CN112521614A - 一种水溶性氧化锆前驱体及其制备方法与应用 - Google Patents

一种水溶性氧化锆前驱体及其制备方法与应用 Download PDF

Info

Publication number
CN112521614A
CN112521614A CN202011301280.1A CN202011301280A CN112521614A CN 112521614 A CN112521614 A CN 112521614A CN 202011301280 A CN202011301280 A CN 202011301280A CN 112521614 A CN112521614 A CN 112521614A
Authority
CN
China
Prior art keywords
water
precursor
zirconia
solution
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011301280.1A
Other languages
English (en)
Other versions
CN112521614B (zh
Inventor
邱文丰
曹艺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202011301280.1A priority Critical patent/CN112521614B/zh
Publication of CN112521614A publication Critical patent/CN112521614A/zh
Application granted granted Critical
Publication of CN112521614B publication Critical patent/CN112521614B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种水溶性氧化锆前驱体及其制备方法与应用。所述方法包括以下步骤:将醋酸锆加入到去离子水或醇类溶剂中,再缓慢加入乙酰丙酮进行反应,然后再缓慢滴加三乙胺进行缩聚反应,最后加入酸调节溶液pH值为4~6,再通过减压蒸馏或旋转蒸发除去溶剂,得到水溶性氧化锆前驱体。本发明的氧化锆陶瓷前驱体溶于水或有机溶剂得到氧化锆陶瓷前驱体溶液,且通过改变氧化锆前驱体在溶液中的固含量可调节前驱体溶液粘度,因此加工工艺性优良。该前驱体溶液还可用于制备氧化锆陶瓷粉体和氧化锆陶瓷空心微球。本发明克服了传统无机法制备的氧化锆前驱体工艺性差的缺点以及有机法制备的氧化锆前驱体不能溶于水,使用受限的缺点。

Description

一种水溶性氧化锆前驱体及其制备方法与应用
技术领域
本发明属于氧化锆前驱体领域,具体涉及一种水溶性氧化锆前驱体及其溶液以及其制备方法和前驱体溶液在制备氧化锆及氧化锆陶瓷空心微球中的应用。
背景技术
氧化锆陶瓷是一种具有重要应用价值的多功能无机材料,其具有良好的半导体特性、酸碱两性和氧敏感性,因此被广泛应用于催化剂载体、催化剂、压电陶瓷、光学材料中。同时,氧化锆由于具有硬度高、化学稳定性高、耐高温、耐磨损、生物亲和性好等特点,还可作为结构材料应用于切割工具、陶瓷机械材料、陶瓷牙齿、陶瓷骨骼等领域。
目前,氧化锆的合成方法主要包括沉淀法、微乳液法、溶胶-凝胶法和水热(或溶剂热)法、冷冻干燥法和高温喷雾热解法等。虽然冷冻干燥法和高温喷雾热解法操作简单且产量大,但存在产品纯度不高、颗粒尺寸较大且不易调节等诸多问题。而使用微乳液法制备氧化锆可以很好地控制其颗粒的尺度,但由于后续的破乳过程较为繁琐,使其应用受到来极大的限制。对于沉淀法、溶胶-凝胶法或水热(或溶剂热)法来说,无论是使用无机锆盐还是有机醇锆盐前驱体,其都具有非常高的水解反应活性,因此导致氧化锆颗粒严重团聚,从而难以控制颗粒尺寸。因此,为了克服传统氧化锆前驱体的高水解反应活性所带来的一系列负面效应,合成新型的水溶性氧化锆前驱体来制备氧化锆陶瓷成为了我们解决问题的有效手段。
氧化锆陶瓷空心微球具有特殊中空结构的新材料,具有密度小、热稳定性优异、导热系数低等特点,可作为一种空心填料加隔热保温材料中,使其均匀分散在基体材料中,在减轻复合材料质量的同时提高复合材料的力学性能和热性能。由于制备的困难,国内目前还没有可用的陶瓷空心微球产品,美国公司的微米级陶瓷空心微球产品对我国实施严格禁运。通过借鉴一些树脂基空心微球制备过程及经验,利用聚合物陶瓷前驱体优异的加工工艺性,以喷雾干燥这一易于大规模制备的技术手段开发陶瓷空心微球制备技术,制备耐温等级超过1000℃的微米级(粒径<50μm)氧化锆空心微球。由于选择了空气气氛下喷雾干燥这一技术路线来制备所需的空心微球材料,因此目标元素需要在前驱体溶液中的百分比和前驱体溶液的溶剂选择都是需要解决的关键问题。为了解决这些问题,我们既要将所需的无机元素引入高分子主链以提高其含量,并保证聚合物有较高的聚合度;同时还要让合成出的聚合物高分子可溶于水,减少前驱体中有机溶液的含量。
所以,开发一种水溶性的氧化锆前驱体,以简单,安全,可控的制备氧化锆陶瓷及氧化锆陶瓷空心微球很有必要。
发明内容
为解决现有技术的缺点和不足之处,本发明的首要目的在于提供一种水溶性氧化锆前驱体的制备方法。
本发明的另一目的在于提供上述方法制得的一种水溶性氧化锆前驱体。
本发明的另一目的在于提供上述一种水溶性氧化锆前驱体在制备氧化锆陶瓷和氧化锆陶瓷空心微球中的应用。
本发明的再一目的在于提供一种水溶性氧化锆前驱体溶液及其应用。所述水溶性氧化锆前驱体溶液中的水溶性氧化锆前驱体由上述方法制得。
本发明目的通过以下技术方案实现:
一种水溶性氧化锆前驱体的制备方法,包括以下步骤:
将醋酸锆加入到一定量的去离子水或醇类溶剂中,在30~90℃下加热20~30分钟;再加入乙酰丙酮,并在30~90℃下反应30~60分钟;然后再加入三乙胺,并在30~90℃下缩聚反应2~6小时;降温至20~30℃后加入一定量的酸调节溶液pH值为4~6,去除溶剂,得到水溶性氧化锆前驱体。
优选的技术方案中,所述醋酸锆与去离子水或醇类溶剂的质量比为1:0.5~10。
优选的技术方案中,所述醇类溶剂为甲醇、乙醇、正丙醇、异丙醇和乙二醇中的至少一种。
优选的技术方案中,所述乙酰丙酮与醋酸锆的摩尔比为0.4~2:1。所述乙酰丙酮以滴加的方式加入,控制在30~60分钟内滴加完成,优选40分钟,反应在回流条件下进行。
优选的技术方案中,所述三乙胺与醋酸锆的摩尔比为1~4:1。所述三乙胺以滴加的方式加入,控制在1~2小时内滴加完成,优选1.5小时,反应在回流的条件下进行。反应体系中三乙胺的浓度、滴加时间以及反应温度都对缩聚反应的剧烈程度有很大的影响,最终影响氧化锆前驱体的结构和性能。在本发明的技术条件下,缩聚反应温和可控,最终得到氧化锆前驱体均一稳定,可以均匀的分散在水中形成长期稳定的前驱体溶液,也可用于加工成其他氧化锆陶瓷材料。
优选的技术方案中,所述酸为甲酸、乙酸、丙酸、草酸、苹果酸、柠檬酸、稀硫酸和稀硝酸中的至少一种,所述稀硫酸和稀硝酸的质量浓度为3~5%,其他酸都是化学纯,加入酸后可增加氧化锆前驱体的稳定性。
优选的技术方案中,所述去除溶剂采用旋转蒸发或减压蒸馏的方式去除溶剂,所述旋转蒸发的温度为50~80℃,压力为-0.05Mpa以下;所述减压蒸馏的温度为60~90℃,压力为-0.05Mpa以下;该条件下在有效去除溶剂的同时可以有效保持前驱体的稳定性。
一种由上述方法制得的水溶性氧化锆前驱体。所述氧化锆前驱体中含有-Zr-O-Zr-主链结构。
上述一种水溶性氧化锆前驱体在制备氧化锆陶瓷和氧化锆陶瓷空心微球中的应用。
一种水溶性氧化锆前驱体溶液,由上述水溶性氧化锆前驱体与溶剂互溶得到,所述溶剂为水、甲醇、乙醇、正丙醇、异丙醇、乙二醇甲醚和乙二醇***中的至少一种。
优选的技术方案中,所述水溶性氧化锆前驱体溶液的质量浓度为30~70%。
现有技术中制备的氧化锆前驱体溶液有水相溶液和有机相溶液两种,水相氧化锆前驱体溶液多为无机盐体系,没有粘度,而具有聚合物溶液特点的氧化锆前驱体溶液都为有机相溶液,无法与水混溶,因此应用范围受限。本发明制备的水溶性氧化锆溶液,实现了聚合物氧化锆前驱体在水中溶解的目的,且通过调节前氧化锆驱体溶液的固含量,溶液的粘度在10~6000mPa·s内可控,且加工工艺性能好,可用于制备氧化锆块体、复材、纤维、薄膜、涂层、平板等材料。
上述一种水溶性氧化锆前驱体溶液在制备氧化锆陶瓷和氧化锆陶瓷空心微球中的应用。
与现有技术相比,本发明具有以下优点及有益效果:
1、本发明采用的原料来源广泛、价格低廉、制备条件温和、材料利用率高,能耗低,可大幅降低工业化生产成本。
2、本发明开发的水溶性氧化锆前驱体可均匀的溶于水中形成稳定溶液,保存期长达数月,且固含量和粘度可调节,加工性优良。
3、本发明开发的氧化锆前驱体不但可以溶于水,还可与多种有机溶剂互溶,应用范围更广。
4、本发明开发的氧化锆前驱体水溶液适合喷雾干燥法制备氧化锆陶瓷空心微球,操作简单,有利于大规模工业化生产。
附图说明
图1为实施例一制备的氧化锆前驱体溶解在水中的实物图。
图2为实施例二制备的氧化锆前驱体溶解在水中的实物图。
图3为实施例三制备的氧化锆前驱体溶解在水中的实物图。
图4为实施例四制备的氧化锆前驱体溶解在水中的实物图。
图5为实施例四制备的氧化锆前驱体的红外特征图谱。
图6为实施例四制备的氧化锆前驱体水溶液的DSC图。
图7为实施例四制备的氧化锆前驱体水溶液的热失重曲线图。
图8为实施例五制备的氧化锆前驱体溶解在乙醇中的实物图。
图9为实施例六在1000℃下制备的氧化锆陶瓷的XRD图。
图10为实施例七中氧化锆陶瓷空心微球前驱体的热失重曲线图。
图11为实施例七中氧化锆陶瓷空心微球的XRD图。
图12为实施例七中氧化锆陶瓷空心微球的SEM图。
图13为实施例八中氧化锆陶瓷空心微球前驱体的热失重曲线图。
图14为实施例八中氧化锆陶瓷空心微球的XRD图。
图15为实施例八中氧化锆陶瓷空心微球的SEM图。
图16为实施例九中氧化锆陶瓷空心微球的SEM图。
图17为实施例十中氧化锆陶瓷空心微球的SEM图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
本发明实施例中未注明具体条件者,按照常规条件或者制造商建议的条件进行。所用未注明生产厂商者的原料、试剂等,均为可以通过市售购买获得的常规产品。
实施例一
氧化锆前驱体的制备:将327g(1mol)醋酸锆加入1000g去离子水中,在60℃下加热30分钟;再缓慢加入60g(0.6mol)乙酰丙酮,控制滴加速率,在30分钟内完成,并在60℃下回流反应40分钟;然后再缓慢滴加入151.5g(1.5mol)三乙胺进行缩聚反应,控制滴加速率在1小时内完成,并在60℃下回流反应3小时;降温至30℃后加入9g(0.1mol)草酸调节溶液pH值为5,再60℃下通过旋转蒸发除去溶剂,得到水溶性氧化锆前驱体(PNZ)。
氧化锆前驱体溶液的制备:用制备的PNZ与去离子水配制质量分数为30%的前驱体溶液,其粘度为400mPa·s,其存放3个月的照片如附图1所示。
实施例二
氧化锆前驱体的制备:将327g(1mol)醋酸锆加入1500g去离子水中,在80℃下加热30分钟;再缓慢加入120g(1.2mol)乙酰丙酮,控制滴加速率,在40分钟内完成,并在80℃下回流反应40分钟;然后再缓慢滴加入222.2g(2.2mol)三乙胺进行缩聚反应,控制滴加速率在1.5小时内完成,并在80℃下回流反应3小时;降温至30℃后加入19.2g(0.1mol)柠檬酸调节溶液pH值为5,再60℃下通过旋转蒸发除去溶剂,得到水溶性氧化锆前驱体(PNZ)。
氧化锆前驱体溶液的制备:用制备的PNZ与去离子水配制质量分数为50%的前驱体溶液,其粘度为1300mPa·s,其存放3个月的照片如附图2所示。
实施例三
氧化锆前驱体的制备:将327g(1mol)醋酸锆溶液加入3000g去离子水中,在70℃下加热40分钟;再缓慢加入180g(1.8mol)乙酰丙酮,控制滴加速率,在60分钟内完成,并在70℃下回流反应40分钟;然后再缓慢滴加入252.5g(2.5mol)三乙胺进行缩聚反应,控制滴加速率在2小时内完成,并在70℃下回流反应4小时;降温至30℃后加入7.4g(0.1mol)丙酸调节溶液pH值为5,再70℃下通过旋转蒸发除去溶剂,得到水溶性氧化锆前驱体(PNZ)。
氧化锆前驱体溶液的制备:用制备的PNZ与去离子水配制质量分数为60%的前驱体溶液,其粘度为1900mPa·s,其存放3个月的照片如附图3所示。
实施例四
氧化锆前驱体的制备:将327g(1mol)醋酸锆溶液加入3000g去离子水中,在60℃下加热30分钟;再缓慢加入120g(1.2mol)乙酰丙酮,控制滴加速率,在40分钟内完成,并在60℃下回流反应60分钟;然后再缓慢滴加入303g(3mol)三乙胺进行缩聚反应,控制滴加速率在2小时内完成,并在60℃下回流反应4小时;降温至30℃后加入6g(0.1mol)乙酸调节溶液pH值为5,再60℃下通过旋转蒸发除去溶剂,得到水溶性氧化锆前驱体(PNZ)。
氧化锆前驱体溶液的制备:用制备的PNZ与去离子水配置质量分数为70%的前驱体溶液,其粘度为2400mPa·s,其存放3个月的照片如附图4所示。
对上述制备的PNZ聚合物固体进行红外表征,其特征基团的红外吸收峰如附图5所示。红外吸收峰位于3419cm-1处,属于配体的O-H伸缩振动峰;位于1569cm-1的吸收峰属于配体的C=O伸缩振动峰;位于1450cm-1的吸收峰属于配体的C=C伸缩振动峰;位于1025cm-1的吸收峰属于配体的C-CH3伸缩振动峰。
对上述制备的PNZ固体含量70%的水溶液的进行差热扫描实验,其DSC曲线如附图6所示。样品在空气中以10℃/min的升温速率加热至600℃,100℃左右的吸热峰主要是由于上述PNZ前驱体溶液的溶剂挥发,203℃左右的吸热峰主要是由于上述PNZ前驱体熔融,360℃左右的放热峰主要为PNZ分解放热所致,486℃左右的放热峰主要为氧化锆结晶放热所致。
对上述制备的PNZ固体含量70%的水溶液进行热失重测试,其热失重曲线如附图7所示。样品在空气中10℃的升温速率加热至1000℃陶瓷化残重约为并且最终得到白色的固体粉末,图中100℃左右的失重主要是溶剂水的流失,360℃左右的失重主要是有机基团的离去导致。
实施例五
氧化锆前驱体的制备:将327g(1mol)醋酸锆溶液加入3000g乙醇,在60℃下加热30分钟;再缓慢加入120g(1.2mol)乙酰丙酮,控制滴加速率,在30分钟内完成,并在60℃下回流反应30分钟;然后再缓慢滴加入202g(2mol)三乙胺进行缩聚反应,控制滴加速率在1小时内完成,并在60℃下回流反应2小时;降温至30℃后加入4.6g(0.1mol)甲酸调节溶液pH值为5,再50℃下通过旋转蒸发除去溶剂,得到水溶性氧化锆前驱体(PNZ)。
氧化锆前驱体溶液的制备:用制备的PNZ与乙醇溶液配制质量分数为40%的前驱体溶液,其粘度为980mPa·s,其存放3个月的照片如附图8所示。
实施例六
氧化锆粉末的制备:将实施例四中的PNZ聚合物固体放入氧化铝坩埚中,在空气气氛下烧结至1000℃,对样品进行X射线衍射测试,样品的XRD谱图如附图9所示,XRD图中的峰均为氧化锆的特征峰。
实施例七
氧化锆陶瓷空心微球的制备,具体步骤如下:
(a)将0.6g十六烷基三甲基溴化铵、0.1g羧甲基纤维素和1g聚乙二醇1000加入100g实施例一中的氧化锆前驱体溶液(实施例一调节溶液pH值为5后的溶液)中,搅拌均匀得到喷雾干燥溶液,记为溶液1。
(b)将步骤(a)中的溶液1以5mL/min的进液速率进入二流体雾化喷嘴,同时压缩空气以20L/min的流速通入二流体喷嘴,在雾化喷嘴和压缩空气的共同作用下将前驱体溶液雾化为雾滴,干燥塔中的雾滴在140℃高温的作用下,瞬间完成溶剂蒸发、颗粒成型、干燥的过程。最后在排气装置的协助下,样品沉积到样品收集器中,得到白色粉末,为氧化锆陶瓷空心微球前驱体。
(c)将步骤(b)中的氧化锆陶瓷空心微球前驱体放入氧化铝坩埚,在空气气氛下600℃焙烧3小时,得到氧化锆陶瓷空心微球。
对步骤(b)中氧化锆陶瓷空心微球前驱体进行热失重测试,附图10为其热失重曲线。样品在空气中以10℃/min的升温速率加热至600℃,陶瓷化残重约为63.96%并且最终得到白色的固体粉末。图中200℃左右的失重主要是有机添加剂的流失,360℃左右的失重主要是实施例一中的PNZ聚合物前驱体的有机基团的离去导致。
对步骤(c)中的陶瓷空心微球样品进行X射线衍射测试和扫描电子显微镜测试。附图11为空心微球样品的XRD谱图,XRD图中的峰均为氧化锆的特征峰。附图12为空心微球样品的SEM图,SEM图中样品完整度高,粒径分布窄。
实施例八
氧化锆陶瓷空心微球的制备,具体步骤如下:
(a)将1.2g十六烷基三甲基溴化铵、0.2g羟甲基纤维素和3g聚乙二醇600加入100g实施例四中的氧化锆前驱体溶液(实施例四调节溶液pH值为5后的溶液)中,搅拌均匀得到喷雾干燥溶液,记为溶液1。
(b)将步骤(a)中的溶液1以5mL/min的进液速率进入二流体雾化喷嘴,同时压缩空气以20L/min的流速通入二流体喷嘴,在雾化喷嘴和压缩空气的共同作用下将前驱体溶液雾化为雾滴,干燥塔中的雾滴在140℃高温的作用下,瞬间完成溶剂蒸发、颗粒成型、干燥的过程。最后在排气装置的协助下,样品沉积到样品收集器中,得到白色粉末,为氧化锆陶瓷空心微球前驱体。
(c)将步骤(b)中的氧化锆陶瓷空心微球前驱体放入氧化铝坩埚,在空气气氛下1000℃焙烧1小时,得到氧化锆陶瓷空心微球。
对步骤(b)中氧化锆陶瓷空心微球前驱体进行热失重测试,附图13为其热失重曲线。样品在空气中以10℃/min的升温速率加热至1000℃陶瓷化残重约为62.12%并且最终得到白色的固体粉末。图中200℃左右的失重主要是有机添加剂的流失,360℃左右的失重主要是实施例四中的PNZ聚合物前驱体的有机基团的离去导致。
对步骤(c)中的陶瓷空心微球样品进行X射线衍射测试和扫描电子显微镜测试。附图14为空心微球样品的XRD谱图,XRD图中的峰均为氧化锆的特征峰。附图15为空心微球样品的SEM图,SEM图中样品完整度高,粒径分布窄。
实施例九
氧化锆陶瓷空心微球的制备,具体步骤如下:
(a)将0.6g十二烷基苯磺酸钠、0.2g羟甲基纤维素和1g聚乙二醇1000加入100g实施例一中的氧化锆前驱体溶液(实施例一调节溶液pH值为5后的溶液)中,搅拌均匀得到喷雾干燥溶液,记为溶液1。
(b)将步骤(a)中的溶液1以20mL/min的进液速率进入二流体雾化喷嘴,同时压缩空气以40L/min的流速也通入二流体喷嘴,在雾化喷嘴和压缩空气的共同作用下将前驱体溶液雾化为雾滴,干燥塔中的雾滴在200℃高温的作用下,瞬间完成溶剂蒸发、颗粒成型、干燥的过程。最后在排气装置的协助下,样品沉积到样品收集器中,得到白色粉末,为氧化锆陶瓷空心微球前驱体。
(c)将步骤(b)中的氧化锆陶瓷空心微球前驱体放入氧化铝坩埚,在空气气氛下800℃焙烧2小时,得到氧化锆陶瓷空心微球。
对步骤(c)中的陶瓷空心微球样品进行扫描电子显微镜测试。附图16为空心微球样品的SEM图,SEM图中样品完整度高,粒径分布窄。
实施例十
氧化锆陶瓷空心微球的制备,具体步骤如下:
(a)将0.8g十二烷基苯磺酸钠、0.1g羧甲基纤维素和1g聚乙二醇2000加入100g实施例五中的氧化锆前驱体溶液(实施例五调节溶液pH值为5后的溶液)中,搅拌均匀得到喷雾干燥溶液,记为溶液1。
(b)将步骤(a)中的溶液1以5mL/min的进液速率进入二流体雾化喷嘴,同时压缩空气以20L/min的流速也通入二流体喷嘴,在雾化喷嘴和压缩空气的共同作用下将前驱体溶液雾化为雾滴,干燥塔中的雾滴在180℃高温的作用下,瞬间完成溶剂蒸发、颗粒成型、干燥的过程。最后在排气装置的协助下,样品沉积到样品收集器中,得到白色粉末,为氧化锆陶瓷空心微球前驱体。
(c)将步骤(b)中的氧化锆陶瓷空心微球前驱体放入氧化铝坩埚,在空气气氛下800℃焙烧2小时,得到氧化锆陶瓷空心微球。
对步骤(c)中的陶瓷空心微球样品进行扫描电子显微镜测试。附图17为空心微球样品的SEM图,SEM图中样品完整度高,粒径分布窄。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种水溶性氧化锆前驱体的制备方法,其特征在于,包括以下步骤:
将醋酸锆加入到一定量的去离子水或醇类溶剂中,在30~90℃下加热20~30分钟;再加入乙酰丙酮,并在30~90℃下反应30~60分钟;然后再加入三乙胺,并在30~90℃下缩聚反应2~6小时;降温至20~30℃后加入一定量的酸调节溶液pH值为4~6,去除溶剂,得到水溶性氧化锆前驱体。
2.根据权利要求1所述一种水溶性氧化锆前驱体的制备方法,其特征在于,所述乙酰丙酮与醋酸锆的摩尔比为0.4~2:1;所述三乙胺与醋酸锆的摩尔比为1~4:1。
3.根据权利要求1所述一种水溶性氧化锆前驱体的制备方法,其特征在于,所述乙酰丙酮以滴加的方式加入,控制在30~60分钟内滴加完成;所述三乙胺以滴加的方式加入,控制在1~2小时内滴加完成。
4.根据权利要求1所述一种水溶性氧化锆前驱体的制备方法,其特征在于,所述醋酸锆溶液与去离子水或醇类溶剂的质量比为1:0.5~10。
5.根据权利要求1所述一种水溶性氧化锆前驱体的制备方法,其特征在于,所述醇类溶剂为甲醇、乙醇、正丙醇、异丙醇和乙二醇中的至少一种;
所述酸为甲酸、乙酸、丙酸、草酸、苹果酸、柠檬酸、稀硫酸和稀硝酸中的至少一种,所述稀硫酸和稀硝酸的质量浓度为3~5%。
6.根据权利要求1所述一种水溶性氧化锆前驱体的制备方法,其特征在于,所述去除溶剂采用旋转蒸发或减压蒸馏的方式去除溶剂,所述旋转蒸发的温度为50~80℃,压力为-0.05Mpa以下;所述减压蒸馏的温度为60~90℃,压力为-0.05Mpa以下。
7.权利要求1~6任一项所述方法制得的一种水溶性氧化锆前驱体。
8.一种水溶性氧化锆前驱体溶液,其特征在于,由权利要求7所述一种水溶性氧化锆前驱体与溶剂互溶得到,所述溶剂为水、甲醇、乙醇、正丙醇、异丙醇、乙二醇甲醚和乙二醇***中的至少一种。
9.根据权利要求8所述一种水溶性氧化锆前驱体溶液,其特征在于,所述水溶性氧化锆前驱体溶液的质量浓度为30~70%。
10.权利要求7所述一种水溶性氧化锆前驱体和权利要求8或9所述一种水溶性氧化锆前驱体溶液在制备氧化锆陶瓷和氧化锆陶瓷空心微球中的应用。
CN202011301280.1A 2020-11-19 2020-11-19 一种水溶性氧化锆前驱体及其制备方法与应用 Active CN112521614B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011301280.1A CN112521614B (zh) 2020-11-19 2020-11-19 一种水溶性氧化锆前驱体及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011301280.1A CN112521614B (zh) 2020-11-19 2020-11-19 一种水溶性氧化锆前驱体及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN112521614A true CN112521614A (zh) 2021-03-19
CN112521614B CN112521614B (zh) 2021-09-21

Family

ID=74981664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011301280.1A Active CN112521614B (zh) 2020-11-19 2020-11-19 一种水溶性氧化锆前驱体及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN112521614B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609745A (en) * 1984-02-11 1986-09-02 Dynamit Nobel Ag Water-soluble zirconic acid esters
CN1584155A (zh) * 2004-06-11 2005-02-23 山东大学 有机聚锆前驱体纺丝液甩丝法制备氧化锆纤维棉
CN1793026A (zh) * 2005-11-03 2006-06-28 山东大学 氧化锆陶瓷连续纤维的制备方法
CN103449530A (zh) * 2013-09-06 2013-12-18 南京东纳生物科技有限公司 高性能磁性锰锌铁氧体纳米星和纳米团簇的制备方法
CN108315838A (zh) * 2018-02-06 2018-07-24 山东大学 一种钇聚合物前驱体制备氧化钇纳米纤维的方法
CN108841030A (zh) * 2018-07-16 2018-11-20 华南理工大学 一种以细菌纤维素为生物模板制备多孔酚醛树脂及其碳化物的方法
KR20190043041A (ko) * 2017-10-17 2019-04-25 대구가톨릭대학교산학협력단 지르코니아 필러의 표면개질방법 및 이를 함유하는 임시치아용 광경화수지 조성물
CN110483099A (zh) * 2019-08-23 2019-11-22 山东大学 一种提高氧化锆连续纤维的强度和可缠绕性的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609745A (en) * 1984-02-11 1986-09-02 Dynamit Nobel Ag Water-soluble zirconic acid esters
CN1584155A (zh) * 2004-06-11 2005-02-23 山东大学 有机聚锆前驱体纺丝液甩丝法制备氧化锆纤维棉
CN1793026A (zh) * 2005-11-03 2006-06-28 山东大学 氧化锆陶瓷连续纤维的制备方法
CN103449530A (zh) * 2013-09-06 2013-12-18 南京东纳生物科技有限公司 高性能磁性锰锌铁氧体纳米星和纳米团簇的制备方法
KR20190043041A (ko) * 2017-10-17 2019-04-25 대구가톨릭대학교산학협력단 지르코니아 필러의 표면개질방법 및 이를 함유하는 임시치아용 광경화수지 조성물
CN108315838A (zh) * 2018-02-06 2018-07-24 山东大学 一种钇聚合物前驱体制备氧化钇纳米纤维的方法
CN108841030A (zh) * 2018-07-16 2018-11-20 华南理工大学 一种以细菌纤维素为生物模板制备多孔酚醛树脂及其碳化物的方法
CN110483099A (zh) * 2019-08-23 2019-11-22 山东大学 一种提高氧化锆连续纤维的强度和可缠绕性的方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
SUN YANAN等: "Synthesis of High Entropy Carbide Nano Powders via Liquid Polymer Precursor Route", 《JOURNAL OF INORGANIC MATERIALS》 *
TAO, XUEYU等: "Synthesis of Nano-Sized Zirconia Ceramics via a Preceramic Polymer Method", 《REFRACTORIES AND INDUSTRIAL CERAMICS》 *
ZHANG, BO-XING等: "Hierarchically Porous Zirconia Monolith Fabricated from Bacterial Cellulose and Preceramic Polymer", 《ACS OMEGA》 *
孙娅楠等: "液相聚合物前驱体法制备高熵碳化物纳米粉体", 《无机材料学报》 *
赵莉等: "稀土在聚合物基复合材料领域的技术开发及应用发展研究", 《信息记录材料》 *
陈代荣等: "连续陶瓷纤维的制备、结构、性能和应用:研究现状及发展方向", 《现代技术陶瓷》 *
高立爽: "纳/微米结构中空ZrO2的制备及吸附性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Also Published As

Publication number Publication date
CN112521614B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
CN108946787B (zh) 一种稀土基萤石型高熵氧化物粉体材料的制备方法
CN110699745B (zh) 一种钙钛矿单晶的制备方法
CN100523094C (zh) 溶液燃烧法合成纳米晶钴铝尖晶石颜料的方法
CN103408062B (zh) 铝镓共掺氧化锌纳米粉末及其高密度高电导溅射镀膜靶材的制备方法
CN113929105B (zh) 一种金属有机框架衍生硅酸镍的制备方法
CN102330081B (zh) 一种溶剂热法制备Sm2O3 薄膜的方法
CN111233468B (zh) 结构件用钇稳定锆粉的制备方法
CN112521614B (zh) 一种水溶性氧化锆前驱体及其制备方法与应用
CN100486895C (zh) 一种纳米氧化镁的制备方法
CN102874866A (zh) 一种微米级片状钛酸钙晶体的制备方法
CN110713206A (zh) 一种氧化铟-氧化铜复合材料的制备方法
CN110606736A (zh) 一种无溶剂合成的陶瓷微球及其制备方法和应用
CN103318954A (zh) 一种固相化学反应制备三钛酸钠纳米棒的方法
CN108654663B (zh) 一种混合硝酸盐熔盐法制备硼氮共掺杂单晶介孔TiO2催化材料的方法
CN111151242B (zh) 一种铈锰金属离子改性的铝酸盐光催化剂的制备方法
CN101343043B (zh) 两性金属化合物纳米材料及其制备方法
CN112456556A (zh) 一种制备氧化钽纳米球的方法
CN102180513B (zh) 一种六棱锥结构氧化锌的低温燃烧合成制备方法
CN110817927A (zh) 用燃烧法制备质轻多孔的纳米氧化铈
CN111233022B (zh) 一种制备钇铝石榴石纳米颗粒的方法
CN110697725B (zh) 一种二硅酸锂晶须的制备方法
CN109589920B (zh) 一种碳微球的快速制备方法
CN112125338A (zh) 溶剂热法制备m相二氧化钒的方法
CN113247950B (zh) 一种制备ScVO4粉体的方法
CN108863354A (zh) 一种基于低温自蔓延燃烧的y-tzp粉体制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant