CN112398477B - Monoclinic ADC circuit structure with condition-dependent multi-sampling technology - Google Patents

Monoclinic ADC circuit structure with condition-dependent multi-sampling technology Download PDF

Info

Publication number
CN112398477B
CN112398477B CN201910742636.6A CN201910742636A CN112398477B CN 112398477 B CN112398477 B CN 112398477B CN 201910742636 A CN201910742636 A CN 201910742636A CN 112398477 B CN112398477 B CN 112398477B
Authority
CN
China
Prior art keywords
comparator
sampling
output
input end
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910742636.6A
Other languages
Chinese (zh)
Other versions
CN112398477A (en
Inventor
徐江涛
史晓琳
聂凯明
高静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University Marine Technology Research Institute
Original Assignee
Tianjin University Marine Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University Marine Technology Research Institute filed Critical Tianjin University Marine Technology Research Institute
Priority to CN201910742636.6A priority Critical patent/CN112398477B/en
Publication of CN112398477A publication Critical patent/CN112398477A/en
Application granted granted Critical
Publication of CN112398477B publication Critical patent/CN112398477B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • H03M1/0854Continuously compensating for, or preventing, undesired influence of physical parameters of noise of quantisation noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

A monoclinic ADC circuit structure with condition correlation multisampling technology is composed of a comparator, a counter, a latch and a CCMS control part; the right plate of the capacitor C2 is connected to the negative input end of the comparator; ramp voltages Vramp1, vramp2 are connected to the left plate of capacitor C1 via switches SW2 and SW2b, respectively; the right polar plate of the capacitor C1 is connected to the positive input end of the comparator; the common mode voltage Vcom is connected to the positive input end and the negative input end of the comparator through two SW1 switches respectively; the output CMP _ OUT of the comparator is connected to the input en of the counter; the output end of the counter is connected to the input end of the latch; the output CMP _ OUT of the comparator is also connected to the input of the CCMS control block; the structure effectively reduces random noise in the pixel; the resolution and the imaging quality of the image sensor are improved, and the application occasions of the image sensor are further expanded.

Description

Monoclinic ADC circuit structure with condition-dependent multi-sampling technology
Technical Field
The invention relates to the field of analog integrated circuits, in particular to a monoclinic ADC circuit structure with condition-dependent multi-sampling technology.
Background
Random Noise (RN) originates from pixel devices and analog readout circuits and is a key parameter affecting high quality CMOS Image Sensors (CIS). In recent years, as the demand of high-resolution CIS for mobile devices is increasing, the resolution of CIS is increasing and the chip area is also increasing. To alleviate this, a high-resolution CIS has been developed that reduces the pixel size to reduce the chip area and cost. Such small pixel size source followers cause worse flicker and Random Telegraph Signal (RTS) noise during analog readout. The random noise of the small pixel pitch CIS is around 1-2 e-root mean square.
The random noise introduced in the pixel imaging process can be effectively reduced by using a Correlated Multiple Sampling (CMS) technology in a column parallel Single-Slope ADC (SS ADC), and can be effectively reduced to 0.7e-. The column parallel SS ADC has the advantages of simple circuit structure, low power consumption, good uniformity and the like, and is very suitable for using CMS technology. But since the conversion time is linear with the number of multisampling times, a long a/D conversion time is required per pixel. The longer a/D conversion time slows down the frame rate of the sensor. As the frame rate decreases, low-frequency noise of pixel noise, i.e., 1/f noise of the pixel source follower, becomes a main noise contributor as the sampling time increases, thereby limiting the noise reduction effect of multiple sampling.
To solve the frame rate reduction problem due to Multiple Sampling, a Conditional Correlated Multiple Sampling (CCMS) technique is proposed to reduce random noise in pixels. The main idea of CCMS is to perform multiple quantization with the dark pixel output with small voltage range, small slope and small swing by determining the brightness of the pixel output voltage to reduce random noise and a/D conversion time of each pixel. Moreover, because the output of a bright pixel with a large swing is mainly photon shot noise and cannot be reduced by sampling for multiple times within a frame time, when the swing of the output voltage of the pixel exceeds a certain specific value, single quantization is performed by using a full voltage range slope.
Disclosure of Invention
Aiming at the problems in the prior art, the invention provides a monoclinic ADC circuit structure with a condition-dependent multi-sampling technology, which can realize the multi-sampling of a read signal under the condition of not reducing the frame frequency and effectively reduce the random noise in pixels; the resolution and the imaging quality of the image sensor are improved, and the application occasions of the image sensor are further expanded.
A single-slope ADC circuit structure with condition-dependent multi-sampling technology is shown in a dotted line box in figure 1 and comprises a comparator, a counter, a latch and a CCMS control part. Specific connection relationships are asThe following: pixel Via Source follower M sf Output voltage V of sf A left plate connected to capacitor C2; the right plate of the capacitor C2 is connected to the negative input end of the comparator; ramp voltages Vramp1, vramp2 are connected to the left plate of capacitor C1 via switches SW2 and SW2b, respectively; the right polar plate of the capacitor C1 is connected to the positive input end of the comparator; the common mode voltage Vcom is connected to the positive input end and the negative input end of the comparator through two SW1 switches respectively; the output CMP _ OUT of the comparator is connected to the input en of the counter; the output end of the counter is connected to the input end of the latch; the output CMP _ OUT of the comparator is also connected to the input of the CCMS control block; the S _ EN1, S _ EN2 and Index signals are input control signals of the CCMS control block; the State, tsw2, tsw2b signals are output signals of the CCMS control block.
A monoclinic ADC circuit structure with a condition-dependent multi-sampling technology is disclosed, and the control sequence is shown in figure 3. V sf And CMP _ OUT are the pixel via the source follower output and the comparator output, respectively. To save time, the dark pixel detection operation is combined with pixel signal level a/D conversion. The CCMS control block controls the ramp type of the access comparator according to the different output states of the latch. The FD in the pixel is first reset. The pixel reset voltage is sampled and converted by the proposed SS ADC. Because the reset voltage is small, the output Tsw2 of the CCMS control block is L, tsw2b is H, and the slope V is ramp2 Is connected to the positive input of the comparator and is sampled multiple times using a small voltage range ramp. The signal charge in the photodiode is then transferred to the FD and then detected by the dark pixel detection circuit in the dark pixel detection phase. The digital pulse (Index) controls the dark pixel detection area in the time domain. When CMP _ OUT toggles from "H" to "L", the latch is used to lock the value of Index. For dark pixels, logic "H" is latched by the latch, the latch output (State) becomes "H", the CCMS control block output Tsw2 is "L", tsw2b is "H", and ramp V is ramp2 Is connected to the positive input of the comparator and multiple sampling is performed using a small voltage range ramp. For bright pixels, logic "L" is latched by the latch, state remains "L", CCMS control block outputs Tsw2 is "H", tsw2b is "L", and rampV ramp1 Is connected to the positive input end of the comparator and adopts a full voltage range slope to carry out single quantization. Schematic diagram of the CCMS control block as shown in fig. 2, a digital control (Index) and digital latch are used to detect dark pixels. The output of the latch is fed back to its input through an or gate to lock the detection result and avoid overwriting during a pixel signal multi-sampling operation. Tsw2 and Tsw2b are control signals that control the comparator input ramp switches. State, S _ EN1 and S _ EN2 are used to generate Tsw2 and Tsw2b. Since the module only comprises a simple logic gate, the module can be easily integrated into a column parallel SS ADC with a small layout area.
A monoclinic ADC circuit structure with condition-dependent multi-sampling technology can be effectively applied to SS ADCs, so that the random noise in small-size pixels is effectively reduced, the resolution and the imaging quality of an image sensor are improved, the frame frequency under the condition of correlated multi-sampling is effectively ensured, and the application occasion of the image sensor is further enlarged.
Drawings
FIG. 1 is a SS ADC architecture with CCMS technology;
FIG. 2 is a schematic diagram of a CCMS control block;
fig. 3 is a SS ADC control timing with CCMS technology.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, a detailed description of the embodiments of the present invention will be given below with reference to examples.
A single-slope ADC circuit structure with condition-dependent multi-sampling technology is shown in a dotted line box in figure 1 and comprises a comparator, a counter, a latch and a CCMS control part. The specific connection relationship is as follows: pixel via source follower M sf Output voltage V of sf A left plate connected to capacitor C2; the right plate of the capacitor C2 is connected to the negative input end of the comparator; ramp voltages Vramp1, vramp2 are connected to the left plate of capacitor C1 via switches SW2 and SW2b, respectively; the right polar plate of the capacitor C1 is connected to the positive input end of the comparator; the common mode voltage Vcom is connected to the positive input end and the negative input end of the comparator through two SW1 switches respectively; the output of the comparator, CMP _ OUT, is connected to a meterAn input en of the counter; the output end of the counter is connected to the input end of the latch; the output CMP _ OUT of the comparator is also connected to the input of the CCMS control block; the S _ EN1, S _ EN2 and Index signals are input control signals of the CCMS control block; the State, tsw2, tsw2b signals are output signals of the CCMS control block.
A monoclinic ADC circuit structure with a condition-dependent multi-sampling technology is disclosed, and the control sequence is shown in figure 3. V sf And CMP _ OUT are the pixel via the source follower output and the comparator output, respectively. To save time, the dark pixel detection operation is combined with pixel signal level a/D conversion. The CCMS control block controls the ramp type of the access comparator according to the different output states of the latch. The FD in the pixel is first reset. The pixel reset voltage is sampled and converted by the proposed SS ADC. Because the reset voltage is small, the output Tsw2 of the CCMS control block is L, tsw2b is H, and the slope V is ramp2 Is connected to the positive input of the comparator and multiple sampling is performed using a small voltage range ramp. The signal charge in the photodiode is then transferred to the FD and then detected by the dark pixel detection circuit in the dark pixel detection phase. The digital pulse (Index) controls the dark pixel detection area in the time domain. When CMP _ OUT toggles from "H" to "L", the latch is used to lock the value of Index. For dark pixels, logic "H" is latched by the latch, the latch output (State) becomes "H", the CCMS control block output Tsw2 is "L", tsw2b is "H", and ramp V ramp2 Is connected to the positive input of the comparator and is sampled multiple times using a small voltage range ramp. For bright pixels, logic "L" is latched by the latch, state remains "L", CCMS control block outputs Tsw2 is "H", tsw2b is "L", and ramp V ramp1 Is connected to the positive input end of the comparator and adopts a full voltage range slope to carry out single quantization. Schematic diagram of the CCMS control block as shown in fig. 2, a digital control (Index) and digital latch are used to detect dark pixels. The output of the latch is fed back to its input through an or gate to lock the detection result and avoid overwriting during a pixel signal multi-sampling operation. Tsw2 and Tsw2b are control signals that control the comparator input ramp switches. State, S _ EN1 and S _ EN2 for generating Tsw2 and Tsw2b. Since the module only comprises a simple logic gate, the module can be easily integrated into a column parallel SS ADC with a small layout area.
The invention adopts a 110nm process for simulation, wherein the resolution of a pixel array is 3296H x 2512V, the sampling frequency of an SS ADC is 75.36kHz, and the single sampling frame frequency is 15 frames/s. When 4 samples are taken using conventional CMS techniques, the frame rate drops to around 3.75 frames/s and 0.7 e-for random noise. In contrast, when the SS ADC using the CCMS technique performs 5 samples, the frame rate is 7.2 frames/s, and the random noise is reduced to 0.66e-. The technology provided by the invention can reduce the frame frequency loss on the premise of effectively reducing random noise by sampling for many times.

Claims (1)

1. A monoclinic ADC circuit structure with condition-dependent multisampling technology is characterized in that: the device consists of a comparator, a counter, a latch and a condition-dependent multi-sampling CCMS control part; the pixel is connected to the left plate of the capacitor C2 via the output voltage Vsf of the source follower Msf; the right plate of the capacitor C2 is connected to the negative input end of the comparator; ramp voltages Vramp1, vramp2 are connected to the left plate of capacitor C1 via switches SW2 and SW2b, respectively; the right polar plate of the capacitor C1 is connected to the positive input end of the comparator; the common mode voltage Vcom is connected to the positive input end and the negative input end of the comparator through two SW1 switches respectively; the output CMP _ OUT of the comparator is connected to the input en of the counter; the output end of the counter is connected to the input end of the latch; the output CMP _ OUT of the comparator is also connected to the input of the condition-dependent multi-sampling CCMS control block; the S _ EN1, S _ EN2 and Index signals are input control signals of the condition-dependent multi-sampling CCMS control block; the State, tsw2 and Tsw2b signals are output signals of the condition-dependent multi-sampling CCMS control block;
firstly, resetting FD in a pixel, sampling and converting pixel reset voltage by the proposed single-slope ADC, wherein the output Tsw2 of a condition-dependent multi-sampling CCMS control block is L, tsw2b is H, a slope Vramp2 is accessed to the positive input end of a comparator, and multiple sampling is carried out by applying a slope with a small voltage range because the reset voltage is small; transferring the signal charge in the photodiode to the FD, and detecting by a dark pixel detection circuit in a dark pixel detection stage; the digital pulse Index controls the dark pixel detection area in the time domain; when CMP _ OUT is flipped from "H" to "L", the latch is used to lock the value of Index; for dark pixels, logic 'H' is locked by a latch, the output State of a condition-dependent multi-sampling CCMS control block is changed into 'H', the output Tsw2 of the condition-dependent multi-sampling CCMS control block is 'L', tsw2b is 'H', a slope Vramp2 is connected to the positive input end of a comparator, and a small-voltage-range slope is applied to carry out multi-sampling; for bright pixels, logic 'L' is locked by a latch, the state is kept to be 'L', the output Tsw2 of the condition-dependent multi-sampling CCMS control block is 'H', tsw2b is 'L', a ramp Vramp1 is connected to the positive input end of a comparator, and single-time quantization is carried out by adopting a full-voltage range ramp; tsw2 and Tsw2b are control signals that control the comparator input ramp switches; state, S _ EN1 and S _ EN2 are used to generate Tsw2 and Tsw2b.
CN201910742636.6A 2019-08-13 2019-08-13 Monoclinic ADC circuit structure with condition-dependent multi-sampling technology Active CN112398477B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910742636.6A CN112398477B (en) 2019-08-13 2019-08-13 Monoclinic ADC circuit structure with condition-dependent multi-sampling technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910742636.6A CN112398477B (en) 2019-08-13 2019-08-13 Monoclinic ADC circuit structure with condition-dependent multi-sampling technology

Publications (2)

Publication Number Publication Date
CN112398477A CN112398477A (en) 2021-02-23
CN112398477B true CN112398477B (en) 2023-03-24

Family

ID=74602471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910742636.6A Active CN112398477B (en) 2019-08-13 2019-08-13 Monoclinic ADC circuit structure with condition-dependent multi-sampling technology

Country Status (1)

Country Link
CN (1) CN112398477B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113411524B (en) * 2021-06-08 2022-11-01 天津大学 Low-power-consumption column-parallel single-slope analog-to-digital converter applied to image sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1518120A (en) * 2003-01-22 2004-08-04 Image sensor with double automatic exposure control
CN101873137A (en) * 2009-04-24 2010-10-27 索尼公司 Digital analog converter, solid photographic device and camera arrangement
CN102611854A (en) * 2012-03-20 2012-07-25 天津大学 Realization device of column-level analog-to-digital converter (ADC) in complementary metal-oxide semiconductor (CMOS) image sensor
JP2014140212A (en) * 2014-03-06 2014-07-31 Tohoku Univ Solid state imaging device
CN103986468A (en) * 2013-02-12 2014-08-13 全视科技有限公司 Adaptive multiple conversion ramp analog-to-digital converter
CN104135289A (en) * 2014-06-30 2014-11-05 天津大学 Method and device of calibrating column-level ADC (Analog to Digital Converter) with multiple reference voltage and single slope
CN106100639A (en) * 2016-06-08 2016-11-09 中国科学院微电子研究所 A kind of single bevel analog-digital converter with automatic error correction

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100671693B1 (en) * 2005-03-29 2007-01-19 매그나칩 반도체 유한회사 Cmos image sensor for executing analog correlated double sampling
JP2015130611A (en) * 2014-01-08 2015-07-16 株式会社東芝 analog-to-digital converter and image sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1518120A (en) * 2003-01-22 2004-08-04 Image sensor with double automatic exposure control
CN101873137A (en) * 2009-04-24 2010-10-27 索尼公司 Digital analog converter, solid photographic device and camera arrangement
CN102611854A (en) * 2012-03-20 2012-07-25 天津大学 Realization device of column-level analog-to-digital converter (ADC) in complementary metal-oxide semiconductor (CMOS) image sensor
CN103986468A (en) * 2013-02-12 2014-08-13 全视科技有限公司 Adaptive multiple conversion ramp analog-to-digital converter
JP2014140212A (en) * 2014-03-06 2014-07-31 Tohoku Univ Solid state imaging device
CN104135289A (en) * 2014-06-30 2014-11-05 天津大学 Method and device of calibrating column-level ADC (Analog to Digital Converter) with multiple reference voltage and single slope
CN106100639A (en) * 2016-06-08 2016-11-09 中国科学院微电子研究所 A kind of single bevel analog-digital converter with automatic error correction

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMOS图像传感器控制电路设计及曝光控制研究;高鹏;《中国优秀硕士学位论文全文数据库 (信息科技辑)》;20090415;全文 *
Design of a high speed CMOS image sensor with a hybrid single-slope column ADC and a finite state machine;Keunyeol Park等;《IEEE》;20180531;全文 *

Also Published As

Publication number Publication date
CN112398477A (en) 2021-02-23

Similar Documents

Publication Publication Date Title
US9479189B2 (en) A/D converter, solid-state imaging device and camera system
US7880775B2 (en) Image sensor with interleaved image output
US7230558B2 (en) Column analog-to-digital conversion apparatus and method supporting a high frame rate in a sub-sampling mode
US9819890B2 (en) Readout circuitry to mitigate column fixed pattern noise of an image sensor
US9787917B2 (en) Image sensor with time overlapping image output
US9807323B2 (en) Pixel circuit with constant voltage biased photodiode and related imaging method
Huang et al. A dynamic vision sensor with direct logarithmic output and full-frame picture-on-demand
US7688366B2 (en) Method and apparatus for suppressing noise in image sensor devices
EP2533521A1 (en) Solid-state image capture device
CN102461158A (en) Image sensor adc and cds per column
WO2015038569A2 (en) Oversampled image sensor with conditional pixel readout
CN104079841A (en) Comparator, solid-state imaging device, electronic apparatus and driving method
CN108184081A (en) A kind of high-speed data reading circuit in cmos image sensor
CN113826379B (en) Dynamic vision sensor with in-pixel digital change detection
EP0967729A2 (en) Autocalibration of an A/D converter within a CMOS type image sensor
US10257451B2 (en) Comparison device and CMOS image sensor using the same
US20190260955A1 (en) Pixel output level control device and cmos image sensor using the same
CN112398477B (en) Monoclinic ADC circuit structure with condition-dependent multi-sampling technology
US20230308784A1 (en) Delta Image Sensor With Digital Pixel Storage With Long Term Interruptable Operation
CN115567787A (en) Double-pixel simultaneous output high-response-rate linear array CMOS image sensor and method
TWI626619B (en) Method and system for implementing dynamic ground sharing in an image sensor with pipeline architecture
CN114567738B (en) Two-step type monoclinic analog-to-digital converter applied to CMOS image sensor
CN113960356B (en) Current comparison circuit, device and method for detecting image solar black element effect
CN112969042B (en) Arithmetic circuit and readout circuit of image sensor
WO2020087808A1 (en) Image sensor having analog-to-digital converter selectively enabling storage of count value, and analog-to-digital conversion method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant