CN1126644A - 放电激发型脉冲激光装置 - Google Patents

放电激发型脉冲激光装置 Download PDF

Info

Publication number
CN1126644A
CN1126644A CN95115694A CN95115694A CN1126644A CN 1126644 A CN1126644 A CN 1126644A CN 95115694 A CN95115694 A CN 95115694A CN 95115694 A CN95115694 A CN 95115694A CN 1126644 A CN1126644 A CN 1126644A
Authority
CN
China
Prior art keywords
discharge electrode
main discharge
pulse
voltage
generating circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN95115694A
Other languages
English (en)
Inventor
南谷靖史
中谷元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN1126644A publication Critical patent/CN1126644A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
    • H01S3/09713Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited with auxiliary ionisation, e.g. double discharge excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0384Auxiliary electrodes, e.g. for pre-ionisation or triggering, or particular adaptations therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

一种放电激发型脉冲激光装置,包括主放电电极和辅助放电电极。一电抗器串联连接到第一充电电容器,它由第一可饱和电抗器19构成,第二可饱和电抗器附加串接到第二充电电容器。在开关的杂散电感和电阻分量变成最小后,可饱和电抗器的电感首先降低,然后继之以第一可饱和电抗器的电感量降低。用于电晕放电和主放电的电压上升的陡峭度可以设置在一个较高的值,由此加速预电离,允许主放电均匀地产生。并使注入到主放电的能量增加,提高了激光输出功率和振荡效率。

Description

放电激发型脉冲激光装置
本发明一般涉及诸如准分子激光器之类的放电激发型脉冲激光装置,尤其涉及一种专用于该类放电激发型脉冲激光装置的脉冲发生电路。
为了全面地理解本发明,首先较详细地评价本发明的背景或相关技术。图17是一个电路图,它表示迄今为止已知的传统准分子激光装置的一个脉冲发生电路,这种电路在例如1985年11月1日出版的“OPTICS COMMUNICATIONS”第56卷第1期第51页上已作了披露。
参见该图,在以气密性灌注了激光器气体(例如XeCl气体)的激光器腔室1里面,容纳了具有外突放电曲面的第一主放电电极2;与第一主放电电极2相对设置的第二主放电电极3,该电极3由金属网形成,以呈现一个向电极2突出的曲面;以及一个辅助放电电极(作为一个预电离电极)4,从第一主放电电极2来看,该电极4设置在第二主放电电极3的背面。辅助放电电极4的背面涂覆一绝缘件5。
充电端6经由充电电阻器7连接到开关装置8的一个电极,该开关装置8例如由火花隙开关构成,其另一个电极连接到第二主放电电极3并接地电位。
另外,第一充电电容器9a和9b分别串联连接到相关的电抗器10a和10b,并***在上述开关装置8的另一个电极与第一主放电电极2之间,其中,串联连接的第一充电电容器9a和电抗器10a与串联连接的第一充电电容器9b和电抗器10b并联连接。另一方面,第二充电电容器11a和11b分别连接在第二主放电极3与前述第一充电电容器9a和9b与电抗器10a和10b之间相连接的接点之间。此外,第二充电电容器12连接在开关装置8的另一个电极与辅助放电电极4之间,而峰化电容器13则连接在第一和第二主放电电极2与3之间。两者,作为第一充电电路元件的电阻器14并联连接到位于第一和第二主放电电极2与3之间的峰化电容器13。另外,用作第二充电电路元件的电阻器15插接在第二主放电电极3与辅助放电电极4之间,电阻器14和15共同构成一个充电电路。
现在将参照图18和19的波形图,直接描述上述结构的准分子激光装置的脉冲发生电路的工作原理。首先,将直流电压由电源(未图示)加到充电端6,由此经由充电电阻器7向电容器9a、9b、11a、11b和12充电。由于电阻器14和15插接在第一和第二充电电极2与3之间,上述电容器9a、9b、11a、11b和12的每一个都被施加一个足够高的电压,以对这些电容器完全充电。
在这一点上,注意由火花隙开关装置8、电抗器10a和10b以及电容器9a、9b、11a和11b共同构成一个迄今为众所周知的LC逆变器电路。因此,当完成了对电容器9a、9b、11a和11b的充电而在开关装置8的火花隙中产生放电时,位于电容器9a、9b、11a和11b两端的诸电压相互重叠,如图18中的波形1所示,结果,有一个脉冲状高压加在第一和第二主放电电极2与3之间。此外,与开关装置8闭合的同时,第二充电电容器12也放电。结果,一个脉冲状波形电压(诸如图18中波形2所示的那样)被施加在第二主放电电极3与辅助放电电极4之间。
响应于上述脉冲状电压的产生,在第二主放电电极3与辅助放电电极4之间首先产生电晕放电16。结果,通过网状结构的第二主放电电极3,由电晕放电16产生的紫外线辐照在第一和第二主放电电极2与3之间所限定的空间,由此,实现了上述电极之间空间的预电离。顺便说一下,绝缘件5用以防止电晕放电16转变为弧光放电。
随着加在第一和第二主放电电极2与3两端的脉冲状电压之峰值的增高,由于在上述电极间空间产生的预电离所形成的电子之间的碰撞而产生电离作用。结果,在第一和第二主放电电极2与3之间产生了主放电17,由此触发激光器振荡。采用此种结构,由于所谓的电容性跃迁,峰化电容器13起到了提高加在第一和第二主放电电极2与3之间的电压峰值的作用。
众所周知,当加在第二主放电电极3与辅助放电电极4之间的脉冲状电压以高速率升高时,促进了电晕放电16而形成的预电离作用,由此提高了主放电17的均匀度,这有助于增大激光输出功率。在这方面,尤其可以参考例如1983年10月出版的“J.Appln.Phys”第54(10)期第5672—5675页上发表的文章。采用此种结构,注意电路中加到辅助放电电极4上的脉冲状电压的估计率在很大程度上取决于杂散电感分量和电阻分量。尤其是,流经主放电17电路的一定比例的电流可以流入分布于开关装置8两端的杂散电感分量和电阻分量,其造成的电压降将涉及到电晕放电16电路中的电压上升过程中的延迟。
因此,当主放电17电路之电流通过增大电抗器10a和10b的容量(capacity)而受到抑制时,电晕放电16之电路中的电压上升将伴随产生一个相应的时滞(参见图18所示的波形2)。
从以上所述可见,采用上述传统放电激发型脉冲激光装置的结构,当通过增大电抗器10a和10b的容量而使在电晕放电影响下加速预电离时,主放电17电路中电压脉冲的升高将伴随产生一个时滞或延迟,从图18中所示的波形1可见。因而,取决于主放电电压(V)—时间(t)特性曲线的主放电起始电压(点火电位)VB变低,并导致注入能量的相应减少,使其难以或不可能增大激光输出功率。
根据上述现有技术状态,本发明的目的在于提供一种放电激发型脉冲激光装置,通过加速提升辅助放电电极与第二主放电电极两端所加电压,不用降低两个主放电电极之间的放电起始电压(点火电位)即可增大其输出功率。
随着以下进一步的描述,本发明的上述和其它目的将变得更加明显。根据本发明的第一方面,提供一种放电激发型脉冲激光装置,它包括相互相对设置的一对第一和第二主放电电极,用以在其间产生主放电;设置在第二主放电电极附近的辅助放电电极,用以在第二主放电极电与辅助放电电极之间产生电晕放电;连接到第一和第二主放电电极的第一脉冲发生电路,用以施加一个脉冲状电压,在第一和第二主放电电极之间产生主放电;连接到第二主放电电极和辅助放电电极的第二脉冲发生电路,用以施加一个脉冲状电压,在第二主放电电极与辅助放电电极之间产生电晕放电;一开关装置,用以控制由第一脉冲发生电路加到第一和第二主放电电极之电压以及由第二脉冲发生电路加到第二主放电电极和辅助放电电极之电压的施加和中断;连接在开关装置与第一脉冲发生电路之间的第一可饱和电抗器;以及连接在开关装置与第二脉冲发生电路之间的第二可饱和电抗器。
在上述结构的放电激发型脉冲激光装置中,在插接在开关装置与第一脉冲发生电路之间的第一可饱和电抗器中断第一脉冲发生电路的输出,而插接在开关装置与第二脉冲发生电路之间的第二可饱和电抗器中断第二脉冲发生电路的输出这一段时间内,开关装置闭合而处于全导通状态。结果,存在于开关装置两端和其它部分的杂散电感和电阻分量将减至最小。其次,第二可饱和电抗器变成磁饱和其电感非线性急剧减少,由此允许第二脉冲发生电路输出的电压上升。在该时刻,在开关装置的杂散电感和电阻分量为最小的情况下,第一可饱和电抗器继续维持在一个较大的电感值。因此,可以急剧地升高由第二脉冲发生电路输出的脉冲状电压。之后,第一可饱和电抗器处于磁饱和其电感量非线性减少,由此允许第一脉冲发生电路输出的脉冲状电压上升。这样,用于电晕放电和主放电两者的电压上升的陡峭度可以分别呈现较大的值,由此加速了预电离而使主放电更为均匀。注入主放电的能量同样可以增加。从总的效果上来看,激光输出功率以及激光振荡效率可以大大改善或提高。
根据本发明的第二方面,提供一种放电激光型脉冲激光装置,它包括相互相对设置的一对第一和第二主放电电极,用以在两者之间产生主放电;设置在第二主放电电极附近的辅助放电电极,用以在第二主放电电极与辅助放电电极之间产生电晕放电;连接到第一和第二主放电电极的第一脉冲发生电路,用以施加一个脉冲状电压,在第一与第二主放电电极之间产生主放电;连接到第二主放电电极和辅助放电电极的第二脉冲发生电路,用以施加一个脉冲状电压,在第二主放电电极与辅助放电电极之间产生电晕放电;一开关装置,用以控制由第一脉冲发生电路加到第一和第二主放电电极的电压以及由第二脉冲发生电路加到第二主放电电极和辅助放电电极的电压的施加和中断;插接在开关装置与第一和第二脉冲发生电路之间的可饱和变压器,其初级绕组连接在开关装置与第一脉冲发生电路之间,其次级绕组连接到第二脉冲发生电路。
在上述结构的放电激发型脉冲激光装置中,插接在开关装置与第一脉冲发生电路之间的可饱和变压器在开关装置闭合时关断第一脉冲发生电路,由此允许第二脉冲发生电路产生陡峭上升的脉冲状电压。当开关装置呈现全导通状态时,存在于开关装置端电极和其它部分的杂散电感和电阻分量减至最小。接着,可饱和变压器变成磁饱和其电感呈非线性下降,结果,第一脉冲发生电路的脉冲状电压可以陡峭地上升。这样,为电晕放电和主放电两者设计的电压上升之陡峭度分别可以呈现较大的值,由此加速了预电离而使主放电更均匀。注入主放电的能量也可以增大。激光输出功率以及激光振荡效率可以明显提高和改善。
在实现本发明的一个较佳模式中,第一脉冲发生电路可以包括用于主放电的第一充电电容器,它串联连接在第一主放电电极与第一可饱和电抗器之间;一并联连接的第一充电电路元件和峰化电容器,连接在第一主放电电极与第二主放电电极之间。第二脉冲发生电路包括连接在辅助放电电极与第二可饱和电抗器之间的第二充电电容器。此外,第二充电电路元件插接在第二主放电电极与辅助放电电极之间。第一和第二充电电容器首先在开关装置断开时充电,然后随着开关装置的闭合减小第二可饱和电抗器的电感量,由此允许加在辅助放电电极与第二主放电电极两端的电压上升,使在辅助放电电极与第二主放电电极之间产生电晕放电,由此在位于第一主放电电极与第二主放电电极之间的空间实现预电离。接下来,开关装置完全闭合,允许第一可饱和电抗器的电感量减小,使主放电可以在第一主放电电极与第二主放电电极之间发生。
采用上述设计,当对第一和第二充电电容器充电(此时开关装置为断开)之后闭合开关装置时,第二可饱和电抗器的电感量首先减小,使出现在辅助放电电极与第二主放电电极两端的电压上升,由此产生的电晕放电用于在第一主放电电极和第二主放电电极之间的空间进行预电离。接下来,当开关装置全闭合(全导通)时,第一可饱和电抗器的电感量减小,使主放电在第一主放电电极与第二主放电电极之间产生。这样,用于电晕放电和主放电两者之电压上升陡度可以分别呈现较大的值,由此,可以加速预电离,使主放电更为均匀。注入主放电的能量也可以增加。总体上,激光输出功率以及激光振荡效率可以明显改善或提高。
在实现本发明的另一种较佳模式中,第二脉冲发生电路可以包括串联插接在第二可饱和电抗器与辅助放电电极之间的第二充电电容器,连接在辅助放电电极与串联连接之第二可饱和电抗器和第二充电电容器之间的第三可饱和电抗器,插接在辅助放电电极与第二主放电电极之间的第三充电电路元件,以及并联连接的第一电荷转移电容器和第二充电电路元件。该第一电荷转移电容器的一端连接至位于串联连接的第二可饱和电抗器和第二充电电容器与第三可饱和电抗器之间的结点,其另一端连接到第二主放电电极。
根据上述放电激发型脉冲激光装置的设计,第一和第二可饱和电抗器分别具有较高的初始电感量,故电路动作直至开关装置呈现全导通状态之前一直是被禁止的,所以在开关装置两端和其它部分存在的杂散电感和电阻分量变为最小。之后,第二可饱和电抗器呈磁饱和其电感非线性降低,允许电荷转移到第一电荷转移电容器。此时,开关装置的杂散电感和电阻分量处于最小,第一可饱和电抗器继续保持较大的电感值。这样,第一电荷转移电容器的脉冲状电压陡峭地上升。之后,第一可饱和电抗器磁饱和其电感非线性降低。因此,第一主放电电极与第二主放电之间的电压上升将几乎不会伴随产生任何明显的时间延迟。同时,第三可饱和电抗器磁饱和其电感非线性减小,由此使第一电荷转移电容器的电压加到辅助放电电极。由此该电路环路的电感量要比由开关装置、第二充电电容器、第二可饱和电抗器和第一电荷转移电容器构成的环路的电感量更小,故使加到辅助放电电极的电压陡峭上升,由此使出现在辅助放电电极和第二主放电电极两端的脉冲状电压的上升变得更加陡峭。
在实现本发明的另一个较佳模式中,多个可饱和电抗器可以串联连接在第三可饱和电抗器与辅助放电电极之间。与多个可饱和电抗器相同数量的电荷转移电容器可以分别连接在第二主放电电极与第三可饱和电抗器和多个可饱和电抗器之一的结点以及多个可饱和电抗器的结点之间。
根据上述放电激光型脉冲激光装置的设计,第一和第二可饱和电抗器分别呈现较高的初始电感量,故电路动作直至开关装置呈现全导通状态之前一直是被禁止的,其中在开关装置两端存在的杂散电感和电阻分量变为最小。之后,第二可饱和电抗器磁饱和其电感非线性减小,由此允许电荷转移到第一电荷转移电容器。然而,此时第一可饱和电抗器的电感量仍保持较大的值,而开关装置的杂散电感和电阻分量为最小。这样,第一电荷转移电容器的脉冲状电压陡峭上升。之后,第一可饱和电抗器磁饱和其电感非线性降低。因此,第一主放电电极与第二主放电电极之间的电压上升将几乎不伴随产生任何明显的时延。
再者,第三可饱和电抗器磁饱和其电感非线性陡峭降低,结果,第一电荷转移电容器的电极电荷转移到第二电荷转移电容器。由于该电路环路相对于由开关装置、第二充电电容器、第二可饱和电抗器和第一电荷转移电容器构成的环路其电感量更低,故电荷以高速率完成向第二电荷转移电容器的转移,导致脉冲状电压更为陡峭的上升。由于上述动作是通过多个可饱和电抗器和相应数量的电荷转移电容器顺序完成的,电压上升的陡峭度进一步增高,由此,辅助放电电极与第二主放电电极之间脉冲状电压的上升时间可以基本上同第一与第二主放电电极之间脉冲状电压的上升时间相一致。这样,在电晕放电条件下由预电离产生的电子的数量减少到任何明显程度之前,第一与第二主放电电极之间的电压可以提升。采用这种方式,可以更好、更有利地利用预电离的效果。
在实现本发明的再一个较佳模式中,第一脉冲发生电路可以包括串联连接在第一主放电电极与可饱和变压器初级绕组之间的第一充电电容器,以及并联连接在第一主放电电极与第二主放电电极之间的第一充电电路元件和峰化电容器。第二脉冲发生电路包括插接在辅助放电电极与可饱和变压器之间的连接导体。在开关装置处于断开状态向第一充电电容器充电以后,开关装置闭合,允许在辅助放电电极与第二主放电电极之间首先产生电晕放电,由此在第一与第二主放电电极之间存在的空间内产生预电离。之后,开关装置完全闭合,允许可饱和变压器的电感量减少,故主放电可以在第一与第二主放电电极之间产生。
采用上述放电激发型脉冲激光装置的设计,可饱和变压器在初始状态呈现高的电感量。在开关装置闭合时,相应于开关装置的动作,在可饱和变压器的次级绕组中感应出陡峭上升的电压。然而,此时可饱和变压器仍然处于不饱和状态,呈现一个较大的电感量。因此,在脉冲状电压上升之后,可饱和变压器磁饱和其电感陡峭降低,由此允许脉冲状电压在第一与第二主放电电极之间上升。如上所述,由于可饱和变压器的电感量减少,该电压上升将几乎不产生任何明显的时延。
根据本发明的第三个方面,提供一种放电激发型脉冲激光装置,它包括相互相对设置的一对第一和第二主放电电极,用以在其间产生主放电;设置在第二主放电电极附近的辅助放电电极,用以在第二主放电电极与辅助放电电极之间产生电晕放电;连接至第一和第二主放电电极的第一脉冲发生电路,用以对第一与第二主放电电极之间的主放电提供脉冲状电压;连接至第二主放电电极和辅助放电电极的第二脉冲发生电路,用以对第二主放电电极与辅助放电电极之间产生的电晕放电提供脉冲状电压;开关脉冲发生装置,用以控制由第一脉冲发生电路加到第一和第二主放电电极之电压以及由第二脉冲发生电路加到第二主放电电极和辅助放电电极之电压的施加和中断;连接在开关脉冲发生装置与第一和第二脉冲发生电路之间的可饱和变压器;以及跨接在开关脉冲发生装置两端的第一充电电容器。
在上述结构的放电电极型脉冲激光装置中,将电路设计成使可饱和变压器起初呈现较大的电感量。这样,在由开关脉冲发生装置产生的脉冲状电压向第一充电电容器充电的同时,在可饱和变压器的次级绕组中感应一个电压而触发第二脉冲发生电路的动作。结果,在第二脉冲发生电路和可饱和变压器的次级绕组中形成以极高速率相应于开关时间的电压。因此,在脉冲状电压上升之后,可饱和变压器磁饱和其电感非线性降低,由此允许脉冲状电压在第一与第二主放电电极之间上升。如上所述,由于可饱和变压器的电感量降低,该电压上升将几乎不会遭受任何明显的时延。
在实现本发明的另一个较佳模式中,第一脉冲发生电路可以包括一个峰化电容器,其一端连接到位于可饱和变压器初级绕组与第一主放电电极之间的结点上,另一端连接到位于开关脉冲发生装置与第二主放电电极之间的结点上。第二脉冲发生电路包括连接在可饱和变压器次级绕组两端之间的第二充电电容器,以及连接在可饱和变压器次级绕组与辅助放电电极之间的可饱和电抗器。该装置进一步包括连接在第二主放电电极与辅助放电电极之间的充电电路元件。在响应于由开关脉冲发生装置施加的开关脉冲状电压,通过第一充电电容器和可饱和变压器向第二充电电容器充电之后,可饱和变压器的电感量和可饱和电抗器的电感量可以降低,以允许电压在辅助放电电极与第二主放电电极之间上升,同时允许电压在第一主放电电极与第二主放电电极之间上升。
在上述结构的放电电极型脉冲激光装置中,可饱和变压器和可饱和电抗器二者均呈磁饱和而使其电感减小,由此允许仅在通过第一充电电容器和可饱和变压器,利用由脉冲发生装置施加的脉冲状电压向第二充电电容器充电之后,才将电压由第二充电电容器施加至辅助放电电极。采用此结构,上述电路环路可以设计具有低电感。因此,施加到辅助放电电极的电压可以陡峭地上升,这也意味着脉冲状电压可以在辅助放电电极与第二主放电电极之间更为陡峭地上升。
在实现本发明的另一个较佳模式中,第二脉冲发生电路可以进一步包括串联连接在第二充电电容器与辅助放电电极之间的延迟电路,用以使施加在辅助放电电极与第二主放电电极两端之脉冲状电压的上升时间与施加在第一和第二主放电电极两端之脉冲状电压的上升时间大体上相符。
通过如上所述在第二充电电容器与辅助放电电极之间提供延迟电路,可以因第二可饱和电抗器的饱和而把已上升的电压保持至该电压在第一与第二主放电电极之间上升的那一时刻。这就意味着,加到第一和第二主放电电极两端的电压可以在通过电晕放电因预电离产生的电子量减少到任何相当程度之前就上升。这样,预电离的效果可以大大提高。
在实现本发明的另一个较佳模式中,第二脉冲发生电路可以进一步包括串联连接在第三可饱和电抗器与辅助放电电极之间的一个延迟电路,用以使施加在辅助放电电极和第二主放电电极两端之脉冲状电压的上升时间与施加在第一和第二主放电电极两端之脉冲状电压的上升时间大体上相符。
通过如上所述在第三可饱和电抗器与辅助放电电极之间提供延迟电路,可以把因第三可饱和电抗器的饱和而已上升的电压保持至电压在第一主放电电极与第二主放电电极之间上升的那一时刻。这意味着施加在第一和第二主放电电极两端的电压可以在通过电晕放电因预电离产生的电子量降低到任何相当程度之前就上升。这样,预电离的效果可以大大提高。
在实现本发明的再一个较佳模式中,第一脉冲发生电路可以包括串联连接在第一主放电电极与可饱和变压器初级绕组之间的第一充电电容器,以及连接在第一与第二主放电电极之间的第一充电电路元件。第二脉冲发生电路包括串联连接在辅助放电电极与可饱和变压器次级绕组之间的延迟电路,用以使施加在辅助放电电极与第二主放电电极两端之脉冲状电压的上升时间与施加在第一与第二主放电电极两端之脉冲状电压的上升时间大体上相符。
通过如上所述在可饱和变压器的次级绕组与辅助放电电极之间提供延迟电路,可以把因可饱和变压器的饱和而已上升的电压保持至电压在第一与第二主放电电极之间上升的那一时刻。这意味着,加在第一与第二主放电极两端的电压可以在通过电晕放电因预电离产生的电子量减少到任何相当程度之前就上升。这样,预电离的效果可以大大提高。
通过以下结合附图对几个较佳实施例的描述,本发明的上述和其它目的、特征以及附带的优点将会变得更为清楚。
在以下描述过程中将参照附图来进行。
图1是一个电路图,它示意性地表示根据本发明的第一个实施例的一个放电激发型脉冲激光装置的总体设计;
图2是一个电压波形图,用以说明图1和图5所示放电激发型脉冲激光装置的工作原理;
图3是一个电路图,它表示根据本发明的第二个实施例的一个放电激发型脉冲激光装置的总体设计;
图4是一个电压波形图,用以说明图3和图10所示放电激发型脉冲激光装置的工作原理;
图5是一个电路图,它表示根据本发明的第三个实施例的一个放电激发型脉冲激光装置的构造;
图6是一个电路图,它表示根据本发明的第四个实施例的一个放电激发型脉冲激光装置的构造;
图7是一个电压波形图,用以说明图6所示放电激发型脉冲激光装置的工作原理;
图8是一个电路图,它表示根据本发明的第五个实施例的一个放电激发型脉冲激光装置的构造;
图9是一个电压波形图,用以说明图8所示放电激发型脉冲激光装置的工作原理;
图10是一个电路图,它表示根据本发明的第六个实施例的一个放电激发型脉冲激光装置的构造;
图11是一个电路图,它示意性地表示根据本发明的第七个实施例的一个放电激发型脉冲激光装置的构造;
图12是一个电路图,它表示根据本发明的第八个实施例的一个放电激发型脉冲激光装置的构造;
图13是一个电压波形图,用以说明图12、图14和图15所示放电激发型脉冲激光装置的工作原理;
图14是一个电路图,它表示根据本发明的第九个实施例的一个放电激发型脉冲激光装置的构造;
图15是一个电路图,它表示根据本发明的第十个实施例的一个放电激发型脉冲激光装置的构造;
图16是一个俯视图,它表示根据本发明的另一个实施例的一个电极结构;
图17是一个电路图,它表示迄今已知的一个传统的放电激发型脉冲激光装置;
图18是一个波形图,用以说明图17所示装置的工作原理;
图19是另一个波形图,用以说明图17所示传统的放电激发型脉冲激光装置的工作原理。
现在将结合图1至图16所示目前认为为较佳的实施例对本发明进行详细的描述,其中与上述参照图17所示相同或等同的部分或元件用相同的标号表示,将省略对其的重复描述。
实施例1
图1是一个电路图,它一般表示根据本发明的第一个实施例的一个放电激发型脉冲激光装置的构造,图2是一个电压波形图,用以说明该实施例的放电激发型脉冲激光装置的工作原理,顺便说一下,图2也将用以描述本发明的第三个实施例。
参见图1,根据本实施例的放电激发型脉冲激光装置除了前面参照图17描述的传统的放电激发型脉冲激光装置的元件以外,它还包括充电电抗器18,第一可饱和电抗器19,用作第一脉冲发生电路的第一四端口脉冲发生电路22,以及用作第二脉冲发生电路的第二四端口脉冲发生电路23。
充电电抗器18的一端连接到充电端口6,而其另一端连接到第一和第二可饱和电抗器19和21相互连接的一个结点上。
第一可饱和电抗器19的一端连接到第一四端口脉冲发生电路22的第一端口A,其另一端连接到开关装置8的一端,该开关装置8可以由具有火花隙的放电型开关构成,使放电在火花隙中产生以实现开关动作。开关装置8的另一端连接到第一四端口脉冲发生电路22的第二端口B以及第二四端口脉冲发生电路23的第二端口B。
另一方面,第二可饱和电抗器21的一端连接到第二四端口脉冲发生电路23的第一端口A,而其另一端则连接到开关装置8的一端。
第一四端口脉冲发生电路22具有第三端口C第四端口D,它们分别连接到第一和第二主放电电极2和3,而第二四端口脉冲发生电路23的第三端口C和第四端口D分别连接到第二主放电电极3和辅助放电电极4。
接下来将参照图2所示波形图描述放电激发型脉冲激光装置的工作原理。
现在假设在时刻t(=0),在开关装置8的火花隙中产生放电,流经第一和第二可饱和电抗器19和21之电流的方向相对于充电期间流经这些电抗器之电流的方向相反。因此,电抗器18和21的铁芯分别呈现不饱和状态。这样,如前面参照图18结合传统装置所述,第一和第二可饱和电抗器19和21现在可以作为各自具有大容量的电抗器使用,结果,第一四端口脉冲发生电路22以及第二四端口脉冲发生电路23的动作受到了抑制。与此同时,开关装置8的火花隙呈现全导通状态(即全闭合状态),其杂散电感和电阻分量被抑制得最小。
在时刻t(=Ts2),第二可饱和电抗器21的铁芯呈全饱和,结果,可饱和电抗器21的电感呈非线性陡峭减小。然而,在该时刻(即t(=Ts2)),第一可饱和电抗器19的电感仍保持较大值。因此,如上所述,由于开关装置8的火花隙之杂散电感和电阻分量分别被抑制到最小值,因而第二四端口脉冲发生电路23输出的电压可以以高速度或高比例上升。
继续参照图2,当在时刻t(=Tsl),第一可饱和电抗器19的铁芯在放电过程中变成饱和时,第一可饱和电抗器19的电感量呈非线性陡峭地下降。从图2所示波形1可见,施加在第一与第二主放电电极2和3两端的脉冲状电压的上升速率取决于陡峭下降的电感量。换句话说,施加在第一与第二主放电电极2和3之间的脉冲状电压以高速率上升,如同图17所示传统放电激发型脉冲激光装置的情况那样。因此,放电起始电压(点火电位)VB变高,由此增加了注入主放电17的能量。这样就可成功地解决前述传统放电激发型脉冲激光装置所碰到的问题。
实施例2
接下来参照图3所示的电路图描述根据本发明第二个实施例的一种放电激发型脉冲激光装置,其中与图1和图17中所用相同的标号表示相同或等同的部分。根据本实施例的放电激发型脉冲激光装置,其与上述第一个实施例所述装置的区别在于,用一个可饱和变压器24替换了第一和第二可饱和电抗器19和21,其中,可饱和变压器初级绕组的一端连接到第一四端口脉冲发生电路22的第一端口A,其另一端连接到充电电抗器18的一端。另一方面,可饱和变压器24的次级绕组的两端分别连接到第二四端口脉冲发生电路23的第一和第二端口A和B。
现在参照图4所示的波形图描述根据本发明该实施例的放电激发型脉冲激光装置的工作原理。
假定在时刻t(=0),在开关装置8的火花隙中产生放电。然后,在可饱和变压器24的次级绕组中感应一个电压,使第二四端口脉冲发生电路23为预电离进行充电动作。然而,此时第一四端口脉冲发生电路22的动作被禁止,直至可饱和变压器24的铁芯已经达到磁饱和状态。与此同时,开关装置8的火花隙呈现全导通状态(即换句话说,开关装置8处于全闭合),这本身也意味着,开关装置8的杂散电感和电阻分量变为最小。
接下来参见图2,当可饱和变压器24的铁芯在时刻t(=Ts1)放电过程中呈现磁饱和状态时,可饱和变压器24的电感量呈非线性陡峭地降低。如前所述,呈现在第一与第二主放电电极2和3两端之间的脉冲状电压的上升速率取决于变压器24的电感量陡峭降低。换句话说,第一与第二主放电电极2和3之间的脉冲状电压,如前面参照图18结合传统放电激发型脉冲激光装置所述那样,以高速率上升。因此,放电起始电压(点火电位)VB变高,由此使注入主放电17的能量增大。
此时,应当说明,在根据本发明第一和第二个实施例的放电激发型脉冲激光装置中,第一四端口脉冲发生电路22可以用任何合适的电路结构实现,只要它能在第二主放电电极3与辅助放电电极4两端之间施加一个预定的脉冲状放电电压即可。同样,第二四端口脉冲发生电路23也可以由具有任何合适结构的电路构成,只要可以在辅助放电电极4与第二主放电电极3之间施加一个预定电晕放电的触发脉冲状电压即可。
实施例3
图5是一个电路图,它表示本发明的第三个实施例,其中分别优选了第一和第二四端口脉冲发生电路22和23,该电路可以应用于图1所示的放电激发型脉冲激光装置。图5中,与图1和图17所示相同或等同的部分用相同的参照号表示,故这部分不再重复描述。
尤其是,在图5所示的第一四端口脉冲发生电路22中,第一充电电容器9连接到第一四端口脉冲发生电路22的第一端口A和第三端口C,其中,充电电抗器14a和峰化电容器13相互并联连接,并插接在互连第一充电电容器9和第三端口C的连接导线与互连第二端口B和第四端口D的连接导线之间。在根据本发明的放电激发型脉冲激光装置中,充电电抗器14a和峰化电容器13共同构成第一充电电路装置。
另一方面,在第二四端口脉冲发生电路23a中,第二充电电容器12连接在第二四端口脉冲发生电路23a的第一端口A与第三端口C之间,其中,第二端口B和第四端口D连接到地电位。充电电容器15a连接在第二主放电电极3与辅助放电电极4之间。此外,第二充电电容器12的一端直接接到第三端口C,同时通过充电电抗器15a间接连接到第一四端口脉冲发生电路22的第四端口D。换句话说,第二充电电容器12经由第二四端口脉冲发生电路23a的第三端口C和充电电抗器15a以及第一四端口脉冲发生电路22的第四端口D和第二端口B连接到地电位。充电电抗器15a构成了根据本发明的放电激发型脉冲激光装置的第二充电电路装置。
接下来参照图2描述根据本实施例的放电激发型脉冲激光装置的工作原理。如前面结合传统脉冲激光装置所述,第一和第二充电电容器9和12首先经由充电电抗器18充电。通过该充电过程,第一和第二可饱和电抗器19和21的铁芯处于一个极性饱和的状态。当开关装置8的火花隙在时刻t(=0)点火时第一和第二充电电容器9和12开始放电。此时,电流流经第一和第二可饱和电抗器19和21的方向相对于其充电时电流流经这些电抗器的方向相反。因此,第一和第二可饱和电抗器19和21的铁芯变成不饱和。这样,第一和第二可饱和电抗器19和21作为电抗器,其每一个都呈现较大的容量,由此抑制了第一和第二充电电容器9和12的放电,如前面参照图18之波形图所述。与此同时,开关装置8的火花隙变成全导通(即用同样的话说开关装置8为完全闭合),其杂散电感和电阻分量减至最小。
在时刻t(=Ts2),第二可饱和电抗器21的铁芯变成磁饱和,其电感量呈非线性地陡峭降低。然而,在此时刻,第一可饱和电抗器19的电感量继续具有较大的值。开关装置8的杂散电感和电阻分量减至最小。这样,第二充电电容器12可以以高速率放电,其结果,因电晕放电16而在主电极2与3之空间的预电离将明显加速。采用这种方法,由于第一可饱和电抗器19的容量增大,可以达到本发明预期的效果。
现在,从图2中可见,随着放电过程的进行在达到时刻t(=Ts1)时,第一可饱和电抗器19的铁芯变成磁饱和,结果其电感量呈非线性陡峭降低。从图2所示的波形1可见,施加在第一与第二主放电电极2与3之间的脉冲状电压的上升速率取决于上述陡峭下降的电感量。采用此方式,第一与第二主放电电极2与3之间的脉冲状电压以高速率上升,其放电起始电压(点火电位)VB增大,这自然有助于增大注入主放电17的能量。于是,可以发现,利用本发明的这一实施例可以成功地解决前面提到的迄今已知激光装置中的问题。
实施例4
接下来,将参照图6所示的电路图描述本发明的第四个实施例。
本实施例与上述第三个实施例的区别在于第二四端口脉冲发生电路23的构成,在图6中它用标号23b表示。在根据本实施例的放电激发型脉冲激光装置的第二四端口脉冲发生电路23b中,第二充电电容器12的一端经由第一端口A连接到第二可饱和电抗器21,而其另一端则连接到第三可饱和电抗器25的一端,后者的另一端经由第三端口C连接到辅助放电电极4。再者,并联连接的充电电抗器26和第一电荷转移电容器27插接在第二充电电容器12和第三可饱和电抗器25互连的一个结点与第二和第四端口B和D之间,端口B和D连接到地电位。
现在将参照图7所示的波形图,描述根据本发明本实施例的放电激发型脉冲激光装置的工作原理。如前面结合传统脉冲激光装置所述,第一和第二充电电容器9和12首先通过充电电抗器18充电。在充电过程中,第一和第二可饱和电抗器19和21的铁芯置于一个极性饱和的状态。当开关装置8的火花隙在时刻t(=0)点火时,第一和第二充电电容器9和12的每一个开始放电。此时,电流流经第一和第二可饱和电抗器19和21的方向相对于向这些电抗器充电时的方向相反。因此,第一和第二可饱和电抗器19和21的铁芯成为不饱和。这样,第一和第二可饱和电抗器19和21的每一个都呈现较大的容量,并起到抑制第一和第二充电电容器9和12的放电的作用。与此同时,开关装置8的火花隙变成全导通,其杂散电感和电阻分量被抑制到最小值。
现在,在第二可饱和电抗器21的铁芯呈现饱和状态的时刻t(=Ts2)其电感量呈非线性陡峭减小。然而,在该时刻,第一可饱和电抗器19的电感量继续具有较大的值,开关装置8的杂散电感和电阻分量被减至最小。结果,电荷从第二充电电容器12加速转移到第一电荷转移电容器27。
其次,在时刻t(=Ts3),第三可饱和电抗器25的铁芯变成磁饱和,其电感呈非线性陡峭减小。由于从第一电荷转移电容器27经由已饱和之第三可饱和电抗器25延伸到辅助放电电极4的环路呈现的电感量比由开关装置8的火花隙、第二可饱和电抗器21、第二充电电容器12以及第一电荷转移电容器27组成的环路的电感量更小,使施加到辅助放电电极4的电压更为陡峭地上升,由此更强烈地促进了由电晕放电16形成的预电离。
现在,从图7可见,随着放电过程的进行,当到达时刻t(=Ts1)时,第一可饱和电抗器19的铁芯变成磁饱和,结果,其电感量呈非线性地陡峭减小。因此,施加在第一和第二主放电电极2和3两端之间的脉冲状电压的上升速率取决于陡峭下降的电感值。于是,从图7中所示波形1可见,第一与第二主放电电极2与3之间的脉冲状电压以高速率上升,放电起始电压(点火电位)VB增高,此举有助于增大注入主放电通路17的能量。可见,通过本发明的本实施例,同样可以解决前述传统放电激发型脉冲激光装置中存在的问题。
实施例5
接下来将参照图8所示的电路图描述本发明的第五个实施例。
现在考虑的放电激发型脉冲激光装置与上述第四个实施例的区别在于第二四端口脉冲发生电路的构成,在图8中它用标号23C表示。尤其是,充电电抗器26和第一电荷转移电容器27并联连接,它们的各一端连接到第二充电电容器12与第三可饱和电抗器25之间的结点,它们的各另一端相互连接并通过第二端口B连接到接地电位(即连接到第二主放电电极3),其中,第三可饱和电抗器25的另一端连接到第四可饱和电抗器28的一端,后者的另一端经由第三端口C连接到辅助放电电极4。第三可饱和电抗器25与第四可饱和电抗器28之间的结点经由第二电荷转移电容器29和第四端口D连接到地电位(即换句话说,上述结点连接到第二主放电电极3)。此外,第一和第二电荷转移电容器27和29的接地端相互连接。
接下来,将描述根据本实施例的放电激发型脉冲激光装置的工作过程。如前面结合传统脉冲激光装置所述,第一和第二充电电容器9和12首先经由充电电抗器18充电。经过该充电过程,第一和第二可饱和电抗器19和21的铁芯处于一个极性饱和的状态。当开关装置8的火花隙在时刻t(=0)点火时,第一和第二充电电容器9和12的每一个开始放电。在该时刻,电流流经第一和第二可饱和电抗器19和21的方向相对于其充电时电流流经这些电抗器的方向相反。因此,第一和第二可饱和电抗器19和21的铁芯成为不饱和。这样,第一和第二可饱和电抗器19和21就起到了电抗器的作用,其每一个都呈现较大的容量,由此抑制了第一和第二充电电容器9和12的放电。与此同时,开关装置8的火花隙变成全导通,其杂散电感和电阻分量减至最小。
在时刻t(=Ts2),第二可饱和电抗器21的铁芯变成磁饱和,其电感量呈非线性陡峭减小。然而,在该时刻,第一可饱和电抗器19的电感量仍具有较大的值,而开关装置8的杂散电感和电阻分量为最小。于是,电荷以高速率开始从第二充电电容器12转移到第一电荷转移电容器27。
其次,在时刻t(=Ts3),第三可饱和电抗器25的铁芯变成磁饱和,其电感量呈非线性陡峭地减小。由于把电荷从第一电荷转移电容器27经由呈饱和状态的第三可饱和电抗器25转移到第二电荷转移电容器29之环路的电感量,比由开关装置8的火花隙、第二可饱和电抗器21、第二充电电容器12和第一电荷转移电容器27组成的环路的电感量更小,故施加在第二电荷转移电容器29上的电压可以更陡峭地上升,由此加速了通过电晕放电16形成的预电离。
另外,应当说明的是,当诸如由F2和C12混合气体之类的电子附着气体以气密方法注入激光器腔室1时,由于这类电子附着气体的吸收作用,曾通过预电离产生的电子数量趋于减少。然而,根据本发明本实施例的此种结构的放电激发型脉冲激光装置可以理想地解决这一问题。
图9示出了单个脉冲状电压的波形,用以说明上述脉冲激光装置的工作原理。在根据本发明本实施例的放电激发型脉冲激光装置中,采用这种设计使第四可饱和电抗器28的电感量可以继续保持一个较大值,直至加到第二电荷转移电容器29上的电压上升。
随着图9所示的放电过程的进行,第一可饱和电抗器19的铁芯在时刻t(=Tsl)成磁饱和,并伴随第一可饱和电抗器19之电感量的非线性陡峭下降。同时,第四可饱和电抗器28的铁芯转换为磁饱和状态,其电感量呈非线性陡峭下降,导致加在辅助放电电极4与第二主放电电极3两端之间的电压陡峭地上升。因此,第一主放电电极2电压上升的时间与施加在辅助放电电极4与第二主放电电极3两端之间之电压的陡峭上升时间相吻合。因此,第一主放电电极2的电压上升时间与波形1所示电压出现在第一与第二主放电电极2与3之间的时间相吻合。于是诸如经电晕放电的预电离作用产生的电子被***体所吸收的不希望有的现象即可理想的受到抑制,它允许平稳地过渡到主放电。
在上述第二四端口脉冲发生电路23c中,第四可饱和电抗器28和第二电荷转移电容器29分别加插在第三可饱和电抗器25与辅助放电电极4之间。然而,这里并没有提及可以将多个附加的可饱和电抗器分别与连接到每个可饱和电抗器的相应数量的电荷转移电容器串联连接。
实施例6
本发明的第六个实施例分别涉及到第一四端口脉冲发生电路22和第二四端口脉冲发生电路23的具体电路结构,以下将参照图10加以描述。
从图10可见,可饱和变压器24之次级绕组的一端直接连接到第一四端口脉冲发生电路22的第二端口B,并通过第四端口D间接地连接到第二主放电电极3。另一方面,可饱和变压器24之次级绕组的另一端连接到第二四端口脉冲发生电路23h的第一端口A,其中,第二四端口脉冲发生电路23h的第一端口A和第二端口B通过连接导线相互直接连接。此外,第二四端口脉冲发生电路23h的第三端口C连接到辅助放电电极4。第二四端口脉冲发生电路23h的第二端口B和第四端口D相互直接连接,且同时连接到地电位。
接下来将参照图4描述根据本发明本实施例的放电激发型脉冲激光装置的工作原理。首先,第一充电电容器9通过充电电抗器14a充电。在该充电期间,可饱和变压器24的铁芯置于一个极性饱和的状态。当开关装置8的火花隙在时刻t(=0)点火时,第一充电电容器9开始放电。由于在该时刻电流流经可饱和变压器24的方向相对于充电期间电流流经其间的方向相反,故可饱和变压器24的铁芯转换成不饱和状态。这样,当开关装置8的火花隙闭合时,在可饱和变压器24的次级绕组将感应一个其边沿陡峭上升的电压。然而,在该时刻,可饱和变压器24的电感量具有较大的值,因此,第一充电电容器9的放电受到抑制。与此同时,开关装置8的火花隙变成全闭合(即全导通)。这样,开关装置8的杂散电感和电阻分量变为最小。
现在,当放电过程到达时刻t(=Tsl)时,可饱和变压器24的铁芯变成磁饱和,结果,其电感量呈非线性陡峭地减低,从图4中可见。另从图4所示波形1可见,施加在第一与第二主放电电极2与3之间的脉冲状电压的上升速率取决于上述电感陡峭下降的值。采用此方式,施加在第一与第二主放电电极2与3之间的脉冲状电压以高速率上升,同时,放电起始电压(点火电位)VB增高,该过程有助于增加注入主放电17的能量。
实施例7
图11是一个电路图,它表示根据本发明第七个实施例的放电激发型脉冲激光装置的构造。
现在考虑的放电激发型脉冲激光装置与第二个实施例的区别在于,连接至第一四端口脉冲发生电路22a之可饱和变压器24的第一端口A以及连接至第一主放电电极2的第三端口C相互直接连接,而第一四端口脉冲发生电路22a的第二端口B及其第四端口D相互连接,其中,峰化电容器13插接在第一端口A和第三端口C的结点与第二端口B和第四端口D的结点之间。
此外,可饱和变压器24之初级绕组的一端连接至第一四端口脉冲发生电路22a的第一端口A,而该初级绕组的另一端连接到一个开关脉冲发生电路31的一端,后者作为脉冲发生装置。其另一端与第一四端口脉冲发生电路22a的第二端口B连接。连接在开关脉冲发生电路31两端的是第一充电电容器9。
可饱和变压器24之次级绕组的一端连接到第二四端口脉冲发生电路23d的第一端口A,其另一端连接到该电路的第二端口B,其中,第二充电电容器12连接在第一与第二端口A与B之间,第二端口B又连接到接地的第四端口D。另外,第二可饱和电抗器21插接在第二四端口脉冲发生电路23d的第一端口A与第三端口C之间。
现在将参照图9描述根据本实施例的放电激发型脉冲激光装置的工作原理。首先,在时刻t(=0),由开关脉冲发生电路31产生一个脉冲状电压,由此向第一充电电容器9充电。在该时刻,可饱和变压器24的铁芯仍未饱和,在其次级绕组中因第一充电电容器9的充电而感应一个电压。由于可饱和变压器24呈现一个较大的电感量,对峰化电容器13的充电受到抑制。另一方面,第二充电电容器12由可饱和变压器24之次级绕组中感应的电压充电。然而,在此时刻第二可饱和电抗器21处于不饱和状态。因此,第二充电电容器12的电压被阻止加到辅助放电电极4。
现在,当放电进行到时刻t(=Tsl)时,第一可饱和电抗器19的铁芯变成磁饱和,结果如图9所示,其电感量呈非线性陡峭下降。从图9所示波形1可见,加在第一与第二主放电电极2与3之间的脉冲状电压的上升速率取决于上述电感量陡峭下降的值。采用此方式,由于放电初始电压(点火电位)VB的电路的低电感量增大了,加在第一与第二主放电电极2与3之间的脉冲状电压即以高速率上升,这自然有助于增加注入主放电17的能量。从图9所示波形2可见,由于第二可饱和电抗器21设置成饱和且其电感量陡峭降低,故随着第一和第二主放电电极2与3之间所加电压的上升,加在辅助放电电极4与第二主放电电极3之间的电压也同时呈陡峭的上升。结果产生电晕放电,在第一和第二主放电电极2与3之间的空间形成预电离。
实施例8
图12是一个电路图,它表示根据本发明第八个实施例的一种放电激发型脉冲激光装置的构造。除了第二四端口脉冲发生电路的结构以外,现在涉及的放电激发型脉冲激光装置类似于图5所示装置(第三个实施例)那样实现。尤其是,在标号为23e的第二四端口脉冲发生电路的第一端口A与第三端口C之间***了串联连接的第二充电电容器12和同轴电缆20,后者用作一延迟电路。同轴电缆20的两端分别通过第二和第四端口B和D连接到地电位。
接下来将参照图13描述根据本实施例的放电激发型脉冲激光装置的工作原理。如前面结合传统脉冲激光装置所述,第一和第二充电电容器9和12首先通过充电电抗器18充电。经过充电过程,第一和第二可饱和电抗器19和21的铁芯置于一个极性的饱和状态。当开关装置8的火花隙在时刻t(=0)点火时,第一和第二充电电容器9和12的每一个开始放电。在该时刻,电流流经第一和第二可饱和电抗器19和21的方向相对于充电期间电流所流经的方向相反。因此,第一和第二可饱和电抗器19和21的铁芯变成不饱和。这样,第一和第二可饱和电抗器19和21就起到了电抗器的作用,其每一个都呈现一个较大的容量,由此阻止第一和第二充电电容器9和12放电。与此同时,开关装置8的火花隙变成全导通(换句话说,即开关装置8为完全闭合),其杂散电感和电阻分量减至最小。
在时刻t(=Ts2),第二可饱和电抗器21的铁芯变成磁饱和,其电感量呈非性线陡峭下降。然而,在该时刻,第一可饱和电抗器19的电感量继续处于较大值,开关装置8的杂散电感和电阻分量为最小。为此,第二充电电容器12以高速率放电,结果,通过电晕放电16形成的预电离作用明显加速。然而,由于存在用作延迟电路的同轴电缆20,在辅助放电电极4与第二主放电电极3之间出现的电压仍然不能达到允许在该两电极之间放电所需的电平。
现在,当放电过程进行到时刻t(=Tsl)时,从图13中可见,第一可饱和电抗器19的铁芯变成磁饱和,结果,其电感量呈非线性陡峭下降。施加在第一和第二主放电电极2与3之间的脉冲状电压的上升速率取决于上述陡峭下降的电感量值,如图13中的波形1所示。采用此种方式,施加在第一和第二主放电电极2与3之间的脉冲状电压以高速率上升,且放电初始电压(点火电位)VB增高,该过程有助于增加注入主放电路径17的能量。
此外,在该时刻,出现于第二充电电容器12两端的电压12(其时延与同轴电缆20有关)加到辅助放电电极4,结果,辅助放电电极4与第二主放电电极3之间的电压陡峭地上升。这样,波形2之脉冲状电压上升的时间与第一和第二主放电电极2与3之间的波形1之脉冲状电压的上升时间相符,由此,可以基本上防止在电晕放电作用下由预电离所产生的电子被***体所吸收的这种不希望出现的现象。这样,就可以实现从电晕放电(辅助放电)平稳地过渡到基本的或主放电。
实施例9
图14是一个电路图,它表示根据本发明第九个实施例的一个放电激发型脉冲激光装置的构造,其与图12所示装置的区别在于第二四端口脉冲发生电路的结构,在图14中用标号23f表示。尤其是从图14可见,连接在第二四端口脉冲发生电路23f第一端口A与第三端口C之间的是依次串联连接的第二充电电容器12、第三可饱和电抗器25以及用作延迟电路的同轴电缆20,其中,充电电抗器26和第一电荷转移电容器27相互并联连接在第二端口B与互连着第二充电电容器12和第三可饱和电抗器25的导线之间,而充电电抗器15a则插接在第二端口B与互连着第三可饱和电抗器25和同轴电缆20的导线之间。然而,采用这种结构时应当说明,充电电抗器15a也可以连接在第二主放电电极3与辅助放电电极4之间,以取代充电电抗器15a的上述接法。
接下来将参照图13的波形图,描述根据本实施例的放电激发型脉冲激光装置的工作原理。如前面结合传统脉冲激光装置所述,第一和第二充电电容器9和12首先通过充电电抗器18充电。经过该充电过程,第一和第二可饱和电抗器19和21的铁芯处于一个极性饱和的状态。当开关装置8的火花隙在时刻t(=0)点火时,第一和第二充电电容器9和12的每一个开始放电。此时,流经第一和第二可饱和电抗器19和21的电流相对于充电期间流经这些电抗器的电流,其方向相反。因此,第一和第二可饱和电抗器19和21的铁芯变成不饱和。这样,第一和第二可饱和电抗器19和21就起到了电抗器的作用,其每一个都呈现较大的容量,用以抑制第一和第二充电电容器9和12的放电。与此同时,开关装置8的火花隙变成全导通(换句话说,即开关装置8为完全闭合),其杂散电感和电阻分量减至最小。
在时刻t(=Ts2),第二可饱和电抗器21的铁芯呈现磁饱和状态,故其电感呈非线性陡峭下降。然而,在该时刻,第一可饱和电抗器19的电感量继续具有较大值,故开关装置8的杂散电感和电阻分量为最小。为此,电荷加速从第二充电电容器12转移到第一电荷转移电容器27。
其次,在时刻t(=Ts3),第三可饱和电抗器25的铁芯变成磁饱和,其电感量急剧地非线性下降。由于使电荷经过已饱和的第三可饱和电抗器25转移到同轴电缆20的环路,比之由开关装置8的火花隙、第二可饱和电抗器21、第二充电电容器12和第一电荷转移电容器27形成的环路具有更小的电感量,故使施加在同轴电缆20的电压更陡峭地上升,由此加速了电晕放电16的预电离作用。然而,由于存在起到延迟电路作用的同轴电缆20,出现在辅助放电电极4与第二主放电电极3之间的电压不能立刻增大到足够高的电平使电晕放电产生。
现在,当放电过程进行到时刻t(=Tsl)时,第一可饱和电抗器19的铁芯变成磁饱和,如图13可见,结果其电感量呈非线性陡峭下降。施加在第一和第二主放电电极2与3之间的脉冲状电压的上升速率取决于陡峭下降的电感量值,这从图13所示的波形1可见。采用此方式,位于第一和第二主放电电极2与3之间的脉冲状电压以高速率上升,放电起始电压(点火电位)VB增高,该过程有助于增加注入主放电17的能量。此外,在该时刻,出现在第二充电电容器12两端且其时延与同轴电缆20有关的电压施加给辅助放电电极4,结果使辅助放电电极4与第二主放电电极3之间的电压陡峭地上升。这样,波形2脉冲状电压的上升时间就与第一和第二主放电电极2与3之间波形1的脉冲状电压的上升时间相符,由此可以基本上防止因电晕放电的预电离作用产生的电子被***体所吸收的这种不希望有的现象。这样,就可以实现从电晕放电(辅助放电)平稳过渡到基本或主放电。
实施例10
图15是一个电路图,它表示根据本发明第十个实施例的一个放电激发型脉冲激光装置的构造。
除了图15中用标号23g表示的第二四端口脉冲发生电路以外,现在所述的放电激发型脉冲激光装置用类似于图10所示(第三个实施例)的方法实现。参见该图,插接在第二四端口脉冲发生电路23g第一端口A与第三端口C之间的是同轴电缆20,它用作一个延迟电路。同轴电缆20的两端分别连接到第二和第四端口B和D,该两个端口又连接到地电位。此外,可饱和变压器24的次级绕组两端分别连接到第二四端口脉冲发生电路23g的第一端口A和第二端口B。
接下来将参照图13描述根据本发明本实施例的放电激发型脉冲激光装置的工作原理。首先,第一充电电容器9通过充电电抗器18充电。由于此充电过程,可饱和变压器24的铁芯处于一个极性的磁饱和状态。当开关装置8的火花隙在时刻t(=0)点火时,第一充电电容器9开始放电。由于在该时刻电流流经可饱和变压器24的方向相对于充电期间电流流经该变压器的方向相反,故可饱和变压器24的铁芯转换为不饱和状态。这样,当开关装置8的火花隙闭合时,在可饱和变压器24的次级绕组感应一个边沿陡峭上升的电压。然而,由于用作延迟电路的同轴电缆20的存在,出现在辅助放电电极4与第二主放电电极3之间的电压不能增大到足够高。因此,不能产生电晕放电。在此时刻,可饱和变压器24的电感量具有较大的值。因此,第一充电电容器9的放电受到抑制。与此同时,开关装置8的火花隙变成全闭合。(即全导通)。这样,其杂散电感和电阻分量就变成最小。
现在,当放电过程到达时刻t(=Tsl)时,可饱和变压器24的铁芯变成磁饱和,结果,其电感量非线性陡峭下降,如图13所示。施加在第一和第二主放电电极2与3之间的脉冲状电压的上升速率取决于陡峭下降的电感量,如图4中的波形1所示。采用此方式,位于第一和第二主放电电极2与3之间的脉冲状电压以高速率上升,且放电初始电压(点火电位)VB增高,如同传统装置(见图19)中的情况那样,该过程有助于增加注入主放电路径17的能量。此外,在该时刻,在可饱和变压器24次级绕组两端感应的电压12加到辅助放电电极4,它的时延与同轴电缆20相关,结果,辅助放电电极4与第二主放电电极3之间的电压呈陡峭地上升。于是,波形2之脉冲状电压上升的时间与出现在第一和第二主放电电极2与3之间的波形1之脉冲状电压的上升时间相符,由此,可以防止因电晕放电的预电离作用产生的电子被***体所吸收的不希望的现象。这样,就可以从电晕放电(辅助放电)平稳地过渡到基本或主放电。
各种变换
从以上详细描述中,可以看出本发明的许多特点和优点,申请人想在不超出本发明实际精神和范围的情况下,通过所附的权利要求书来覆盖此***的所有这些特点和优点。此外,由于本领域的熟练人员在此基础上还可以作出各种变换和组合,申请人不希望将本发明局限于上述精确的结构和工作原理。
举例来说,尽管以上描述将同轴线(例如同轴电缆20)用作脉冲延迟电路,显然,诸如带状线、LC电路或类似的脉冲延迟电路也可以达到实际相同的效果。此外,在不脱离本发明精神和范围的情况下,也可以用诸如闸流管、半导体开关(例如晶闸管、SIT晶体管、FET管、IGBT管等等)、它们的串联连接或并联连接或轨隙开关等其它开关元件或电路取代火花隙开关作为开关装置8。再者,在本发明上述各个实施例的描述中,都曾假定充电是从充电端6以正极性进行的,未曾提到充电可以用负极性进行。此外,用作充电电路元件的充电电抗器14、15a和26可以由诸如电阻器、二极管或实质上可以起到同样作用的其它类似元件取代。再者,尽管本发明被描述成应用于准分子激光器,显然本发明的技术同样适用于其它放电激发型激光器。此外,结合图5、6、8、10、12、14和15所示电路可见,其中的第一充电电容器9和第一可饱和电抗器19或可饱和变压器24可以相对其位置而相互替换,以上同样适用于第二充电电容器12和第二可饱和电抗器21之间的位置关系。
最后,应当附加说明,以上结合本发明各个实施例所述的电极均可以用图16所示的这种结构来实现。尤其是,第二主放电电极3a可以用与第一主放电电极2相同的结构实现。其中,图16中用4a表示的辅助放电电极可以设置在第二主放电电极3a的两侧或一侧,在此情况下,辅助放电电极4a外周用绝缘件5a封装。在此电极阵列情况下,电晕放电16可以在辅助放电电极4a与第二主放电电极3a之间产生,由此而在第一和第二主放电电极2和3之间的空间预先电离,故电晕放电可以平稳地过渡到主放电17。
此外,在本发明的精神和范围内,还可以采用各种合适的变换和等同手段。

Claims (12)

1.一种放电激发型脉冲激光装置,其特征在于包括:
相互相对设置的一对第一和第二主放电电极,用以在其间产生主放电;
设置在所述第二主放电电极附近的辅助放电电极,用以在所述第二主放电电极与所述辅助放电电极之间产生电晕放电;
连接到所述第一和第二主放电电极的第一脉冲发生电路,用以在所述第一与第二主放电电极之间施加一个脉冲状电压以产生主放电;
连接到所述第二主放电电极和所述辅助放电电极的第二脉冲发生电路,用以在所述第二主放电电极与所述辅助放电电极之间施加一个脉冲状电压以产生电晕放电;
开关装置,用以控制由所述第一脉冲发生电路施加到所述第一和第二主放电电极之电压以及由所述第二脉冲发生电路施加到所述第二主放电电极和所述辅助放电电极之电压的施加和切断;
连接在所述开关装置与所述第一脉冲发生电路之间的第一可饱和电抗器;以及
连接在所述开关装置与所述第二脉冲发生电路之间的第二可饱和电抗器。
2.一种放电激发型脉冲激光装置,其特征在于包括:
相互相对设置的一对第一和第二主放电电极,用以在其间产生主放电;
设置在所述第二主放电电极附近的辅助放电电极,用以在所述第二主放电电极和所述辅助放电电极之间产生电晕放电;
连接到所述第一和第二主放电电极的第一脉冲发生电路,用以在所述第一和第二主放电电极之间施加一个脉冲状电压以产生主放电;
连接到所述第二主放电电极与所述辅助放电电极的第二脉冲发生电路,用以在所述第二主放电电极与所述辅助放电电极之间施加脉冲状电压以产生电晕放电;
开关装置,用以控制由所述第一脉冲发生电路加到所述第一和第二主放电电极之电压,以及由所述第二脉冲发生电路加到所述第二主放电电极和所述辅助放电电极之电压的施加和切断;以及
插接在所述开关装置与所述第一和第二脉冲发生电路之间的可饱和变压器,其初级绕组连接在所述开关装置与所述第一脉冲发生电路之间,其次级绕组连接到所述第二脉冲发生电路。
3.如权利要求1所述的放电激发型脉冲激光装置,其特征在于,
所述第一脉冲发生电路包括串联连接在所述第一主放电电极与所述第一可饱和电抗器之间、用于主放电的第一充电电容器,以及连接在所述第一主放电电极与所述第二主放电电极之间的并联连接的第一充电电路元件和峰化电容器;
所述第二脉冲发生电路包括连接在所述辅助放电电极与所述第二可饱和电抗器之间的第二充电电容器;
所述装置进一步包括连接在所述第二主放电电极与所述辅助放电电极之间的第二充电电路元件;
其中,所述第一和第二充电电容器首先在所述开关装置处于断开的状态下充电,然后随着所述开关装置的闭合,降低所述第二可饱和电抗器的电感量,由此允许加在所述辅助放电电极与所述第二主放电电极之间的电压上升,使电晕放电在所述辅助放电电极与所述第二主放电电极之间发生,由此在位于所述第一主放电电极与所述第二主放电电极之间的空间产生预电离,之后,所述开关装置为全闭合,允许所述第一可饱和电抗器的电感量下降,使主放电可以在所述第一主放电电极与所述第二主放电电极之间产生。
4.如权利要求1所述的放电激发型脉冲激光装置,其特征在于,所述第二脉冲发生电路包括:
串联插接在所述第二可饱和电抗器与所述辅助放电电极之间的第二充电电容器;
连接在所述辅助放电电极与串联连接之所述第二可饱和电抗器和所述第二充电电容器之间的第三可饱和电抗器;
插接在所述辅助放电电极与所述第二主放电电极之间的第三充电电路元件;以及
并联连接的第一电荷转移电容器和第二充电电路元件,所述第一电荷转移电容器的一端连接到所述串联连接的第二可饱和电抗器和第二充电电容器与所述第三可饱和电抗器之间的结点上,其另一端连接到所述第二主放电电极。
5.如权利要求4所述的放电激发型脉冲激光装置,其特征在于,
多个可饱和电抗器串联连接在所述第三可饱和电抗器与所述辅助放电电极之间;
与多个可饱和电抗器相同数量的电荷转移电容器分别连接在所述第二主放电电极与所述第三可饱和电抗器和所述多个可饱和电抗器之一的结点以及所述多个可饱和电抗器的结点之间。
6.如权利要求2所述的放电激发型脉冲激光装置,其特征在于,
所述第一脉冲发生电路包括串联连接在所述第一主放电电极和所述可饱和变压器之次级绕组之间的第一充电电容器,以及连接在所述第一主放电电极与所述第二主放电电极之间的并联连接的第一充电电路元件和峰化电容器;
所述第二脉冲发生电路包括插接在所述辅助放电电极与所述可饱和变压器之间的连接导体;
在所述开关装置关断状态下向所述充电电容器充电之后,所述开关装置闭合以允许电晕放电首先在所述辅助放电电极与所述第二主放电电极之间产生,由此在位于所述第一与第二主放电电极之间的空间产生预电离,之后,所述开关装置为全闭合,允许所述可饱和和变压器的电感量下降,使主放电可以在所述第一与第二主放电电极之间发生。
7.一种放电激发型脉冲激光装置,其特征在于包括:
相互相对设置的一对第一和第二主放电电极,用以在其间产生主放电;
设置在所述第二主放电电极附近的辅助放电电极,用以在所述第二主放电电极与所述辅助放电电极之间产生电晕放电;
连接到所述第一和第二主放电电极的第一脉冲发生电路,用以在所述第一和第二主放电电极之间施加脉冲状电压以产生主放电;
连接到所述第二主放电电极和所述辅助放电电极的第二脉冲发生电路,用以在所述第二主放电电极与所述辅助放电电极之间施加脉冲状电压以产生电晕放电;
开关脉冲发生装置,用以控制由所述第一脉冲发生电路加到所述第一和第二主放电电极之电压以及由所述第二脉冲发生电路加到所述第二主放电电极和所述辅助放电电极之电压的施加和中断;
连接在所述脉冲发生装置与所述第一和第二脉冲发生电路之间的可饱和变压器;以及
跨接在所述开关脉冲发生装置两端的第一充电电容器。
8.如权利要求7所述的放电激发型脉冲激光装置,其特征在于,
所述第一脉冲发生电路包括一峰化电容器,其一端连接到所述可饱和变压器初级绕组与所述第一主放电电极之间的结点,其另一端连接到所述开关脉冲发生装置与所述第二主放电电极之间的结点;
所述第二脉冲发生电路包括连接在所述可饱和变压器次级绕组两端之间的第二充电电容器,以及连接在所述可饱和变压器次级绕组与所述辅助放电电极之间的可饱和电抗器;
所述装置进一步包括连接在所述第二主放电电极与所述辅助放电电极之间的充电电路元件;
其中,在响应于由所述开关脉冲发生装置提供的开关脉冲状电压,通过所述第一充电电容器和所述可饱和变压器向所述第二充电电容器充电后,使所述可饱和变压器的电感和所述可饱和电抗器的电感降低,允许电压在所述辅助放电电极与所述第二主放电电极之间上升,同时允许电压在所述第一主放电电极与所述第二主放电电极之间上升。
9.如权利要求3所述的放电激发型脉冲激光装置,其特征在于,
所述第二脉冲发生电路进一步包括串联连接在所述第二充电电容器与所述辅助放电电极之间的一延迟电路,用以使加在所述辅助放电电极与所述第二主放电电极之间的脉冲状电压的上升时间基本上与加在所述第一和第二主放电电极之间的脉冲状电压的上升时间相符。
10.如权利要求4所述的放电激发型脉冲激光装置,其特征在于,
所述第二脉冲发生电路进一步包括串联连接在所述第三可饱和电抗器与所述辅助放电电极之间的延迟电路,用以使加在所述辅助放电电极和所述第二主放电电极之间的脉冲状电压的上升时间基本上与加在所述第一和第二主放电电极之间的脉冲状电压的上升时间相符。
11.如权利要求2所述的放电激发型脉冲激光装置,其特征在于,
所述第一脉冲发生电路包括串联连接在所述第一主放电电极与所述可饱和变压器初级绕组之间的第一充电电容器,以及连接在所述第一与第二主放电电极之间的第一充电电路元件;
所述第二脉冲发生电路包括串联连接在所述辅助放电电极与所述可饱和变压器次级绕组之间的延迟电路,用以使加在所述辅助放电电极与所述第二主放电电极之间的脉冲状电压的上升时间基本上与加在所述第一与第二主放电电极之间的脉冲状电压的上升时间相符。
12.如权利要求1所述的放电激发型脉冲激光装置,其特征在于,
所述辅助放电电极用棒状结构组成,外层包覆绝缘材料,并至少设置在所述第二主放电电极的一侧,位于其附近并相对设置。
CN95115694A 1994-11-04 1995-11-03 放电激发型脉冲激光装置 Pending CN1126644A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP271210/94 1994-11-04
JP6271210A JPH08132321A (ja) 1994-11-04 1994-11-04 放電励起パルスレーザ装置

Publications (1)

Publication Number Publication Date
CN1126644A true CN1126644A (zh) 1996-07-17

Family

ID=17496887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95115694A Pending CN1126644A (zh) 1994-11-04 1995-11-03 放电激发型脉冲激光装置

Country Status (7)

Country Link
US (1) US5708676A (zh)
JP (1) JPH08132321A (zh)
KR (1) KR0157700B1 (zh)
CN (1) CN1126644A (zh)
CA (1) CA2161989C (zh)
DE (1) DE19541031A1 (zh)
TW (1) TW289873B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599613B (zh) * 2009-01-13 2011-02-02 上海微电子装备有限公司 预电离与主放电时序控制装置及方法
CN102143821B (zh) * 2008-09-02 2012-09-12 三菱电机株式会社 放电加工机用电源装置
CN103022858A (zh) * 2012-12-07 2013-04-03 华中科技大学 一种电晕预电离装置
CN105322425A (zh) * 2014-08-04 2016-02-10 株式会社天田米亚基 激光装置
CN107026384A (zh) * 2017-05-02 2017-08-08 中国工程物理研究院激光聚变研究中心 一种为固体激光放大器泵浦能量的氙灯装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1136664C (zh) * 1997-02-12 2004-01-28 恩洋股份有限公司 产生编码高频信号的装置和方法
US6650679B1 (en) 1999-02-10 2003-11-18 Lambda Physik Ag Preionization arrangement for gas laser
US6456643B1 (en) 1999-03-31 2002-09-24 Lambda Physik Ag Surface preionization for gas lasers
US6188144B1 (en) * 1998-11-11 2001-02-13 Komatsu Ltd Power supply unit for pulsed laser using magnetic switch
US6757315B1 (en) 1999-02-10 2004-06-29 Lambda Physik Ag Corona preionization assembly for a gas laser
JP3427889B2 (ja) * 1999-12-21 2003-07-22 ウシオ電機株式会社 ArFエキシマレーザ装置及びフッ素レーザ装置
WO2001084678A2 (en) * 2000-04-18 2001-11-08 Lambda Physik Ag Stabilization technique for high repetition rate gas discharge lasers
DE10025561A1 (de) 2000-05-24 2001-12-06 Siemens Ag Energieautarker Hochfrequenzsender
US6763049B1 (en) * 2000-06-15 2004-07-13 Lambda Emi Very high repetition rate power supply system and method
US6671302B2 (en) 2000-08-11 2003-12-30 Lambda Physik Ag Device for self-initiated UV pre-ionization of a repetitively pulsed gas laser
US6693938B1 (en) * 2000-09-08 2004-02-17 Komatsu Ltd. Discharge circuit for pulsed laser
US6535540B1 (en) * 2000-09-13 2003-03-18 Komatsu Ltd. Discharge device for pulsed laser
DE10150128C2 (de) * 2001-10-11 2003-10-02 Enocean Gmbh Drahtloses Sensorsystem
US7545839B2 (en) * 2003-01-02 2009-06-09 Optiswitch Technology Corporation Apparatus and method for driving a pulsed laser diode
US11870215B2 (en) * 2020-03-23 2024-01-09 Lumentum Operations Llc Reconfigurable laser pulse generating circuit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282475A (ja) * 1986-05-30 1987-12-08 Mitsubishi Electric Corp レ−ザ装置
JPS63197390A (ja) * 1987-02-12 1988-08-16 Mitsui Petrochem Ind Ltd パルスレ−ザ励起電源装置
JPS63304682A (ja) * 1987-06-03 1988-12-12 Nikon Corp エキシマレ−ザ装置
JPH077857B2 (ja) * 1989-05-17 1995-01-30 三菱電機株式会社 放電励起パルスレーザ装置
JPH04133378A (ja) * 1990-09-25 1992-05-07 Mitsubishi Electric Corp 放電励起パルスレーザ装置
US5181217A (en) * 1991-02-27 1993-01-19 Mitsubishi Denki Kabushiki Kaisha Laser oscillator circuit
JPH05218547A (ja) * 1992-01-30 1993-08-27 Mitsubishi Electric Corp 放電励起パルスレーザ装置
JPH05283777A (ja) * 1992-03-31 1993-10-29 Toshiba Corp ガスレーザ発振装置
JPH05327088A (ja) * 1992-05-22 1993-12-10 Toshiba Corp ガスレーザ発振装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143821B (zh) * 2008-09-02 2012-09-12 三菱电机株式会社 放电加工机用电源装置
CN101599613B (zh) * 2009-01-13 2011-02-02 上海微电子装备有限公司 预电离与主放电时序控制装置及方法
CN103022858A (zh) * 2012-12-07 2013-04-03 华中科技大学 一种电晕预电离装置
CN105322425A (zh) * 2014-08-04 2016-02-10 株式会社天田米亚基 激光装置
CN107026384A (zh) * 2017-05-02 2017-08-08 中国工程物理研究院激光聚变研究中心 一种为固体激光放大器泵浦能量的氙灯装置
CN107026384B (zh) * 2017-05-02 2023-07-21 中国工程物理研究院激光聚变研究中心 一种为固体激光放大器泵浦能量的氙灯装置

Also Published As

Publication number Publication date
US5708676A (en) 1998-01-13
KR960019870A (ko) 1996-06-17
CA2161989A1 (en) 1996-05-05
JPH08132321A (ja) 1996-05-28
KR0157700B1 (ko) 1998-12-01
CA2161989C (en) 1999-05-25
TW289873B (zh) 1996-11-01
DE19541031A1 (de) 1996-05-09

Similar Documents

Publication Publication Date Title
CN1126644A (zh) 放电激发型脉冲激光装置
TW202308306A (zh) 產生高壓脈波之方法
CN1183807C (zh) 包括介电隔离放电灯和脉冲电压序列产生电路的照明***
CN1201640C (zh) 放电灯点燃装置
US20080036301A1 (en) Photon Initiated Marxed Modulators
KR20190137923A (ko) 자유 전하들, 오존 및 광을 생성하는 에너지 효율적인 플라즈마 프로세스들
CN101065891A (zh) 开关电源及它的控制电路以及使用它的电子设备
CN1078065C (zh) 电吸尘器
US8173075B2 (en) Device for generation of pulsed corona discharge
CN1288696C (zh) 离子源及其运行方法
CN1222099C (zh) 用于闸流晶体管的栅极驱动器
CN1223240C (zh) 具有介质阻碍放电的放电灯的电子镇流器
CN1142705A (zh) 电源装置
Rao et al. A novel all solid-state sub-microsecond pulse generator for dielectric barrier discharges
CN1424867A (zh) 用于扼制基底电荷累积的离子速辐照装置和方法
US20100123412A1 (en) Pulse generating circuit
CN1199342C (zh) 放电脉冲发生装置
CN101051437A (zh) 等离子体显示装置和等离子体显示装置的驱动方法
JP4250377B2 (ja) 放電加工機用電源
US7482786B2 (en) Electric discharger using semiconductor switch
JP5745858B2 (ja) パルス放電発生方法
CN117792142B (zh) 一种大功率高频脉冲等离子体电源及其充放电方法
KR20010113050A (ko) 스위칭 장치
CN115967376A (zh) 双极性脉冲发生装置
Rao et al. An efficient all solid-state pulsed generator for pulsed discharges

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication