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means
    • H01T2/02Spark gaps comprising auxiliary triggering means comprising a trigger electrode or an auxiliary spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs

Abstract

The invention discloses a sealed parallel plane trigger spark gap switch based on a PCB (printed Circuit Board) process and a manufacturing method thereof. The packaging structure comprises a bottom substrate, an intermediate substrate, a top substrate, a PP sheet and a bonding pad; three-electrode circuits are arranged on the upper surface of the bottom substrate and the lower surface of the top substrate, the middle substrate is provided with a rectangular cavity which is communicated up and down, and the PP sheet is provided with a rectangular notch corresponding to the rectangular cavity; the middle substrate is arranged between the bottom substrate and the top substrate, and the substrates are pressed through the PP sheets; the rectangular cavity of the middle substrate after lamination, the upper surface of the bottom substrate and the lower surface of the top substrate form a sealed cavity; the top substrate is provided with a bonding pad, the laminated bottom substrate, the middle substrate and the top substrate are provided with through holes. The parallel PCB-PTS of the invention ensures that the atmosphere of the conducted gas is fixed, so that the switch has the performance similar to that of the conventional environment in severe environment, the parallel design improves the action reliability of the switch, and the application range of triggering a spark gap switch is widened.

Description

Sealed parallel plane trigger spark gap switch and manufacturing method thereof
Technical Field
The invention belongs to the technical field of pulse power, and particularly relates to a sealed parallel plane trigger spark gap switch based on a PCB (printed circuit board) process and a manufacturing method thereof.
Background
The pulse power technology is a technology for releasing electric energy which is firstly and slowly stored to a load in a very short time, and is widely applied to the fields of national defense and civil use. The high-voltage switch directly determines the rising time of pulse current and the current peak value in a loop by controlling the release process of energy, thereby influencing the output peak power and playing a key role in a pulse power system. The high-voltage switch has a variety of types, and mainly comprises a semiconductor switch, a planar medium high-voltage switch, a trigger vacuum switch and a trigger spark gap switch.
The trigger spark gap switch is generally designed into a three-electrode circuit structure, namely a cathode electrode and an anode electrode, and a trigger electrode positioned between the cathode electrode and the anode electrode, and the switch conduction is realized in the form of arc discharge. The switch has the advantages of simple structure, stable electrical performance and the like, and is one of the most commonly used high-voltage switches at present. Previous researchers mainly developed the research on the influence rule of electrode structure, electrode material and gas atmosphere on electrode ablation, service life, self-breakdown voltage and trigger working characteristics. However, these switching devices are complex and expensive, and are bulky, which is not conducive to increasing the integration of the pulse power system. In order to reduce the manufacturing cost and reduce the volume, researchers have developed Planar Triggered Spark-gap switches (PTS) based on the mems process and the low-temperature co-fired ceramic process, respectively. However, due to the limitation of process conditions, both types of PTS only use a single three-electrode structure, and no redundant design is introduced, which most likely reduces the reliability of the system.
PCB technology is a mature technology that enables the mass production of electronic circuits at low cost, is both an electronic component and an electrical connection provider, supporting modular integration of components and functions. The PCB process is particularly suitable for manufacturing multilayer boards, so that various electromechanical combined chip devices (Lab-on-PCB Chips) are developed by utilizing the process, the design flexibility is improved, the device volume is reduced, and the automation level is improved. In recent years, with the drilling processing of ultra-fine micro holes, blind buried holes and the like and the breakthrough of key technologies, the processing precision of the PCB technology is greatly improved, and meanwhile, the cost is greatly reduced.
The sealed parallel plane trigger spark gap switch is manufactured in batches by adopting the PCB, the manufacturing efficiency is high, and the obtained product has good consistency, small volume and low cost. Meanwhile, the parallel PCB-PTS is fixed in the conducting gas atmosphere, so that the switch has the performance similar to that of a conventional environment in a severe environment, a redundant structure is added in the parallel design form, the action reliability of the switch is improved, and the application range of the trigger spark gap switch in a pulse power system is widened.
Disclosure of Invention
The invention aims to provide a sealed parallel plane trigger spark gap switch based on a PCB (printed circuit board) process and a manufacturing method thereof.
The technical solution for realizing the purpose of the invention is as follows: a sealed parallel plane trigger spark gap switch based on a PCB process comprises a bottom substrate, a middle substrate, a top substrate, a PP sheet and a bonding pad;
three-electrode circuits are arranged on the upper surface of the bottom substrate and the lower surface of the top substrate, a rectangular cavity which is communicated up and down is arranged on the middle substrate, and a rectangular notch corresponding to the rectangular cavity is arranged on the PP sheet;
the middle substrate is arranged between the bottom substrate and the top substrate and used for isolating the two three-electrode circuits, and the bottom substrate and the middle substrate as well as the middle substrate and the top substrate are pressed by arranging PP sheets; after the lamination, a rectangular cavity of the middle substrate, the upper surface of the bottom substrate and the lower surface of the top substrate form a sealed cavity, so that the two three-electrode circuits are positioned in the sealed cavity; and the top substrate is provided with a bonding pad, the laminated bottom substrate, the middle substrate and the top substrate are provided with through holes for realizing the parallel connection of three electrode circuits and the electrical conduction.
Furthermore, three electrode circuits are arranged on the upper surface of the bottom substrate and the lower surface of the top substrate, and the three electrode circuits are connected in parallel through electrical isolation of the middle substrate and electrical conduction of the through holes.
Furthermore, the bottom substrate, the middle substrate and the top substrate are PCB substrates, and the thickness is 0.2mm-5 mm.
Furthermore, the size of the through rectangular cavity of the middle layer substrate is 0.5mm-10mm in length and 0.5mm-10mm in width.
Furthermore, the thickness of the three-electrode circuit is 5-200 μm, and the three-electrode circuit comprises an anode, a cathode and a trigger electrode; the anode and the cathode are in a semicircular structure;
furthermore, the radius of the anode and the cathode is 0.5mm-50mm, and the gap between the anode and the cathode is 0.1mm-10 mm; the width of the trigger electrode is 0.1mm-2mm, and the gap between the trigger electrode and the cathode is 0.05mm-1 mm.
Further, the PP sheet is mainly made of resin and glass fiber cloth, and the thickness of the PP sheet is 10-150 mu m.
Furthermore, the bonding pad is made of Cu, the size of the bonding pad connected with the trigger electrode is smaller than that of the bonding pad connected with the cathode and the anode, and the value range of the sizes of the three bonding pads is 0.1mm-10mm in length and 0.1mm-10mm in width.
A manufacturing method of the sealed parallel plane trigger spark gap switch comprises the following specific steps:
step (1): manufacturing PTS three-electrode circuits on a bottom substrate and a top substrate respectively;
step (2): manufacturing a through rectangular cavity on the middle substrate;
and (3): pressing; pressing a bottom substrate, a top substrate and a middle substrate containing PTS three-electrode circuits into a whole through PP sheets;
and (4): manufacturing a through hole; a plurality of through holes are formed in the areas, matched with the positions of the bonding pads, of the plurality of substrates pressed in the step (3), so that the two three-electrode circuits are electrically conducted;
and (5): manufacturing a bonding pad; and three rectangular bonding pads are arranged on the upper part of the top substrate at the positions corresponding to the three-electrode circuit to realize electrical connection.
Further, manufacturing a PTS three-electrode circuit by film pasting, exposure, development, etching and film removing processes in the step (1);
manufacturing a penetrating rectangular cavity in a mechanical drilling or laser cutting mode in the step (2);
manufacturing a via hole by adopting a metalized via hole technology in the step (4);
and (5) manufacturing the bonding pad by adopting the processes of film pasting, exposure, development, etching and film removal.
Compared with the prior art, the invention has the remarkable advantages that:
(1) the plane trigger spark gap switch adopts two three-electrode circuits which are connected in parallel, wherein the whole plane trigger spark gap switch can be in a normal working state as long as at least one three-electrode circuit is in a normal working state, so that the action reliability of the switch is improved, and the application range of the trigger spark gap switch in a pulse power system is favorably widened.
(2) According to the plane trigger spark gap switch, the penetrating rectangular cavity is arranged on the middle layer substrate, so that the atmosphere of the parallel PCB-PTS conducting gas is fixed, and the switch has the performance similar to that of a conventional switch in a severe environment.
(3) The invention adopts the Printed Circuit Board (PCB) process to manufacture the sealed parallel plane trigger spark gap switch in batch, the manufacturing efficiency is high, and the obtained product has good consistency, small volume and low cost.
Drawings
Fig. 1 is a perspective view of a sealed parallel plane triggered spark gap switch made according to the PCB process of the present invention.
Fig. 2 is a front view of a sealed parallel plane triggered spark gap switch made according to the PCB process of the present invention.
Fig. 3 is a top view of a sealed parallel plane triggered spark gap switch made based on a PCB process of the present invention.
FIG. 4 is a process flow diagram of the present invention for manufacturing a sealed parallel plane triggered spark gap switch based on PCB technology; wherein FIG. (a) is a front view of a three-electrode circuit fabricated on a top and bottom substrate, and FIG. (a') is a top view of a front view of a three-electrode circuit fabricated on a top and bottom substrate; FIG. (b) is a front view of a sealed cavity fabricated in an intermediate substrate, and FIG. (b') is a top view of a sealed cavity fabricated in an intermediate substrate; FIG. (c) is a front view and FIG. (c') is a top view of three PCB substrates after they are bonded together; fig. (d) is a front view after the via and pad are fabricated, and fig. (d') is a top view after the via and pad are fabricated.
Description of the reference numerals:
the structure comprises a substrate 1, a bottom substrate, a 2-three-electrode circuit, a 21-anode, a 22-cathode, a 23-trigger electrode, a 3 middle-layer substrate, a 4 sealed cavity, a 5-through hole, a 6-PP sheet, a 7-top substrate and an 8 bonding pad.
Detailed Description
The present invention is described in further detail below with reference to the attached drawing figures.
As shown in fig. 1-3, the sealed parallel planar triggered spark gap switch manufactured based on the PCB process mainly includes a substrate 1, a three-electrode circuit 2, a substrate 3, a sealed cavity 4, a via hole 5, a PP sheet 6, a substrate 7, and a pad 8.
The substrate 1 serves as a carrier for the remaining components in a sealed parallel planar triggered spark gap switch, on which a three-electrode circuit 2 is fabricated by means of film-coating, exposure, development, etching and stripping processes.
The substrate 3 serves to isolate the two three-electrode lines.
The vias 5 are manufactured using a metallized hole technique.
The PP sheet 6 is mainly made of resin and glass fiber cloth.
And a three-electrode circuit and a bonding pad 8 are manufactured on the substrate 7 by adopting the processes of film pasting, exposure, development, etching and film removal.
The sealed parallel plane triggered spark gap switch can be used in the technical field of pulse power.
Referring to fig. 1 to 3, the sealed parallel plane trigger spark gap switch based on the PCB process mainly includes a substrate 1, a three-electrode circuit 2, a substrate 3, a sealed cavity 4, a via hole 5, a PP sheet 6, a substrate 7, and a pad 8.
The manufacturing process of the sealed parallel plane trigger spark gap switch is as follows:
firstly, manufacturing a three-electrode circuit 2 on a substrate 1 and a substrate 7 by adopting the processes of film pasting, exposure, development, etching and film removal;
secondly, manufacturing a cavity structure 4 in the middle of the substrate 3 by means of mechanical drilling or laser cutting;
thirdly, laminating: bonding and pressing the three substrates 1, 3 and 7 into a whole through a PP sheet 6;
fourthly, manufacturing a via hole 5: manufacturing by adopting a metallized hole process;
fifth, manufacturing the bonding pad 8: three rectangular bonding pads are manufactured by adopting the processes of film pasting, exposure, development, etching and film removing.
Example 1
This embodiment is combined with fig. 4, and includes the following steps (note: the left and right drawings in fig. 4 are respectively a front view and a top view of the manufacturing process):
first, referring to fig. 4(a) and (a'), a PCB process using a film attaching, exposing, developing, etching and stripping process obtains a three-electrode line, and an anode region 21, a cathode region 22 and a trigger electrode 23 are manufactured. The relevant dimensions are: the sizes of the substrates 1 and 7 are 13.5mm in length, 7.5mm in width and 0.5mm in height, and the thickness of the three-electrode circuit 2 on the substrates is 70 mu m; the anode region 21 and the cathode region 22 are in a semicircular structure, the radius is 2.0mm, and the gap between the anode and the cathode is 0.9 mm; the width of the trigger electrode 23 is 0.2mm and the gap between the trigger electrode and the cathode 22 is 0.15 mm.
In the second step, see fig. 4(b) and (b'), the sealed cavity structure 4 is fabricated on the substrate 3 by mechanical drilling or laser cutting, the substrate 3 has a length of 13.5mm × a width of 7.5mm × a height of 1.5mm, and the sealed cavity has a length of 4.0mm × a width of 3.0mm × a height of 1.5 mm.
In a third step, see fig. 4(c) and (c'), the substrates 1, 3, 7 are laminated by means of the PP sheet 6. The relevant dimensions are: the PP sheet had a thickness of 75 μm.
And fourthly, as shown in fig. 4(d) and (d'), manufacturing via holes 5 in the substrates 1, 3 and 7 by a metallized hole process, and manufacturing three rectangular pads on the substrate 7 by a photolithography process, wherein the sizes of the male and female main electrode pads are 7mm long by 3mm wide, and the sizes of the trigger electrode pads are 3mm long by 2mm wide.

Claims (8)

1. A sealed parallel plane trigger spark gap switch based on a PCB (printed Circuit Board) process is characterized by comprising a bottom substrate, an intermediate substrate, a top substrate, a PP (polypropylene) sheet and a bonding pad;
three-electrode circuits are arranged on the upper surface of the bottom substrate and the lower surface of the top substrate, a rectangular cavity which is communicated up and down is arranged on the middle substrate, and a rectangular notch corresponding to the rectangular cavity is arranged on the PP sheet; the thickness of the three-electrode circuit is 5-200 μm, and the three-electrode circuit comprises an anode, a cathode and a trigger electrode; the anode and the cathode are in a semicircular structure;
the middle substrate is arranged between the bottom substrate and the top substrate and is used for isolating the two three-electrode circuits; the bottom substrate and the middle substrate, and the middle substrate and the top substrate are laminated by arranging PP sheets; after the lamination, a rectangular cavity of the middle-layer substrate, the upper surface of the bottom-layer substrate and the lower surface of the top-layer substrate form a sealed cavity, so that the two three-electrode circuits are positioned in the sealed cavity; and the top substrate is provided with a bonding pad, the laminated bottom substrate, the middle substrate and the top substrate are provided with through holes so as to realize the parallel connection and the electrical conduction of the two three-electrode circuits.
2. The plane triggered spark gap switch of claim 1, wherein said base, middle and top substrates are PCB substrates having a thickness of 0.2mm to 5 mm.
3. A flat triggered spark gap switch according to claim 2 wherein the through rectangular cavity of the intermediate substrate has dimensions of 0.5mm-10mm long by 0.5mm-10mm wide.
4. A plane triggered spark gap switch according to claim 3, characterized in that the radius of the anode and cathode is 0.5mm-50mm and the gap between the anode and cathode is 0.1mm-10 mm; the width of the trigger electrode is 0.1mm-2mm, and the gap between the trigger electrode and the cathode is 0.05mm-1 mm.
5. The plane triggered spark gap switch of claim 4, wherein said PP sheet is made of a material mainly composed of resin and glass fiber cloth and has a thickness of 10 μm to 150 μm.
6. The flat triggered spark gap switch of claim 5, wherein the pad is made of Cu, the size of the pad connected to the trigger electrode is smaller than the size of the pad connected to the cathode and anode, and the three pad sizes range from 0.1mm to 10mm in length by 0.1mm to 10mm in width.
7. A method of manufacturing a sealed parallel plane triggered spark gap switch according to any of claims 1 to 6, characterized by the specific steps of:
step (1): manufacturing three-electrode circuits of a plane trigger spark gap switch on a bottom substrate and a top substrate respectively;
step (2): manufacturing a through rectangular cavity on the middle substrate;
and (3): pressing; the bottom substrate, the top substrate and the middle substrate containing the three-electrode circuit of the plane trigger spark gap switch are integrated through PP sheet pressing;
and (4): manufacturing a via hole; a plurality of through holes are formed in the areas, matched with the positions of the bonding pads, of the plurality of substrates pressed in the step (3), so that the two three-electrode circuits are electrically conducted;
and (5): manufacturing a bonding pad; and three rectangular bonding pads are arranged on the upper part of the top substrate at the positions corresponding to the three-electrode circuit to realize electrical connection.
8. The method according to claim 7, wherein the three-electrode circuit of the planar triggered spark gap switch is manufactured in the step (1) through film pasting, exposure, development, etching and film removing processes;
manufacturing a penetrating rectangular cavity in a mechanical drilling or laser cutting mode in the step (2);
manufacturing a via hole by adopting a metalized via hole technology in the step (4);
and (5) manufacturing the bonding pad by adopting the processes of film pasting, exposure, development, etching and film removing.
CN202110394775.1A 2021-04-13 2021-04-13 Sealed parallel plane trigger spark gap switch and manufacturing method thereof Active CN113224645B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110394775.1A CN113224645B (en) 2021-04-13 2021-04-13 Sealed parallel plane trigger spark gap switch and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110394775.1A CN113224645B (en) 2021-04-13 2021-04-13 Sealed parallel plane trigger spark gap switch and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN113224645A CN113224645A (en) 2021-08-06
CN113224645B true CN113224645B (en) 2022-07-22

Family

ID=77087236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110394775.1A Active CN113224645B (en) 2021-04-13 2021-04-13 Sealed parallel plane trigger spark gap switch and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN113224645B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946054A (en) * 2012-10-22 2013-02-27 北京理工大学 Plane solid high-voltage switch
CN103490283A (en) * 2013-08-27 2014-01-01 西北核技术研究所 Square gas switch with multiple gaps connected in parallel and discharge circuit comprising same
CN110649467A (en) * 2019-09-27 2020-01-03 南京理工大学 Closed type plane three-electrode spark switch and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946054A (en) * 2012-10-22 2013-02-27 北京理工大学 Plane solid high-voltage switch
CN103490283A (en) * 2013-08-27 2014-01-01 西北核技术研究所 Square gas switch with multiple gaps connected in parallel and discharge circuit comprising same
CN110649467A (en) * 2019-09-27 2020-01-03 南京理工大学 Closed type plane three-electrode spark switch and preparation method thereof

Also Published As

Publication number Publication date
CN113224645A (en) 2021-08-06

Similar Documents

Publication Publication Date Title
US6518502B2 (en) Ceramic multilayer circuit boards mounted on a patterned metal support substrate
EP1211730B1 (en) Stacked power amplifier module
JP4453702B2 (en) COMPOSITE ELECTRONIC COMPONENT AND MANUFACTURING METHOD THEREOF
KR101096900B1 (en) Methods for integration of thin-film capacitors into the build-up layers of a printed wiring board
CN110012597B (en) Ceramic copper-clad circuit board and preparation method thereof
KR20060018818A (en) Methods for fabricating three-dimensional all organic interconnect structures
GB2378043A (en) Forming electrical contacts on a substrate such as a printed circuit board
US7236347B2 (en) Ceramic structure, method for manufacturing ceramic structure, and nonreciprocal circuit device
CN113224645B (en) Sealed parallel plane trigger spark gap switch and manufacturing method thereof
KR20170133699A (en) Battery integration packaging apparatus and method
JPH0496258A (en) Manufacture of semiconductor device insulating substrate and metal pattern plate therefor
JP2004179950A (en) Surface mount crystal oscillator
CN110649467B (en) Closed type plane three-electrode spark switch and preparation method thereof
KR20080058987A (en) Semiconductor package and manufacturing method thereof
CN108550531B (en) Method for manufacturing package substrate
CN112701049A (en) Semiconductor module and packaging method thereof
KR101987314B1 (en) Device Mounting of Printed Circuit Board
CN114980496A (en) Circuit board assembly, electronic equipment and processing method of circuit board assembly
CN213459625U (en) High-performance LTCC (Low temperature Co-fired ceramic) stacked protection element
CN115206676B (en) Glass chip capacitor and preparation method thereof
CN116705726B (en) Welding-free module packaging structure and double-sided heat dissipation module packaging structure thereof
CN108682630B (en) Method for manufacturing package substrate
CN114025476B (en) Integrated circuit board structure of electrochemical detection electrode and manufacturing method thereof
CN110494973A (en) Thin film capacitor constructs and has the semiconductor device of thin film capacitor construction
TWI278985B (en) A low trigger voltage ESD protection device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant