CN112473651A - 一种具有光催化活性的石墨烯气凝胶及其制备方法 - Google Patents

一种具有光催化活性的石墨烯气凝胶及其制备方法 Download PDF

Info

Publication number
CN112473651A
CN112473651A CN202011249834.8A CN202011249834A CN112473651A CN 112473651 A CN112473651 A CN 112473651A CN 202011249834 A CN202011249834 A CN 202011249834A CN 112473651 A CN112473651 A CN 112473651A
Authority
CN
China
Prior art keywords
graphene
graphene aerogel
preparation
photocatalytic activity
aerogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011249834.8A
Other languages
English (en)
Inventor
郝思嘉
杨程
时双强
褚海荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN202011249834.8A priority Critical patent/CN112473651A/zh
Publication of CN112473651A publication Critical patent/CN112473651A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于石墨烯制备及应用领域,具体涉及一种具有光催化活性的石墨烯气凝胶及其制备方法;该复合材料由三维多孔结构的石墨烯和负载于所述石墨烯表面的Bi2WO6微米颗粒组成;其中,Bi2WO6微米颗粒的直径为3~5μm。制备方法如下:首先将Bi(NO3)3溶液与氧化石墨烯溶液混合均匀,进而将其与Na2WO4混合进行水热反应,制得钨酸铋‑石墨烯复合材料。本发明的钨酸铋‑石墨烯复合材料比表面积大,带隙可达2.96eV,对可见光的吸收性强,可以有效提高光生载流子的分离和降低载流子的复合率,与其单一相相比,表现出更优异的光催化性能。而且,本方法新颖,颗粒均匀、设备操作要求低、工艺简单且过程条件容易控制。

Description

一种具有光催化活性的石墨烯气凝胶及其制备方法
技术领域
本发明属于石墨烯制备及应用领域,具体涉及一种具有光催化活性的石墨烯气凝胶及其制备方法。
背景技术
能源短缺和环境污染是实现社会可持续发展迫切需要解决的问题。在各种污染处理技术中,可见光催化技术可直接利用可见光降解甚至矿化污染物质,在环境保护和新能源开发方面具有良好的应用前景。其中,铋系可见光光催化剂以其独特的电子结构和优良的可见光吸收能力,引起研究者的极大兴趣。常见的铋系光催化剂包括铋氧化物、钛酸铋、钒酸铋、钼酸铋、钨酸铋、铁酸铋等。其中钨酸铋(Bi2WO6)作为一种优异的n型半导体功能材料,不仅带隙能较窄可对可见光进行吸收,同时光化学性质稳定、环境友好,已被广泛用于环境催化领域。
在Bi2WO6材料的研究过程中,研究人员发现,单一Bi2WO6纳米材料存在光谱响应范围窄(<450nm)、光生电子空穴复合速度过快等问题,从而进行了大量基于Bi2WO6材料的研究。研究表明,将石墨烯和半导体光催化材料复合,可提高半导体的可见光催化性能。如将铁酸铋和石墨烯复合后光催化性能有较大的提高,表明石墨烯的复合可改善原材料的光生电子与空穴间的复合作用,使光生电子和空穴能更好的分离。此外,石墨烯较大的比表面积对吸附性能的改善,亦可进一步提高材料的可见光催化性能。
因此,结合钨酸铋和石墨烯材料的各自优势,利用简单易控的一步水热法制备出铁酸铋-石墨烯复合气凝胶。将该气凝胶用于可见光催化降解亚甲基蓝,可取得良好的催化降解效果,对可见光催化技术的发展具有重要的意义。
发明内容
本发明的目的:为解决上述技术问题,提供了一种具有光催化活性的石墨烯气凝胶。
本发明技术方案:一种具有光催化活性的石墨烯气凝胶,其特征在于,所述石墨烯气凝胶中钨酸铋的质量分数为70~95%,石墨烯的质量分数为5~30%。
上述石墨烯气凝胶采用以下步骤制备:
(1)将Bi(NO3)3溶于乙二醇,超声处理;
(2)采用超声处理,将氧化石墨烯分散于去离子水中;
(3)将步骤(1)制得的溶液加入步骤(2)制得的溶液中,搅拌混合;
(4)向步骤(3)制得的溶液中加入Na2WO4,持续搅拌混合,转移至反应釜进行水热反应;
(5)使用去离子水浸泡清洗步骤(4)所得产物,冷冻干燥后得到石墨烯气凝胶。
步骤(1)中Bi(NO3)3浓度为0.001~0.2M,超声处理时间为10~30min;
步骤(2)中氧化石墨烯溶液的浓度为1~20g/L,超声处理时间为30~60min;
步骤(3)中搅拌时间为15~30min;
步骤(4)中Bi(NO3)3与Na2WO4的摩尔比为2:1,持续搅拌混合15~30min,在反应釜进行水热反应的条件为180~200℃,24h;
步骤(5)中的浸泡清洗为2~3天,冷冻干燥-30℃冷冻干燥60~72h。
将上述制备方法制得的石墨烯气凝胶用于处理环境中的污染物。
该发明的有益效果为:本发明提供一种合成钨酸铋-石墨烯复合气凝胶的制备方法,该方法可以一步合成具有光催化活性的石墨烯气凝胶,同时完成氧化石墨烯的还原和钨酸铋-石墨烯的复合。将所得气凝胶用于亚甲基蓝和二氯苯酚的可见光催化降解,催化活性优异。
附图说明
图1是本发明实施例1、2、3与对比例1不同石墨烯含量的钨酸铋-石墨烯复合气凝胶的X射线衍射图(XRD)。(a为对比例1Bi2WO6;b为实施例1Bi2WO6-10%石墨烯气凝胶;c为实施例2Bi2WO6-20%石墨烯气凝胶;d为实施例3Bi2WO6-30%石墨烯气凝胶)
图2是本发明实施例2中Bi2WO6-20%石墨烯对亚甲基蓝的可见光催化效果图。
图3是本发明实施例1、2、3与对比例1中不同石墨烯含量的钨酸铋-石墨烯复合气凝胶对亚甲基蓝的可见光催化效果对比。
具体实施方式
下面将结合附图及具体实施例对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1:Bi2WO6-10%石墨烯气凝胶的制备
(1)将0.5mmol Bi(NO3)3溶于20ml乙二醇,超声处理10min;
(2)将氧化石墨烯分散于去离子水中,制得20mL溶液,浓度为1g/L,超声处理40min;
(3)将(1)制得的溶液加入(2)中,搅拌混合15min;
(4)向(3)中加入0.25mmol Na2WO4,持续搅拌混合15min,转移至反应釜进行水热反应,条件为180℃,24h;
(5)使用去离子水浸泡清洗(4)所得产物3天,-30℃冷冻干燥72h后得到石墨烯气凝胶。
(6)以所制得的钨酸铋-石墨烯气凝胶为光催化剂,可见光催化降解亚甲基蓝。亚甲基蓝的初始浓度为40mg/L,气凝胶加入量为0.5g/L,温度为25℃。
由图1b的XRD测试结果可以看出,一步水热法所制得的钨酸铋-石墨烯气凝胶中钨酸铋为Bi2WO6。氧化石墨烯的特征峰完全消失,表明氧化石墨烯在水热过程中完全还原,该材料为Bi2WO6-10%石墨烯气凝胶。
将Bi2WO6-10%石墨烯气凝胶用于可见光催化亚甲基蓝效果较好。由图2可知,亚甲基蓝浓度随光照时间增长而不断降低,光催化3h后,亚甲基蓝去除效率为65%。
对比例1:单一相Bi2WO6的制备
对比例1与实施例1相比,制备过程中不加入氧化石墨烯,其他步骤如上述实施例1,制得单一相钨酸铋材料。由图1a的XRD测试结果可知,所制得钨酸铋为Bi2WO6
由图2可知,单一相Bi2WO6的光催化活性相对较弱,光催化3h后,亚甲基蓝的去除效率为31%。
实施例2:Bi2WO6-20%石墨烯气凝胶的制备
(1)将0.5mmol Bi(NO3)3溶于20ml乙二醇,超声处理10min;
(2)将氧化石墨烯分散于去离子水中,制得10mL溶液,浓度为5g/L,超声处理40min;
(3)将(1)制得的溶液加入(2)中,搅拌混合15min;
(4)向(3)中加入0.25mmol Na2WO4,持续搅拌混合15min,转移至反应釜进行水热反应,条件为180℃,24h;
(5)使用去离子水浸泡清洗(4)所得产物3天,-30℃冷冻干燥72h后得到石墨烯气凝胶。
(6)以所制得的钨酸铋-石墨烯气凝胶为光催化剂,可见光催化降解亚甲基蓝。亚甲基蓝的初始浓度为40mg/L,气凝胶加入量为0.5g/L,温度为25℃。
由图1c的XRD测试结果可以看出,一步水热法所制得的钨酸铋-石墨烯气凝胶中钨酸铋为Bi2WO6,与实施例1的结果一致。因此,石墨烯加入量的变化不会影响气凝胶中铁酸铋的晶型结构。
将Bi2WO6-20%石墨烯气凝胶用于可见光催化亚甲基蓝降解。由图2可知,亚甲基蓝浓度随光照时间增长而不断降低,光催化3h后,亚甲基蓝去除效率为73%。可见,复合气凝胶中石墨烯含量的增加有利于亚甲基蓝的降解。
实施例3:Bi2WO6-30%石墨烯气凝胶的制备
(1)将0.5mmol Bi(NO3)3溶于20ml乙二醇,超声处理10min;
(2)将氧化石墨烯分散于去离子水中,制得5mL溶液,浓度为17g/L,超声处理40min;
(3)将(1)制得的溶液加入(2)中,搅拌混合15min;
(4)向(3)中加入0.25mmol Na2WO4,持续搅拌混合15min,转移至反应釜进行水热反应,条件为180℃,24h;
(5)使用去离子水浸泡清洗(4)所得产物3天,-30℃冷冻干燥72h后得到石墨烯气凝胶。
(6)以所制得的钨酸铋-石墨烯气凝胶为光催化剂,可见光催化降解亚甲基蓝。亚甲基蓝的初始浓度为40mg/L,气凝胶加入量为0.5g/L,温度为25℃。
由图1b的XRD测试结果可以看出,一步水热法所制得的钨酸铋-石墨烯气凝胶中钨酸铋为Bi2WO6,与实施例1的结果一致。因此,石墨烯加入量的变化不会影响气凝胶中铁酸铋的晶型结构。
将Bi2WO6-30%石墨烯气凝胶用于可见光催化亚甲基蓝降解。由图3可知,光催化3h后,亚甲基蓝去除效率为97%,高于实施例1和实施例2。可见,复合气凝胶中石墨烯含量的进一步增加仍有利于亚甲基蓝的降解。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

1.一种具有光催化活性的石墨烯气凝胶,其特征在于,所述石墨烯气凝胶中钨酸铋的质量分数为70~95%,石墨烯的质量分数为5~30%。
2.如权利要求1所述的具有光催化活性的石墨烯气凝胶的制备方法,其特征在于,包括以下步骤:
(1)将Bi(NO3)3溶于乙二醇,超声处理;
(2)采用超声处理,将氧化石墨烯分散于去离子水中;
(3)将步骤(1)制得的溶液加入步骤(2)制得的溶液中,搅拌混合;
(4)向步骤(3)制得的溶液中加入Na2WO4,持续搅拌混合,转移至反应釜进行水热反应;
(5)使用去离子水浸泡清洗步骤(4)所得产物,冷冻干燥后得到石墨烯气凝胶。
3.如权利要求1所述的具有光催化活性的石墨烯气凝胶的制备方法,其特征在于,步骤(1)中Bi(NO3)3浓度为0.001~0.2M,超声处理时间为10~30min。
4.如权利要求1所述的具有光催化活性的石墨烯气凝胶的制备方法,其特征在于,步骤(2)中氧化石墨烯溶液的浓度为1~20g/L,超声处理时间为30~60min。
5.如权利要求1所述的具有光催化活性的石墨烯气凝胶的制备方法,其特征在于,步骤(3)中搅拌时间为15~30min。
6.如权利要求1所述的具有光催化活性的石墨烯气凝胶的制备方法,其特征在于,步骤(4)中Bi(NO3)3与Na2WO4的摩尔比为2:1,持续搅拌混合15~30min,在反应釜进行水热反应的条件为180~200℃,24h。
7.如权利要求1所述的具有光催化活性的石墨烯气凝胶的制备方法,其特征在于,步骤(5)中的浸泡清洗为2~3天。
8.如权利要求1所述的具有光催化活性的石墨烯气凝胶的制备方法,其特征在于,步骤(5)中的冷冻干燥-30℃冷冻干燥60~72h。
CN202011249834.8A 2020-11-10 2020-11-10 一种具有光催化活性的石墨烯气凝胶及其制备方法 Pending CN112473651A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011249834.8A CN112473651A (zh) 2020-11-10 2020-11-10 一种具有光催化活性的石墨烯气凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011249834.8A CN112473651A (zh) 2020-11-10 2020-11-10 一种具有光催化活性的石墨烯气凝胶及其制备方法

Publications (1)

Publication Number Publication Date
CN112473651A true CN112473651A (zh) 2021-03-12

Family

ID=74929383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011249834.8A Pending CN112473651A (zh) 2020-11-10 2020-11-10 一种具有光催化活性的石墨烯气凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN112473651A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626634A (zh) * 2012-03-30 2012-08-08 南京理工大学 铁酸铋-石墨烯复合磁性可见光催化剂、制备方法及应用
CN106512987A (zh) * 2016-11-24 2017-03-22 河南师范大学 钨酸铋/石墨烯气凝胶复合可见光催化剂及其制备方法
CN108579727A (zh) * 2018-01-11 2018-09-28 湘潭大学 一种石墨烯量子点-钨酸铋复合光催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626634A (zh) * 2012-03-30 2012-08-08 南京理工大学 铁酸铋-石墨烯复合磁性可见光催化剂、制备方法及应用
CN106512987A (zh) * 2016-11-24 2017-03-22 河南师范大学 钨酸铋/石墨烯气凝胶复合可见光催化剂及其制备方法
CN108579727A (zh) * 2018-01-11 2018-09-28 湘潭大学 一种石墨烯量子点-钨酸铋复合光催化剂及其制备方法

Similar Documents

Publication Publication Date Title
CN108126756B (zh) 钨酸铋-MIL-53(Al)复合材料、其制备方法和应用
CN108671907B (zh) 一种铂/二氧化钛纳米花复合材料及其制备方法与应用
CN109126867B (zh) 一种用于水处理的光催化分离膜及制备方法
CN106925304B (zh) Bi24O31Br10/ZnO复合可见光催化剂及其制备方法
CN110575837B (zh) 一种InVO4/ZnIn2S4光催化剂、制备方法及应用
CN107983387B (zh) 一种氮化碳/硒酸铋复合材料的制备方法与应用
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
CN113318792B (zh) 一种片状CeO2/UIO-66-NH2复合光催化材料及其制备方法
CN110433847B (zh) 一种二维复合光催化剂h-BN/Ti3C2/TiO2及其制备方法与应用
CN105540640A (zh) 一种花状纳米氧化锌的制备方法
CN110589886A (zh) 一种碳酸氧铋的制备方法
CN111054419B (zh) 一种用于CO2还原的半导体/g-C3N4光催化剂及其制备方法
CN110743575B (zh) 一种具有吸附-光催化协同效应的AgIn5S8/SnS2固溶体催化剂的制备方法
CN114522709B (zh) 一种三维多孔石墨相氮化碳/碘氧化铋/银纳米粒子复合光催化剂及其制备方法和应用
WO2023108950A1 (zh) 一种Z型α-Fe2O3/ZnIn2S4复合光催化剂的制备方法和应用
WO2022213493A1 (zh) 一种高效催化甘油氧化制备甘油酸的催化剂、其制备方法及用途
CN113351210A (zh) 一种Cu基催化剂及将其用于光催化水产氢-5-HMF氧化偶联反应
CN109078644B (zh) 石墨烯负载Bi-BiOCl-TiO2光催化剂及制法
CN108404948B (zh) 一种(BiO)2CO3-BiO2-x复合光催化剂及其制备方法和应用
CN108543540B (zh) 一种氟化铈/凹凸棒石上转换复合光催化材料及其制备方法与应用
CN112473651A (zh) 一种具有光催化活性的石墨烯气凝胶及其制备方法
CN114160131B (zh) 一种冷冻干燥改性海泡石族矿物负载Pd单原子催化剂的制备方法
CN115608367A (zh) 具有核壳结构的Zn1-xCuxO/TiO2光催化复合材料的制备方法及应用
CN114917909A (zh) 一种生物质碳负载纳米金属催化剂的应用
CN111569909B (zh) 氧化/还原-双助催化剂复合的CdS基多元光催化复合材料的制备方法及其产氢应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210312